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A ADAPTABILITY OF OUR SEAL

We contend that the components of our SEAL framework are highly adaptable to user preferences.
For instance, users have the option to choose a different reference line to visualize distributed per-
formance, reorganize the SE test sets into new groups, and utilize any IQA metrics for evaluation.

A.1 EXTENSION ON NEW IQA METRIC

To illustrate the adaptability of our SEAL framework, we have opted for SSIM as the IQA metric
to perform a comprehensive evaluation of real-SR methods. As depicted in Tab. 6, RealESRNet
surpasses other methods in terms of AR, an outcome that can be credited to the use of sharpened
Ground-Truth images. It is significant that RealESRNet and SwinIR exhibit remarkable stability, as
evidenced by their RPRI values. Furthermore, our findings indicate that SwinIR attains the highest
RPRA value, implying that transformer-based networks favor acceptance degradation cases. As
evidenced by these observations, our proposed evaluation framework displays considerable adapt-
ability. It accommodates various IQA metrics to systematically evaluate real-SR methods from
diverse angles, such as reconstruction capability (PSNR) and structural similarity (SSIM).

Table 6: Results and ranking of different methods on SSIM by our SEAL framework. The subscript
denotes the rank order. × represents a failed SR model in a large degradation space.

Set14-SE AR ↑ RPRI ↓ RPRA ↑ RPRU ↑ Rank

SRResNet 0.00(×) 0.04 0.00 0.04 ×
DASR 0.00(×) 0.03 0.00 0.04 ×
BSRNet 0.76(3) 0.27(5) 0.70(2) 0.36(4) 3
RealESRNet 0.91(1) 0.16(1) 0.67(3) 0.43(1) 1
RDSR 0.32(5) 0.22(3) 0.59(5) 0.33(5) 5
RealESRNet-GD 0.69(4) 0.26(4) 0.67(3) 0.39(2) 4
SwinIR 0.84(2) 0.17(2) 0.72(1) 0.38(3) 2

A.2 USER-CUSTOMIZED SE TEST SETS

In order to accommodate varying user preferences, such as the analysis of the quantitative perfor-
mance of IQA metrics, the SE test sets are organized in ascending order based on the PSNR values
of the FSRCNN-mz output. These sets are then partitioned into five groups of equal size. Group
1 encompasses the most challenging cases, while Group 5 includes the least challenging ones. As
shown in Table 7, the average RPR value of BSRNet closely matches that of RealESRNet-GD. How-
ever, there is a variation in their performance across different groups. RealESRNet-GD outperforms
in groups {3, 4, 5}, whereas BSRNet takes the lead in groups {1, 2}.

Table 7: RPR value of different methods on the Set14-SE with PSNR. Blue: better than FSRCNN-
mz.

Model SRResNet DASR BSRNet RealESRNet RDSR RealESRNet-GD SwinIR

Group 1 0.03 0.03 0.64 0.37 0.26 0.34 0.48
Group 2 0.02 0.02 0.60 0.37 0.21 0.45 0.43
Group 3 0.07 0.07 0.51 0.42 0.31 0.57 0.40
Group 4 0.02 0.01 0.37 0.40 0.29 0.68 0.27
Group 5 0.03 0.03 0.44 0.36 0.17 0.55 0.36

Average 0.03 0.03 0.51 0.38 0.25 0.52 0.39

A.3 EXTENSION ON ACCEPTANCE LINE AND EXCELLENCE LINE.

For the acceptance line, we hope it can represent an acceptable lower bound of performance with
good discrimination for different models. Concretely, the acceptance line cannot be so high that AR
of most methods cannot exceed 0, nor can it be so low that AR can easily reach 1.0. FSRCNN is a
small network (0.4M Params.) while it can distinguish the performance difference well, as shown in
Tab. 1. Therefore, we choose FSRCNN-mz as the acceptance line.
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FSRCNN-mz - 0.4M
(train/test time: 167h/10.7s)
SRResNet-mz - 1.5M
(train/test time: 183h/15.6s)
RRDBNet-mz - 16.7M
(train/test time: 1008h/81.9s)

Figure 10: Comparison of network structures for the acceptance and excellence lines.

Table 8: Basic strategies for model comparison. We use three basic strategies to compare the
overall performance of real-SR models. The real-SR models are trained on: (1) different network
structures, (2) different training datasets, and (3) the RealESRGAN degradation model with different
gate probability as proposed in Zhang et al. (2022).

AR ↑ RPRI ↓ RPRA ↑ RPRU ↑ Rank

SRResNet (1.5) 0.12(×) 0.20 0.63 0.26 ×
RCAN (15.6) 0.37(2) 0.15(1) 0.62(2) 0.39(2) 2

RRDBNet (16.7) 0.37(2) 0.33(3) 0.68(1) 0.32(3) 3Network (Parameter [M])

SwinIR (11.9) 0.67(1) 0.15(1) 0.62(2) 0.41(1) 1

DIV2K 0.32(3) 0.25(3) 0.64(2) 0.33(3) 3
DF2K 0.43(2) 0.24(2) 0.67(1) 0.39(2) 2Training dataset

ImageNet 0.63(1) 0.22(1) 0.67(1) 0.41(1) 1

1.00 0.37(4) 0.33(1) 0.68(3) 0.32(2) 3
0.75 0.44(1) 0.35(2) 0.69(2) 0.34(1) 1
0.50 0.43(2) 0.35(2) 0.70(1) 0.31(3) 1Gate probability

0.25 0.40(3) 0.43(4) 0.66(4) 0.21(4) 4

BSRNet (SOTA) 0.59(2) 0.42(2) 0.72(1) 0.27(2) 2
SwinIR-GD-I (Ours) 0.85(1) 0.25(1) 0.72(1) 0.40(1) 1

For the excellence line, we compare the networks of SRResNet (1.5M Params.) and RRDBNet
(16.7M Params.). In Fig. 10, we observe that SRResNet-mz and FSRCNN-mz can already distin-
guish the performance difference. Although RRDBNet-mz exhibits a slight performance improve-
ment, it comes at the expense of increased training and testing time, far surpassing those of other
models. Considering the trade-off between performance and time costs, we choose SRResNet-mz
as the excellence line. Nonetheless, we emphasize that our rationale for choosing these two lines is
that they can well differentiate the methods for comparison. Note that the two lines can be changed
flexibly to meet specific requirements of other scenarios.

B DEVELOPING NEW STRONG REAL-SR MODELS

According to the evaluation results by our framework, as shown in Tab. 8, we can improve the real-
SR performance in three aspects to develop a stronger real-SR model: 1) A powerful backbone is
vital for overall performance. We can observe that SwinIR obtains the highest AR and the lowest
RPRI . 2) Using a large-scale dataset (i.e., ImageNet Deng et al. (2009)) can also greatly improve
the real-SR performance. 3) A degradation model with the appropriate distribution (i.e., gate prob-
ability: 0.75 Zhang et al. (2022)) also has a non-negligible impact on the real-SR performance.
Based on these observations, we use SwinIR as the backbone to train a new strong real-SR model
on ImageNet with a high-order gate degradation (GD) model (gate probability: 0.75), denoted as
SwinIR-GD-I. The evaluation results in Tab. 8 show that SwinIR-GD-I obtain a significant improve-
ment over the SOTA performance of BSRNet. Fig. 11 shows that the visual results of SwinIR-GD-I
are obviously better than BSRNet and SwinIR. We believe our framework would inspire more pow-
erful real-SR methods in the future.
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Figure 11: Visual results of the proposed baseline SwinIR-GD-I with real-SR methods.

0 5 10 15 20
Random dataset(Ranked)

0.2

0.1

0.0

0.1

0.2

BS
RN

et
-R

ea
lE

SR
Ne

t P
SN

R(
dB

)

Figure 12: Results of conventional evalua-
tion on 20 random test sets.
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Figure 13: Similar visual effects of different degra-
dation combinations.

C DETAILS OF CONVENTIONAL EVALUTION

To better understand the biased comparison of conventional evaluation on real-SR, we use common
degradation types to illustrate the number of degradation combinations on a simple one-order degra-
dation model. In Tab. 9, the number of degradation combinations is obtained using uniform sampling
for each degradation type. It can be seen that the number of degradation combinations can reach up
to 1.08 × 105. Furthermore, RealESRGAN Wang et al. (2021b) adopts a high-order degradation
model with complex degradation combinations, such as an-isotropic blur, Poisson noise, gray noise,
and sinc filter. The combination cases of the high-order degradation models will reach astronomical
numbers. As described in the main paper, such a huge space cannot be sufficiently sampled by a few
samples due to different combinations of degradation may produce similar visual effects.

Table 9: The number of combination degradation cases on a simple one-order degradation model.

Gaussian Blur Gaussian noise Resize Comression

Type iso color nearest, bilinear, bicubic JPEG
Range Sigma: [0, 2.8] Sigma: [2, 25] scale: [0.125, 2] range: [30, 95]

Sampling interval 0.2 2 0.1 5
Number 14 11 54 13

Total number 14× 11× 54× 13 = 1.08× 105

Inspired by our proposed evaluation framework, which utilizes hundreds of representative test sets
to evaluate real-SR models, we create 20 random test sets to further analyze existing evaluation
methods. Using a large degradation model, we randomly apply degradations to the images from the
DIV2K val dataset. As shown in Fig. 12, each bar represents the PSNR difference between BSRNet
and RealESRNet in a single test set. It reveals that the comparison conclusions are often inconsistent
(e.g., -0.22 dB in test set 1 and 0.18 dB in test set 20) or indistinguishable (e.g., -0.01 dB in test set
12) using a single test set. When we average the PSNR results across all test sets, we find an average
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(a) k5 s0.12 (b) k40 s0.04 (c) k100 s0.03 (d) k200 s0.01

Figure 14: Ablation of the number of clusters k. s denotes silhouette score.

difference of only 0.02 dB, which is statistically insignificant. These findings indicate that existing
evaluation methods may not be sufficient to evaluate the real-SR methods.

D DETAILS OF DEGRADATION CLUSTERING

D.1 SPECTRAL CLUSTERING

We use the shuffled degradation model of BSRGAN Zhang et al. (2021) and the high-order degra-
dation model of RealESRGAN Wang et al. (2021b) to construct a large degradation space. The de-
graded images are generated by the shuffled Zhang et al. (2021) and high-order Wang et al. (2021b)
degradation models with probabilities of {0.5, 0.5}. The degradation types mainly consist of 1) var-
ious types of Gaussian blur; 2) commonly-used noise: Gaussian, Poisson, and Speckle noise with
gray and color scale; 3) multiple resize strategy: area, bilinear and bicubic; 4) JPEG noise.

Algorithm 1 Image degradation clustering

Input: Similarity matrix S ∈ Rn×n, number k of clusters to construct.
1: Compute Adjacency Matrix W and Degree Matrix D.
2: Compute Laplacian Matrix L = D −W .
3: Compute the first K eigenvectors u1, ..., uk of L.
4: Let U ∈ Rn×k be the matrix containing the vectors u1, ..., uk as columns.
5: For i = 1, ..., n, let yi ∈ Rk be the vector corresponding to the i-th row of U .
6: Cluster the points (yi)i=1,...,n in Rk with the k-means algorithm into clusters C1, ..., Ck

Output: Cluster centers c1, ..., cK with ci ∈ Ci.

We use spectral clustering to group the degraded images (x) due to its effectiveness and flexibility
in finding arbitrarily shaped clusters. First, we use the histogram (h) Tang et al. (2011); Ye &
Doermann (2012) with 256 values (bins) as the image feature to calculate the similarity sij =
L1(h(xi), h(xj)). The similarity matrix is defined as a symmetric matrix S, where sij represents a
measure of the similarity between data points x with indices i and j for n data points. We execute
Algo. 1 step by step to obtain the degradation parameter of cluster centers D = {c1, c2, ..., cK}.
Then, we use the degradation parameter of cluster centers as the representative degradations to
construct the systematic set.

D.2 SIMILARITY METRICS

In this section, we provide more experimental details for the Sec. similarity metrics in the main
paper. To select an appropriate similarity metric, we create two dataset with simple degradation
types – Gaussian blur with a range of [0.1, 4.0] and Gaussian noise [1, 40]. We use the image lenna
in Set14 Zeyde et al. (2010) as our Ground-Truth image. Firstly, we generate 100 low-quality images
named Blur100 by applying Gaussian blur within a range of [0.1, 4.0]. Each cluster is assigned a
label based on the degradation intensity. We label the low-quality images with {[0.1, 1.0], [1.0, 2.0],
[2.0, 3.0], [3.0, 4.0]} as {1, 2, 3, 4} respectively. Similarly, we generate 100 low-quality images
named Noise100 by applying Gaussian noise within the range [1, 40], labeled as {1, 2, 3, 4} based
on noise intensity.
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Figure 15: Visual results of MSE-based real-SR methods and the acceptance line FSRCNN and
excellence line SRResNet with PSNR metric. It is best viewed in color.

To evaluate the effectiveness of the similarity metric, we combine Blur100 and Noise100 to produce
BN100, which comprises 100 blurred images and 100 noised images. BN100 is labeled as {1, 2, 3,
4, 5, 6, 7, 8} using the same criteria as the previous datasets. We evaluate the clustering performance
using purity accuracy, which divides the number of correctly matched class and cluster labels by the
total number of data points.

D.3 THE NUMBER OF CLUSTERS

To determine the number of clusters, we use silhouette scores Rousseeuw (1987) to measure the
quality of the clusters. A higher silhouette score represents a better cluster, while the clustering
result is acceptable if the silhouette score is greater than 0. As demonstrated in Fig. 14, the silhouette
scores of k=40 and k=100 are very close, thus we utilize 100 clusters to find the representative cases.
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Figure 16: Visual results of GAN-based real-SR methods and the acceptance line RealESRGAN
and excellence line RealHATGAN with LPIPS metric. It is best viewed in color.

E MORE EXPERIMENTAL RESULTS

E.1 MORE VISUAL RESULTS ON REAL-SR METHODS

In this section, we further explore the effectiveness of our evaluation framework by providing addi-
tional qualitative results. We compare our proposed lines of acceptance and excellence with existing
real-SR methods. The MSE-based methods that we consider include DASR Wang et al. (2021a),
BSRNet Zhang et al. (2021), SwinIR Liang et al. (2021a), RealESRNet Wang et al. (2021b), RDSR
Kong et al. (2022), and RealESRNet-GD Zhang et al. (2022). In Fig. 15, we use FSRCNN (green)
to denote the acceptance line, and SRResNet (red) to represent the excellence line. Moving on to
the GAN-based methods, we include DASR Liang et al. (2022), BSRGAN Zhang et al. (2021),
MMRealSR Mou et al. (2022), SwinIR Liang et al. (2021a) and RealSRGAN Ledig et al. (2017).
In Fig. 16, RealESRGAN (green) is used to denote the acceptance line, and RealHATGAN (red) is
used to represent the excellence line. This comprehensive comparison provides a clear understand-
ing of the performance of our proposed lines against the existing methods, thereby demonstrating
the effectiveness of our evaluation framework.
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E.2 DEGRADATION CLUSTERING RESULTS

In this section, we present visual results for the lenna image, processed with degradation parameters
of cluster center [1, 100]. These results are sorted based on the PSNR values of the output from
FSRCNN-mz. Fig. 17 showcases the most challenging cases encountered in our study. On the other
hand, Fig. 21 highlights the cases that were relatively easier to handle. This comparative analysis
provides a clear understanding of the performance range of our proposed evaluation framework.

Figure 17: The visual results with the degradation parameters of cluster center [1, 20]. Best viewed
in color.

Figure 18: The visual results with the degradation parameters of cluster center [21, 40]. Best viewed
in color.
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Figure 19: The visual results with the degradation parameters of cluster center [41, 60]. Best viewed
in color.

Figure 20: The visual results with the degradation parameters of cluster center [61, 80]. Best viewed
in color.
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Figure 21: The visual results with the degradation parameters of cluster center [81, 100]. Best
viewed in color.
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