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1 DATASET PROCESSING.
Coordinate Transformation of Gaze Points. A scanpath con-
sists of multiple gaze points, and the original datasets we obtained
provide the longitude and latitude coordinates of these gaze points:
𝐶𝑜𝑜𝑟𝑑𝑖 (𝑔) = (𝑙𝑜𝑛, 𝑙𝑎𝑡). During dataset processing, the coordinate
transformation mainly involves two processes: Initially, the stan-
dard transformation formula from spherical coordinates to Carte-
sian coordinates is used to represent gaze points in three-dimensional
space. Specifically: 𝑥 = cos(lat) · cos(lon), 𝑦 = cos(lat) · sin(lon),
𝑧 = sin(lat). At this point, the coordinates of gaze points have been
transformed into𝐶𝑜𝑜𝑟𝑑𝑖 (𝑔) = (𝑥,𝑦, 𝑧). Then, the three-dimensional
coordinates are mapped back to the two-dimensional image coordi-
nate system. Specifically: recalculating new longitude and latitude
coordinates from the three-dimensional coordinates (𝑥,𝑦, 𝑧):

𝑙𝑜𝑛 = arctan 2(𝑦, 𝑥)
,

𝑙𝑎𝑡 = arctan 2
(
𝑧,

√︃
𝑥2 + 𝑦2

)
. These longitude and latitude coordinates are converted to normal-
ized two-dimensional image coordinates:

𝑥 ′ =
lon + 𝜋

2𝜋

𝑦′ = ( lat
𝜋/2 + 1)/2

. Finally, the normalized coordinates (𝑥 ′, 𝑦′) are converted to pixel
coordinates by multiplying them by the width and height of the
image:

𝑥 ′′ = 𝑥 ′ · width
𝑦′′ = 𝑦′ · height

. Now, the coordinates of gaze points have been transformed into:
𝐶𝑜𝑜𝑟𝑑𝑖 = (𝑥 ′′, 𝑦′′)

Sampling of Gaze Points. For the Sitzmann dataset [7], special
dataset augmentation and sampling methods are described in the
paper. For the AOI dataset [9], the length of each ground truth
scanpath is different, so we uniformly sample 20 gaze points for
training our model. Scanpaths with fewer than 20 gaze points are
filled with linear interpolation to reach 20 and scanpaths with more
than 20 gaze points, the first 20 points are sampled according to
the temporal order. For the Salient360! dataset [6], we employ the
same sampling method as AOI dataset [9].

2 SPHERICAL CNN
Spherical CNN.We employ Spherical CNNs to extract local convo-
lutional features. The Spherical CNN layers are designed to account
for the geometric properties of a sphere. Specifically, there are
two operations that differ from traditional CNNs: for spherical
convolution (𝑆𝑝ℎ𝑒𝑟𝑒𝐶𝑜𝑛𝑣2𝐷), utilizing neighborhood information
on the sphere instead of local neighborhoods in a flat image. The

convolution kernels are applied in a spherical coordinate system,
not in the traditional Cartesian coordinate system. Similarly, for
spherical pooling (𝑆𝑝ℎ𝑒𝑟𝑒𝑀𝑎𝑥𝑃𝑜𝑜𝑙2𝐷), this operation is adjusted
to accommodate the geometry of the sphere.
ViT Embedding with Spherical CNN. The convolutional kernel
sizes in the 𝑥 and 𝑦 directions are in a ratio of 2 : 1. The image size
is (448, 224), and the patch size is (32, 16).

3 QUANTITATIVE COMPARISON IN
SALIENCY DETECTION

Evaluation Metrics. Following [8], we also evaluate saliency de-
tection with four metrics: the Judd variant of the area under curve
(AUC) [1], normalized scanpath saliency (NSS) [5], correlation co-
efficient (CC) [4], and Kullback–Leibler divergence (KLD) [2].

When calculating the Judd variant of the area under curve (AUC),
ground truth gaze points are used as positive samples, and ran-
dom sampling of other points serves as negative samples. Different
thresholds are then applied to the saliency map generated by the
model, each producing a pair of True Positive Rate (TPR) and False
Positive Rate (FPR) values. After plotting TPR against FPR, the area
under the resulting curve represents the AUC [1]. The Normalized
Scanpath Saliency (NSS) measures the degree of match between the
saliency map generated by a model and ground truth gaze points. It
is calculated by analyzing the values at the real gaze points on the
model’s saliency map [5]. The Correlation Coefficient (CC) mea-
sures the linear correlation between the saliency map generated by
a saliency detection model and the ground truth gaze points. We
use the Pearson correlation coefficient to calculate the CC [4]. The
Kullback-Leibler Divergence (KLD) is used to quantify the differ-
ence between the predicted saliency map and the ground truth. The
calculation involves summing the product of the probabilities in
the predicted distribution and the logarithmic difference between
the predicted and ground truth distributions [2].
Quantitative Performance Comparison. We apply different
methods (ScanDMM [8], ScanGAN360 [3], and ScanTD) in saliency
detetction on three datasets: AOI [9], Salient360! [6] and Sitzmann
[7]. The quantitative performance comparison results are illustrated
in Tab. 1. Tab. 1 shows that compared with ScanGAN360 [3] and
ScanDMM [8], our approach ScanTD can achieve better perfor-
mance when applying to saliency detection on these three datasets.

4 MORE EXPERIMENTAL RESULTS
4.1 Diverse Results of ScanTD in Scanpaths

Generation
As shown in Fig. 1, our ScanTD can generate multiple scanpaths
for the same scene to satisfy the diverse requirements of viewers,
which is critical for practical applications. Moreover, the different
scanpaths are plausible and capable of focusing on meaningful and
relevant areas within the scene. The street and Monument scenes
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Table 1: Quantitative comparison in saliency detection on three datasets

Database Method AUC ↑ NSS ↑ CC ↑ KLD ↓
ScanGAN360 [3] 0.69 0.81 0.38 0.79
ScanDMM [8] 0.75 0.88 0.41 0.62

AOI [9] ScanTD 0.81 0.92 0.46 0.40
Human 0.89 1.94 1.00 0.15
ScanGAN360 [3] 0.70 0.72 0.39 0.60
ScanDMM [8] 0.75 0.92 0.57 0.41

Salienct360! [6] ScanTD 0.79 1.13 0.64 0.38
Human 0.91 2.07 1.00 0.18
ScanGAN360 [3] 0.74 0.86 0.45 0.66
ScanDMM [8] 0.73 1.04 0.52 0.49

Sitzmann [7] ScanTD 0.84 1.37 0.59 0.38
Human 0.88 2.46 1.00 0.10

Figure 1: Diverse generation results of ScanTD on three datasets

are from AOI dataset [9], and the sunset and plaza scenes are from Salient360! [6], and the library and lake scenes are from Sitzmann
dataset [7].
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Figure 2: Qualitative comparison to different scanpath prediction models on three datasets
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Figure 3: Qualitative comparison to different saliency detection models on three datasets

4.2 Qualitative Comparison in Scanpath
Prediction

As shown in Fig. 2, for the first garden scene and the second night
scene, our ScanTD is closer to the ground truth and the predicted
gaze points do not exhibit unreasonable large-span displacements
in the vertical direction. Particularly, in the second night scene, the
majority of the gaze points predicted by ScanTD are concentrated
on meaningful buildings. For the third subway scene, according
to the color distribution of the predicted gaze points, it can be
demonstrated that our ScanTD is better able to capture the temporal
sequence of generated gaze points which is a crucial aspect in the
task of scanpath prediction. The garden scene is from AOI dataset

[9], the night scene is from Salient360! dataset [6], and the subway
scene is from Sitzmann dataset [7].

4.3 Qualitative Comparison in Saliency
Detection

As illustrated in Fig. 3, for these three distinct scenarios from dis-
parate datasets, our approach ScanTD canmore accurately highlight
the spatial locations and distribution of salient regions within the
ground truth. This capability of ScanTD has wide-ranging practical
applications, including image recognition systems, environmen-
tal monitoring, and surveillance technologies, where pinpointing
salient regions is critical in decision-making and analysis. The tower
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scene is from AOI dataset [9], the pavilion scene is from Salient360!
dataset [6], and the bridge scene is from Sitzmann dataset [7].
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