
A Benchmark Pairs Details

In Appendix A.1 we discuss the details of high-dimensional benchmark pairs. Appendix A.2 is
devoted to Celeba 64ˆ 64 images benchmark pairs.

A.1 High-dimensional Benchmark Pairs

The benchmark creation example is given in Figure 1. In each dimension we fix random Gaussian
mixtures P,Q1,Q2 (in the code we hard-code the random seeds) and use them to create a benchmark.

To generate a random mixture of M Gaussian measures in dimension D, we use the following
procedure. Let δ, σ ą 0 (we use δ “ 1, σ “ 2

5 ) and consider the M -dimensional grid

G “ t´
δ ¨M

2
` i ¨ δ for i “ 1, 2, . . . ,MuD Ă RD.

(a) A random mixture of 3 Gaussians. (b) A random mixture of 10 Gaussians.

Figure 6: Randomly generated Gaussian mixtures. Projection on to first two dimensions.

We pick M random points µ11, . . . µ
1
M P G such that no pair of points has any shared coordinate. We

initialize random A11, . . . , A
1
M P RDˆD, where each row of each matrix is randomly sampled from

D ´ 1 dimensional sphere in RD. Let Σ1m “ σ2 ¨ pA1mq ¨ pA
1
mq
J for m “ 1, 2, . . . ,M and note that

rΣ1msdd “ σ2 for d “ 1, 2, . . . , D. Next, we consider the Gaussian mixture 1
M

řM
m“1 N pµ1m,Σ1mq.

Finally, we normalize the mixture to have axis-wise variance equal to 1, i.e. we consider the final
mixture 1

M

řM
m“1 N pµm,Σmq, where µm “ aµ1m and Σm “ a2Σm. The value a P R` is given by

a´1 “

d

řM
m“1 }µ

1
m}

2

M ¨D
` σ2.

Gaussian mixtures created by the procedure have D same nice marginals, see Figure 6.

A.2 CelebA 64ˆ 64 Images Benchmark Pairs

We fit 3 generative models on CelebA64 aligned faces dataset with a 128-dimensional latent Gaussian
measure to sample from their distribution, using WGAN-QC [19] with a ResNet generator network.
For trials k “ 1, 2, we keep generator checkpoints after 1000, 5000, 10000 iterations to produce
measures QkEarly,QkMid,QkLate respectively. In the last trial k “ 3, we keep only the final generator
network checkpoint after 50000 iterations which produces measure P3

Final. To make each of measures
absolutely continuous, we add white Normal noise (axis-wise σ “ 0.01) to the generators’ output.

We use the generated measures to construct images benchmark pairs according to the pipeline
described in M4.1. We visualize the pipeline in Figure 2.

14



B Experimental Details

In Appendix B.1, we discuss the neural network architectures we used in experiments. All the other
training hyperparameters are given in Appendix B.2.

B.1 Neural Network Architectures

In Table 4 below, we list all the neural network architectures we use in continuous OT solvers. In
every experiment we pre-train networks to satisfy ∇ψθpxq “ x´∇fθpxq « x and Hωpyq « y at the
start of the optimization. We empirically noted that such a strategy leads to more stable optimization.

Solver High-dimensional benchmark CelebA benchmark CelebA image generation
tLSs ψθ, φω : RD Ñ R - DenseICNN (U) N/A

tMM-Bs ψθ : RD Ñ R - DenseICNN (U) fθ : RD Ñ R - ResNet
tQCs ψθ : RD Ñ R - DenseICNN (U) fθ : RD Ñ R - ResNet

tMMs
ψθ : RD Ñ R - DenseICNN (U)

Hω : RD Ñ RD - ∇ of DenseICNN (U)
fθ : RD Ñ R - ResNet
Hω : RD Ñ RD- UNet

tMM:Rs
Tθ : RD Ñ RD - ∇ of DenseICNN (U)
φω : RD Ñ R - DenseICNN (U)

Tθ : RD Ñ RD- UNet
gω : RD Ñ R - ResNet

tMMv1s ψθ : RD Ñ R - DenseICNN N/A
tMMv2s

tW2s

ψθ : RD Ñ R - DenseICNN
Hω : RD Ñ RD - ∇ of DenseICNN

ψθ : RD Ñ R - ConvICNN64
Hω : RD Ñ RD - ∇ of ConvICNN64

tMMv2:Rs

tW2:Rs

Tθ : RD Ñ RD - ∇ of DenseICNN
φω : RD Ñ R - DenseICNN

Tθ : RD Ñ RD - ∇ of ConvICNN64
φω : RD Ñ R - ConvICNN64

Table 4: Network architectures we use to parametrize potential f (or ψ) and map H in tested solvers.
In the reversed solvers we parametrize second potential g (or φ) and forward transport map T by
neural networks.

In the high-dimensional benchmark, we use DenseICNN architecture from [16, MB.2]. It is a
fully-connected neural net with additional input-quadratic skip-connections. This architecture can be
made input-convex by limiting certain weights to be non-negative. We impose such as a restriction
only for tMMv1s,tMMv2s,tW2s solvers which require networks to be input-convex. In other cases,
the network has no restrictions on weights and we denote the architecture by DenseICNN (U). In
experiments, we use the implementation of DenseICNN from the official repository of tW2s solver

https://github.com/iamalexkorotin/Wasserstein2GenerativeNetworks

More precisely, in the experiments with probability measures on RD, we use

DenseICNNr1; maxp2D, 64q,maxp2D, 64q,maxpD, 32qs.

Here 1 is the rank of the input-quadratic skip connections and the other values define sizes of
fully-connected layers the sequential part of the network. The notation follows [16, MB.2].

We emphasize that DenseICNN architecture ψθ has diffirentiable CELU [4] activation functions.
Thus, ∇ψθ is well-defined. In particular, artificial β ¨ }x}2{2 for β “ 10´4 is added to the output of
the last layer of the ICNN. This makes ψθ to be β-strongly convex. As the consequence, ∇ψθ is a
bijective function with Lipschitz constant lower bounded by β, see the discussion in [16, MB.1].

In the experiments with CelebA images, for parametrizing the potential f “ fθ : RD Ñ R in
tMMs, tQCs, tMM-Bs, we use ResNet architecture from the official WGAN-QC [19] repository:

https://github.com/harryliew/WGAN-QC

To parametrize the map H “ Hω : RD Ñ RD in tMMs solver, we use UNet architecture from

https://github.com/milesial/Pytorch-UNet

In tMMv2s, tW2s solvers we parametrize ψ “ ψθ and H “ Hω “ ∇φω, where both ψθ, φω have
ConvICNN64 architecture, see Figure 7. We artificially add β ¨ }x}2{2 (for β “ 10´4) to the output
of the output of the ConvICNN64 to make its gradient bijective.

In the architecture, PosConv2D layers are usual 2D convolutional layers with all weights (except
biases) restricted to be non-negative. Conv2D-CQ (convex quadratic) are fully convolutional blocks

15

https://github.com/iamalexkorotin/Wasserstein2GenerativeNetworks
https://github.com/harryliew/WGAN-QC
https://github.com/milesial/Pytorch-UNet


Figure 7: Convolutional ICNN architecture we use for processing 64ˆ 64 RGB images.

which output a tensor whose elements are input-quadratic functions of the input tensor. In Figure 8, we
present the architecture of Conv2D-CQ block. Here, GroupChannelSumPool operation corresponds
to splitting the tensor per channel dimension into nout sequential sub-tensors (each of r channels)
and collapsing each sub-tensor into one 1-channel tensor by summing r channel maps. The layer can
be viewed as the convolutional analog of ConvexQuadratic dense layer proposed by [16, MB.2].

Figure 8: 2D convolutional convex quadratic block.

In the CelebA image generation experiments, we also use ResNet architecture for the generator
network g. The implementation is taken from WGAN-QC repository mentioned above.

B.2 Hyperparameters and Implementation Details

The evaluation of all the considered continuous solvers for evaluation is not trivial for two reasons.
First, not all the solvers have available user-friendly Python implementations. Next, some solvers are
not used outside the GAN setting. Thus, for considering them in the benchmark, proper extraction of
the W2 solver (discriminator part) from the GAN is needed.

We implement most of the solvers from scratch. In all the cases, we use Adam optimizer [15] with
default hyperparameters (exept the learning rate). For solvers tQCs by [19] and tW2s by [16] we use
the code provided by the authors in the official papers’ GitHub repositories.

B.2.1 High-dimensional Benchmark Pairs

We report the hyper parameters we use in high-dimensional benchmark in Table 5. Total iterations
column corresponds to optimizing the potential fθ (or ψθ) to maximize the dual form (8). In maximin
solvers, there is also an inner cycle which corresponds to solving the inner minimization problem in
(8). The hyperparameters are chosen empirically to best suit the considered evaluation setting.

For tQCs solver large batch sizes are computationally infeasible since it requires solving a linear
program at each optimization step [19, M3.1]. Thus, we use batch size 64 as in the original paper.
tW2s solver is used with the same hyperparameters in training/evaluation of the benchmarks.

B.2.2 CelebA 64ˆ 64 Images Benchmark Pairs

For the images benchmark, we list the hyperparameters in Table 6.

16



Solver Batch Size Total Iterations LR Note

tLSs 1024 100000 10´3 Quadratic regularization
with ε “ 3 ¨ 10´2, see [36, Eq. (7)]

tMM-Bs 1024 100000 10´3 None

tQCs 64 100000 10´3 OT regularization
withK “ 1, γ “ 0.1, see [19, Eq. (10)]

tMMv1s 1024 20000 10´3
1000 gradient iterations (lr “ 0.3)

to compute argmin in (8), see [39, M6].
Early stop when gradient normă 10´3.

tMMs,tMMv2s 1024 50000 10´3 15 inner cycle iterations to updateHω ,
(K “ 15 in the notation of [26, Algorithm 1])

tW2s 1024 250000 10´3 Cycle-consistency regularization,
λ “ D, see [16, Algorithm 1]

Table 5: Hyperparameters of solvers we use in high-dimensional benchmark. Reversed are not
presdented in this table: they use the same hyperparameters as their original versions.

Solver Batch Size Total Iterations LR Note
tMM-Bs 64 20000 3 ¨ 10´4 None

tQCs 64 20000 3 ¨ 10´4 OT regularization
withK “ 1, γ “ 0.1, see [19, Eq. (10)]

tMMs 64 50000 3 ¨ 10´4 5 inner cycle iterations to updateHω ,
(K “ 5 in the notation of [26, Algorithm 1])

tW2s 64 50000 3 ¨ 10´4 Cycle-consistency regularization,
λ “ 104, see [16, Algorithm 1]

Table 6: Hyperparameters of solvers we use in CelebA images benchmark.

B.2.3 CelebA 64ˆ 64 Images Generation Experiment

To train a generative model, we use GAN-style training: generator networkGα updates are alternating
with OT solver’s updates (discriminator’s update). The learning rate for the generator network is
3 ¨ 10´4 and the total number of generator iterations is 50000.

In tQCs solver we use the code by the authors: there is one gradient update of OT solver per generator
update. In all the rest methods, we alternate 1 generator update with 10 updates of OT solver
(iterations in notation of Table 6). All the rest hyperparameters match the previous experiment.

The generator’s gradient w.r.t. parameters α on a mini-batch z1, . . . , zN „ S is given by

BW2
2pPα,Qq{Bα “

ż

z

JαGαpzq
T∇f˚

`

Gαpzq
˘

dSpzq «
1

N

N
ÿ

n“1

JαGαpznq
T∇fθ

`

Gαpznq
˘

(10)

where S is the latent space measure and fθ is the current potential (discriminator) of OT solver. Note
that in tMM:Rs potential f is not computed but the forward OT map Tθ is parametrized instead. In
this case, we estimate the gradient (10) on a mini-batch by 1

N

řN
n“1 JαGαpznq

T pidRD ´ Tθq.

17


	Benchmark Pairs Details
	High-dimensional Benchmark Pairs
	CelebA 6464 Images Benchmark Pairs

	Experimental Details
	Neural Network Architectures
	Hyperparameters and Implementation Details
	High-dimensional Benchmark Pairs
	CelebA 6464 Images Benchmark Pairs
	CelebA 6464 Images Generation Experiment



