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ABSTRACT

Enhancing the adaptive capabilities of large language models is a critical pursuit in
both research and application. Traditional fine-tuning methods require substantial
data and computational resources, especially for enhancing specific capabilities,
while in-context learning is limited by the need for appropriate demonstrations and
efficient token usage. Inspired by the expression of in-context learned capabilities
through task vectors and the concept of modularization, we propose ELICIT, a
framework consisting of two modules designed to effectively store and reuse task
vectors to elicit the diverse capabilities of models without additional training or
inference tokens. Our comprehensive experiments and analysis demonstrate that
our pipeline is highly transferable across different input formats, tasks, and model
architectures. ELICIT serves as a plug-and-play performance booster to enable
adaptive elicitation of model capabilities. By externally storing and reusing vectors
that represent in-context learned capabilities, ELICIT not only demonstrates
the potential to operate modular capabilities but also significantly enhances the
performance, versatility, adaptability, and scalability of large language models.
Our code is publicly available 1.

1 INTRODUCTION

Evaluate the result of a random Boolean expression.
Question: True and False or ( not True ) is
Answer:

True

False

{𝜽}

Capability Library 

Figure 1: Illustration of ELICIT, which dynamically
retrieves and integrates task vectors from a capability
library to augment a language model’s performance on
arbitrary queries, without increasing token usage during
inference.

Large Language Models (LLMs) have revolu-
tionized the field of Natural Language Process-
ing (NLP), demonstrating remarkable versatility
in tackling a wide array of tasks and real-world
challenges (Devlin, 2018; Brown, 2020; Han
et al., 2021; Achiam et al., 2023; Touvron et al.,
2023). The power of these models lies in their
ability to seamlessly integrate various capabil-
ities, from logical reasoning (Bommasani et al.,
2021) to common sense understanding (Talmor
et al., 2018). In our rapidly evolving world, a
crucial aspect of LLM is the ability to efficiently
adapt to new tasks or scenarios.

Traditional fine-tuning methods, while effective
in enhancing specific model capabilities (Devlin,
2018; Thirunavukarasu et al., 2023; Gururangan et al., 2020), often fall short in providing the
necessary adaptability. These approaches are computationally intensive, leaving LLMs ill-equipped
to handle the dynamic nature of real-world applications. In-Context Learning (ICL) (Brown, 2020)
has emerged as a promising alternative, allowing LLMs to adapt to new tasks without additional
training by leveraging their inherent capabilities (Team et al., 2023; Vacareanu et al., 2024; Agarwal

∗ These authors contributed equally to this work.
† Corresponding author.
1https://github.com/LINs-lab/ELICIT

1

https://github.com/LINs-lab/ELICIT


Published as a conference paper at ICLR 2025

et al., 2024). ICL, while effective, relies on carefully crafted demonstrations, requires extra overhead
for each inference, and interrupts the context, potentially limiting its efficiency and flexibility (Lu
et al., 2021; Zhao et al., 2021; Dong et al., 2022; Liu et al., 2023b).

We envision a next step in LLM adaptation: Can we elicit and harness the potential of LLMs’ inherent
capabilities when adapting to new tasks, as demonstrated by ICL, while simultaneously maintaining
efficiency and flexibility?

Our research explores this question by introducing a novel approach ELICIT inspired by the concept
of modularization (Pfeiffer et al., 2023; Fedus et al., 2022; Ding et al., 2023; Zhang et al., 2023b; Xiao
et al., 2024). ELICIT involves the establishment of a comprehensive library of task vectors, each
eliciting one in-context capability within the LLM. For any arbitrary query text, ELICIT dynamically
leverage this capability library to selectively elicit the capability, effectively and flexibly tapping into
the model’s inherent capabilities on an as-needed basis. We empirically verify the advantanges of
ELICIT under 20 tasks and 4 models:

• Efficient Capability Elicitation: ELICIT aims to improve the model’s task-specific capabilities
with minimal additional computational cost during inference. Across 20 tasks and 4 models,
ELICIT achieves an average improvement of 11.4% over zero-shot performance while maintaining
the same token usage (Section 4.2).

• Flexible Task Handling: ELICIT can adapt to various tasks without requiring task-specific
demonstrations or rigid templates, enhancing performance on both in-domain and unseen tasks
(Sections 4.2 and 4.4).

• Selective Capability Activation: ELICIT allows for targeted activation of specific model capa-
bilities based on the input query. In our experiments with a math-only capability library, ELICIT
boosted Math performance dramatically (e.g., from 2.6% to 21.3% for Mistral) while maintaining
or slightly improving performance in other domains (Section 4.3).

• Complementary Integration: ELICIT shows potential for complementary use with existing
methods, offering further performance gains. When combined with BM25 retrieval, ELICIT
enhanced Pythia’s average performance from 22.1% to 28.3% (Section 4.5).

Our key contributions are summarized as follows:

• We introduce a novel, modular framework for enhancing the adaptive capabilities of LLMs on
demand with minimal computational overhead.

• We conduct extensive experiments to evaluate our method, showcasing its effectiveness across
different query formats, language models, and tasks.

• We provide a thorough analysis of our method, offering insights into the design choices and their
contributions to overall performance.

2 RELATED WORK

In-Context Learning. While Brown (2020) introduced In-Context Learning (ICL) as a simple
yet effective way to enhance LLM performance by incorporating demonstrations into prompts,
its applications have rapidly expanded across diverse domains. ICL enables model to adapt to a
wide array of tasks ranging from traditional NLP benchmarks to more specialized tasks such as
egression (Vacareanu et al., 2024), kNN classification (Agarwal et al., 2024; Dinh et al., 2022), and
even jailbreaking (Anil et al., 2024). Researchers have actively explored various avenues to further
enhance ICL’s adaptability and effectiveness. These efforts include increasing demonstration quantity
(Bertsch et al., 2024; Agarwal et al., 2024; Zhang et al., 2023a; Team et al., 2023), fine-tuning models
for ICL (Min et al., 2021), leveraging prompt engineering (Nie et al., 2022), and implenmenting
demonstration retrieval (Liu et al., 2021; Rubin et al., 2021; Li et al., 2023; Shi et al., 2022).

Concurrently, deeper insights into ICL’s underlying mechanisms have been sought through diverse
perspectives. Some researchers view ICL as a process of compressing training data into task-specific
vectors (Hendel et al., 2023), while others relate it to gradient descent (Von Oswald et al., 2023) or
analyze it through the lens of repetition (Yan et al., 2023) and memorization (Golchin et al., 2024).
Building upon ICL advancements, we explored eliciting and harnessing LLMs’ inherent capabilities
for new task adaptation, akin to ICL, while maintaining efficiency and flexibility.

Task representation for ICL. Inspired by findings that intermediate representations in LLMs
encode semantic meaning (Zou et al., 2023), researchers have explored injecting in-context learning
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demonstrations, encoded as function vectors, into intermediate representations to trigger desired
predictions (Liu et al., 2023b; Hendel et al., 2023; Todd et al., 2023; Li et al., 2024). The scope
of this research line has broadened to include different modalities,with recent work demonstrating
its effectiveness in both visual (Hojel et al., 2025) and multimodal domains (Huang et al., 2024).
However, this line of work focuses on manipulating internal representations. We are the first
to comprehensively explore the modular approach of externally storing and retrieving such task
representations to augment large language model capabilities.

Modular LLM. Examining and understanding the modular nature of large language models (LLMs)
has become a crucial area of study for researchers (Pfeiffer et al., 2023; Fedus et al., 2022; Ding et al.,
2023; Zhang et al., 2023b; Xiao et al., 2024). Initial investigations suggest that LLMs possess the
capability to be broken down into distinct specialized components or modules. Some approaches
introduce additional modules or parameters for optimization, including parameter-efficient tuning
techniques like adapter layers (Houlsby et al., 2019; Pfeiffer et al., 2020), prompt tuning (Liu et al.,
2023a; Ding et al., 2021), and parameter subset optimization methods such as BitFit (Zaken et al.,
2021) and binary masks (Guo et al., 2020; Zhao et al., 2022). Other approaches involve training
dedicated models for task composition (Shao et al., 2023; Mu et al., 2024) or merging fine-tuned
parameter adjustments (Ilharco et al., 2022; Panigrahi et al., 2023; Merullo et al., 2023; Yu et al.,
2024). Inspired by such modular perspectives, we explore the question of using task vectors in a
modular way to dynamically elicit capabilities within the model.

3 METHOD

To elicit the hidden capability inside LLMs, we build our ELICIT by introducing a capability library
which condenses each in-context learned capability into a task vector, and utilizing a retrieval module
to strengthen the model when a task vector is helpful.

This section describes our implementation of ELICIT. We first formally define in-context learning
Task Vectors (Section 3.1), and motivate our work. Then, we discuss the design choices of building
capabilities libraries (Section 3.2), including the layer selection and intervention strategies. Finally,
we introduce our retrieval module (Section 3.3) to dynamic elicit and leverage model’s capability.

3.1 FROM ICL TO TASK VECTORS: FORMAL DEFINITIONS

In-Context Learning (ICL). Firstly, we define the framework for ICL. Let T represent a collection
of tasks. For each task t ∈ T , there exists a dataset Pt of in-context prompts. Each prompt pt

i ∈ Pt

is a sequence of tokens that represents the i-th prompt for task t. Specifically, each prompt pt
i consists

of two components: (1) a set of N input-output demonstrations D = (xij ,yij)
N
j=1 from task t, where

j indexes the sequence of pairs ranging from 1 to N , and (2) a query input xiq , which is distinct from
the inputs in D. We formally represent an ICL prompt pt

i as:

pt
i = [(xi1,yi1), . . . , (xiN ,yiN ),xiq] . (1)

The Language Model (LM) aims to predict the corresponding target response yiq for the query input
xiq. Through learning from the demonstrated input-output mappings in D, ICL can enhances the
model’s capability to perform this task. We firstly introduce the hidden state in Transformers below.

Task Vector. Previous research (Hendel et al., 2023) introduced the concept of a task vector in the
context of ICL. We build upon this foundation in our work. We first introduce the definition of hidden
state representations in transformer models and task vector is derived from it.
Definition 3.1 (Hidden State Representation in Transformers). Let T be an auto-regressive
transformer language model with L layers. For each layer l ∈ 1, . . . , L, we define hl ∈ Rd as
the vector representation of the last token at layer l. The computation of hl follows the recurrence
relation (Vaswani, 2017): hl = hl−1 +ml + al, where ml is the output of a multilayer perceptron
at layer l, and al is the projection of the attention output into the hidden state at layer l.

Having established the notion of hidden states in transformer models, we can now formally define the
task vector within the ICL framework.
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Definition 3.2 (Task Vector θ). ICL functions by learning a task-specific mapping from demonstra-
tions. This mapping is represented as a task vector θ. The task vector is derived from the activation
state hl (as defined in Definition 3.1) at a specific layer l, corresponding to the last token of the
prompt. This vector subsequently steers the transformer to yield pertinent outputs for given queries.

The task vector, as defined, encapsulates the essence of the task. This leads to the following lemma,
highlighting its role in simulating ICL behavior.
Lemma 3.3 (Task Vector for ICL Simulation). Given a task vector θ that effectively captures the
information from demonstrations in an ICL setting, we can simulate the behavior of regular ICL with
only query as follows:

T [pt
i] ≈ f(θ;xiq) ,

where:

• T [pt
i] represents the output of the transformer model given a ICL prompt pt

i defined as (1).
• f(θ;xq) denotes a function that processes the query input xq in a zero-shot manner, guided by

the information encoded in the task vector θ.
Remark 3.4 (Intervention of Task Vector θ). The function f(θ;xq) mentioned in Lemma 3.3 is
an abstract concept expressing that the task vector can be used to influence the model’s inference
process. In practice, f(θ;xq) is implemented through operations on the hidden states hl and the task
vector θ. Specifically, these operations can take the following forms:

1. Replacement (Hendel et al., 2023): The task vector θ directly replaces the hidden state hl, i.e.,
h̃l = θ.

2. Linear combination (Todd et al., 2023): The task vector θ is combined linearly with the hidden
state hl, i.e., h̃l = hl + αθ, where α is an adjustable scalar parameter.

While previous research has demonstrated the existence and extractability of task vectors, it also
has shown the potential for serving a technique to elicit the inherent capabilities when adapting to
difference tasks as ICL, while simultaneously maintaing computational efficiency and flexibility.

We investigate the research problem through task vectors by proposing ELICIT, a framework
designed to leverage these vectors for enhancing model capabilities. As shown in Figure 2, ELICIT
consists of two main components:

• Build Capability Library: A capability library that stores task vectors representing various
in-context learned capabilities.

• Dynamic Capability Elicitation: A dynamic retrieval module that selectively activates relevant
task vectors based on the input query.

3.2 BUILDING CAPABILITIES LIBRARY

To investigate the idea of ELICIT, we first create a library of in-context learned capabilities Θ =
{{θt

i}ki=1}t∈T . Each element in this library is represented by a task vector (as defined in Definition
3.2). Here, k denotes the number of ICL prompts for each task t, and we use k = 10 for illustration.
Definition 3.2 describes θ ∈ Rd as a single layer’s hidden state. In our implementation, we collect
θ ∈ RL×d, which includes representations from all L layers, to enable the exploration of various
designs for the sequential components of ELICIT.

The implementation of creating capability library involves two critical considerations: 1 Dynamic
Layer Selection for l∗, and 2 Intervention Strategies. 1 determines the appropriate layer l to
intervene into during further reuse, utilizing the corresponding task vector, while 2 decides how
to appropriately intervene the task vector to influence the model’s behavior (possible methods are
described in Remark 3.4). Our framework addresses these considerations as follows.

1 Dynamic Layer Selection for l∗. The selection of the optimal layer for task vector intervention
is crucial for maximizing the effectiveness of our approach (Todd et al., 2023; Hendel et al., 2023).
Appendix B further illustrates the variation in the optimal layer across different tasks. We implement
a dynamic layer selection strategy to determine the optimal layer l∗ for task vector intervention.
While using a validation set to identify the optimal layer is not a novel concept, our contribution lies
in addressing the challenge of determining the intervention layer when applying the library in our
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Figure 2: Overview of the proposed ELICIT framework for Large Language Model Augmentation.
ELICIT consists of two modular components: (1) Build Capability Library - constructing a library of
task-specific task vectors by learning from diverse task; (2) Dynamic Capability Elicitation - dynamically
retrieving and integrating relevant task vectors from the library to augment the model’s capability for an arbitrary
input query.

proposed pipeline: we equip each task vector with its corresponding optimal layer, pre-identified
during the library construction phase, thereby enabling efficient and effective reuse of task vectors
during inference. Our process is as follows:

• We obtain the task vector θ ∈ RL×d by processing the ICL prompt pt
i (defined in (1), using

randomly selected N = 16 demonstrations). This is done by extracting the hidden states {hl}Ll=1
from all layers of the language model. We also store these ICL prompts for future use.

• Using the validation set, we perform a layer-by-layer analysis:
– For each layer l, we intervene θl during zero-shot query processing.
– We measure zero-shot accuracy on the validation set for each intervention.
– We identify l∗ as the layer yielding the best accuracy.

• We repeat this process for each task-model combination, creating a library where each task vector
θ has its corresponding best layer l∗.

When reusing task vectors in library, for any θ ∈ Θ, we intervene at the pre-identified optimal layer
l∗ for each task-model combination. This dynamic selection method ensures the performance of the
task vector and provides a generalizable framework adaptable to different tasks.

2 Intervention Strategies. The concept of intervention, formally introduced in Remark 3.4, also
outlines two methods for incorporating the task vector θl into the model’s inference process. We
evaluate these two intervention strategies: 1) linear combination of the original hidden state and task
vector with varying intervene strength α, and 2) direct replacement of the original hidden state with
the task vector. We examine the impact of these intervention strategies on both task performance and
language modeling capability, with the latter measured using cross-entropy loss on the pre-training
dataset (i.e, WikiText).

Figure 3 provides a detailed visualization of how varying α affect both accuracy and cross-entropy
loss in the Llama3-8B model across a diverse set of 20 tasks. Results reveal a clear trade-off between
task performance and language modeling capability as intervention strength increases. Among
the strategies tested, the additive approach h̃l = hl + 2 × θl consistently demonstrates superior
performance across a wide range of tasks while minimizing degradation in language modeling ability.
Results for other models are presented in the Appendix A, showing similar trends.
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Figure 3: Varying intervention strengths affect accuracy and cross-entropy loss in Llama3-8B on valid set
of 20 tasks across different layer. Higher in intervention strengths improve average task performance across
layers but negatively impact language modeling capabilities. This reveals a trade-off between task-specific
enhancement and general language modeling proficiency using task vectors.

In conclusion. Our library contains k × |T | items for each model, each consisting of three key
components: (1) the ICL prompt pt

i, (2) the corresponding task vector θ ∈ RL×d, and (3) the
pre-identified optimal layer l∗.

3.3 DYNAMIC CAPABILITY ELICITATION

After the creation of the capability library, as described in Section 3.2, we consider two considerations:
i Relevant Task Vector Selection, and ii Threshold-Based Filtering. i Relevant Task Vector

Selection focuses on identifying the most relevant task vectors from the library for a given test query q.
We aim to find the most relevant task vectors θq ∈ Θ stored in the library. Unlike traditional in-context
learning (ICL), we lack meta-information about the query. ii Threshold-Based Filtering determines
whether to utilize a retrieved task vector or not, to avoid compromising performance when no suitable
task vectors are available in the library. Our framework addresses these challenges as follows:

i Relevant Task Vector Selection. We address the challenge of selecting the most relevant task
vectors by employing a binary classifier to calculate similarity scores. This classifier is built upon
the SimCSE RoBERTa model2, augmented with a 2-layer Multi-Layer Perceptron (MLP) head. The
architecture incorporates ReLU activation functions and a dropout rate of 0.2 for regularization.

We fine-tuned this model over 15 epochs using a learning rate of 2e−5 on our curated dataset of
10,000 examples. The trained classifier is then used to compute similarity scores between a given
query and each ICL prompt in our library. These scores are used to rank all library items, producing
a similarity list of size k × |T |. The top-ranked task vector from this list is selected as our target for
further processing.

ii Threshold-Based Filtering. To determine whether to utilize stored task vectors from our library,
we implement a threshold-based approach using similarity scores. This threshold is established
through a comprehensive analysis of the recall-precision trade-off across our validation set, as
illustrated in Figures 4a, utilizing the aggregated similarity lists for all samples. The AUC scores
of our precision-recall curves (i.e., 0.96) demonstrate the high effectiveness of our threshold-based
approach in accurately determining whether stored task vectors require intervention. Our evaluation
of various recall levels, as shown in Figures 4b, reveals that a recall of 0.8 provides the optimal
balance for our pipeline, other models’ results shown in Appendix D.

Our decision process of how to utilize the similarity list and threshold to choose whether to use the
stored task vectors and what task vectors to apply is as follows:

• We implement Dynamic Top-K Thresholding (DTT). If the highest similarity score exceeds the
threshold, we select the top 10 task vectors from the ranked list for further processing.

2princeton-nlp/sup-simcse-roberta-base
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(a) Precision-Recall Curves (b) Valid Performance varying different recall.
Figure 4: Precision-Recall Curves and recall sweeping on Llama3-8B in valid set across 20 tasks. (a)
Precision-Recall curves for the retriever across 20 tasks (AUC=0.96), guiding threshold selection for high recall
and precision. (b) Validation set accuracy after intervention using different recall thresholds.
Table 1: Models used in this work. We consider decoder-only auto-regressive language models and recurrent
neural networks that are capable of ICL. For each model, we present the number of parameters, context window
during training, and the number of layers |L|.

Model HuggingFace ID Citation Parameters Train Length |L|
Llama 3 meta-llama/Meta-Llama-3-8B Dubey et al. (2024) 8B 8k 32
Mistral TIGER-Lab/Mistral-7B-Base-V0.2 Jiang et al. (2023) 7B 32k 32
Pythia EleutherAI/pythia-2.8b Biderman et al. (2023) 2.8B 2k 32

Mamba state-spaces/mamba-2.8b-hf Gu & Dao (2023) 2.8B 2k 64

• We then employ a majority voting mechanism among the optimal layers suggested by these top
vectors to determine the final layer for intervention.

• In cases where the highest similarity score falls below the threshold, we refrain from using any
stored task vector, relying instead on the model’s base capabilities.

4 EXPERIMENTS

To comprehensively evaluate the effectiveness of ELICIT, we conduct a series of experiments
designed to explore the following key questions:

• Capability Elicitation Efficiency: Can ELICIT effectively elicit the model’s capabilities without
incurring significant additional computational costs?

• Selective Activation: Is ELICIT capable of selectively activating relevant capabilities as needed
for specific tasks?

• Complementarity: How well does ELICIT integrate with and complement existing methods in
the field?

• Generalization: Can ELICIT handle novel queries, particularly those that diverge significantly
from the task vectors currently stored in the library?

4.1 EXPERIMENT SETUP

Model. We utilize decoder-only auto-regressive language models (Pythia-2.8B (Biderman et al.,
2023), LLaMA3-8B (Dubey et al., 2024), and Mistral-7B (Jiang et al., 2023)) and recurrent neural
network (Mamba-2.8B (Gu & Dao, 2023)). Table 1 provides a comprehensive overview of these
models, detailing their key characteristics including the number of parameters, layer numbers,
and training context window size. For all models, we use the corresponding huggingface
implementations (Wolf et al., 2020).

Tasks. To assess the efficacy of our proposed pipeline across a diverse array of scenarios, we have
meticulously constructed a benchmark comprising 20 distinct tasks. This benchmark is designed to
evaluate the model’s performance on both classification and multiple-choice problems, spanning a
wide spectrum of applications and complexities. The tasks are categorized into five domains:

• Knowledge: CommonsenseQA (Talmor et al., 2018), OpenBookQA (Mihaylov et al., 2018),
HellaSwag (Zellers et al., 2019), and BoolQ (Clark et al., 2019);
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Table 2: Performance of ELICIT across model and tasks. ELICIT significantly enhances performance
while maintaining the same token usage as Zero-shot, often achieving results comparable to or better than
16-shot and 16-shot BM25 ICL retriever methods. This improvement is consistent across various models and
tasks, demonstrating ELICIT’s efficiency and effectiveness in boosting model capabilities without increasing
computational demands. We sample 100 examples per task across three random seeds.

Model # Tokens NLU Reasoning Knowledge Math Safety Avg.
16-shot 1883.8 ± 0.9 60.6 ± 1.0 56.0 ± 0.4 70.6 ± 1.0 26.7 ± 2.0 62.1 ± 0.4 55.2 ± 0.4
bm25 2350.7 ± 24.9 56.1 ± 1.5 68.8 ± 0.2 69.5 ± 0.9 28.0 ± 2.3 56.7 ± 2.0 55.8 ± 0.7

Zero-shot 108.3 ± 1.4 32.2 ± 1.2 31.6 ± 0.2 42.5 ± 1.2 14.0 ± 1.0 35.5 ± 1.2 31.2 ± 0.7Llama3

ELICIT 108.3 ± 1.4 41.6 ± 0.4 46.7 ± 0.1 60.6 ± 1.4 19.1 ± 1.4 49.9 ± 2.1 43.5 ± 0.8
16-shot 2161.3 ± 0.9 55.3 ± 0.5 52.1 ± 0.5 70.8 ± 0.4 23.7 ± 1.7 63.1 ± 0.6 53.0 ± 0.1
bm25 2655.2 ± 27.3 55.2 ± 0.3 66.0 ± 0.5 70.2 ± 1.9 24.1 ± 0.4 62.1 ± 0.5 55.5 ± 0.4

Zero-shot 123.5 ± 1.7 29.6 ± 1.2 26.9 ± 0.4 45.5 ± 1.3 2.8 ± 0.1 36.1 ± 0.3 28.2 ± 0.5Mistral

ELICIT 123.5 ± 1.7 41.9 ± 1.0 48.3 ± 0.3 59.4 ± 0.9 20.3 ± 0.9 48.7 ± 1.8 43.7 ± 0.6
16-shot 1942.4 ± 0.9 50.2 ± 0.5 19.6 ± 0.1 12.8 ± 0.9 9.2 ± 1.6 31.8 ± 0.9 24.7 ± 0.2
bm25 2422.8 ± 26.0 33.3 ± 2.2 25.8 ± 0.4 12.9 ± 0.5 11.0 ± 1.8 27.3 ± 2.1 22.1 ± 0.5

Zero-shot 110.0 ± 1.5 43.0 ± 0.4 18.3 ± 0.3 22.0 ± 1.5 7.3 ± 0.1 32.5 ± 1.2 24.6 ± 0.4Pythia

ELICIT 110.0 ± 1.5 64.0 ± 1.6 23.6 ± 1.1 20.4 ± 1.4 14.5 ± 1.0 41.2 ± 2.5 32.7 ± 0.5
16-shot 1942.4 ± 0.9 37.5 ± 1.0 31.5 ± 0.5 31.6 ± 0.8 14.2 ± 0.5 41.7 ± 1.2 31.3 ± 0.3
bm25 2422.8 ± 26.0 29.3 ± 2.2 34.9 ± 0.9 24.7 ± 0.5 15.1 ± 2.2 35.4 ± 1.2 27.9 ± 0.3

Zero-shot 110.0 ± 1.5 36.1 ± 1.5 19.3 ± 0.5 17.3 ± 1.2 5.8 ± 1.2 30.1 ± 0.1 21.7 ± 0.2Mamba

ELICIT 110.0 ± 1.5 51.1 ± 0.7 28.7 ± 0.8 29.2 ± 1.3 15.3 ± 1.1 48.2 ± 1.8 34.5 ± 0.6

• Reasoning: Four subsets from Big-Bench Hard (BBH) (Suzgun et al., 2022) and ARC-
Challenge (Clark et al., 2018);

• Mathematics: MathQA (Amini et al., 2019) and MMLU Pro-MATH (Wang et al., 2024);
• Safety: Crows-Pairs (Nangia et al., 2020), BBQ-Age (Parrish et al., 2021), Ethics-Commonsense,

and Ethics-Justice (Merity et al., 2016);
• Natural Language Understanding (NLU): GLUE (SST-2, QNLI, MNLI) (Wang, 2018) and

SuperGLUE (WIC, RTE) (Wang et al., 2019).

Evaluation. To evaluate ELICIT under a real usage scenario, where the demonstrations can hardly
be at the same format with the test query, we augment the test query with two additional formats
different from the demonstration in library. Furthermore, in our preliminary experiments, we find that
zero-shot LLMs cannot answer properly with contextual guidance. Thus, to ensure a fair comparison
with the zero-shot scenario, we add task templates before the test query. More details and examples
can be found in Appendix E.

Baselines. Our primary baseline is the zero-shot performance of LLMs, as our method maintains
the same token usage. For reference, we also include in-context learning (ICL) and BM25 (Robertson
et al., 2009) retrieval of 16 examples from the same pool of examples used in constructing the
capability library. However, these are not directly comparable to our method, due to the raised nearly
20 times more tokens consuming. The ICL baseline is task-specific, requiring knowledge of each
query’s task type to use corresponding demonstrations. In contrast, our method is task-agnostic,
applicable across various tasks without needing task-specific information or prompts.

4.2 EFFICIENT CAPABILITY ELICITATION

Figure 5: Performance on ELICIT
across different domains when the li-
brary only contains math-related task
vectors on Mistral.

ELICIT achieves efficiently eliciting models’ capabilities.
From Tables 2, comparing the zero-shot baseline and ELICIT,
we observe that ELICIT significantly elicits model capabili-
ties across most tasks without increasing token usage. Across
the 20 tasks, ELICIT achieves an average improvement of
11.4% across different models. For Llama3, ELICIT im-
proves over zero-shot by 12.3% while using the same 108.2
tokens. ELICIT demonstrates substantial gains in Reasoning
(e.g., +15.1% for LLama3) and Safety tasks (e.g., +14.4% for
LLama3). In some cases, ELICIT’s performance is comparable
to or surpasses that of 16-shot and BM25 methods, despite their
higher token requirements. Furthermore, it exhibits robustness
across various template formats, highlighting its versatility.
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Table 3: ELICIT can generalize to unseen tasks. ELICIT achieves significant performance gains without
additional token usage across different models and unseen tasks. We sample 100 examples per task across three
random seeds. We use BM25 retrieval of 16 examples as baseline.

# Tokens GLUE COLA BBQ Religion Deepmind MMLU-Psychology BBH-five-objects Avg
BM25 2502.8 ± 26.0 55.4 ± 1.0 64.6 ± 1.3 30.7 ± 1.7 83.0 ± 0.1 48.3 ± 0.0 56.4 ± 0.4

Zero-shot 103.6 ± 47.7 72.0 ± 0.7 38.6 ± 1.1 17.5 ± 2.6 54.2 ± 0.3 17.1 ± 0.0 39.9 ± 0.8Llama
ELICIT 103.6 ± 47.7 63.4 ± 0.9 45.0 ± 0.7 23.7 ± 3.4 70.0 ± 0.6 25.7 ± 0.0 45.6 ± 0.4

BM25 2804.6 ± 27.6 44.4 ± 2.2 70.7 ± 0.7 26.6 ± 3.9 78.7 ± 1.1 25.7 ± 0.0 49.2 ± 0.3
Zero-shot 115.4 ± 51.0 43.3 ± 1.1 35.4 ± 3.3 9.0 ± 0.4 57.9 ± 0.7 7.4 ± 0.0 30.6 ± 1.0Mistral
ELICIT 115.4 ± 51.0 41.7 ± 0.8 42.1 ± 2.5 25.1 ± 1.2 65.6 ± 0.6 15.6 ± 0.0 38.0 ± 0.6

BM25 2600.0 ± 28.3 5.8 ± 1.0 19.1 ± 1.2 14.1 ± 1.2 4.7 ± 0.3 1.0 ± 0.0 8.9 ± 0.3
Zero-shot 106.7 ± 49.6 48.5 ± 0.6 21.7 ± 1.7 9.7 ± 1.2 20.1 ± 0.8 7.6 ± 0.0 21.5 ± 0.1Pythia
ELICIT 106.7 ± 49.6 45.4 ± 0.6 30.3 ± 4.2 14.2 ± 1.8 20.4 ± 0.6 14.3 ± 0.0 24.9 ± 0.6

BM25 2600.0 ± 28.3 48.1 ± 3.1 30.6 ± 1.1 21.6 ± 3.3 19.1 ± 0.9 25.8 ± 0.0 29.0 ± 0.9
Zero-shot 106.7 ± 49.6 70.3 ± 1.0 21.3 ± 2.9 10.9 ± 0.7 13.9 ± 0.5 6.2 ± 0.0 24.5 ± 0.4Mamba
ELICIT 106.7 ± 49.6 63.6 ± 0.4 31.5 ± 2.5 22.1 ± 3.3 20.4 ± 0.2 14.4 ± 0.0 30.4 ± 0.9

4.3 SELECTIVE ADAPTIVE ACTIVATION OF CAPABILITIES

ELICIT elicits capability when necessary. We demonstrate selective activation by constructing a
library containing only math-related task vectors, as shown in Figure 5. The results clearly illustrate
that ELICIT significantly boosts performance in the Math domain, with a dramatic increase from
2.6% to 21.3%, while maintaining performance in other domains for Mistral. Notably, the Reasoning
domain also shows a slight improvement, increasing from 22.3% to 22.4%. This behavior stems from
ELICIT’s selective application of task vectors from library, which are not applied when no relevant
tasks vectors are detected. More discussion is presented in Appendix J. Results for other models,
presented in Appendix F, demonstrate a similar trend. The striking improvement in Math performance,
coupled with the subtle gain in Reasoning and the stability in other domains, demonstrates ELICIT’s
capacity for targeted capability activation, making it a flexible and efficient performance enhancer.

4.4 ELICIT GENERALIZE TO UNSEEN TASKS WITHOUT ADDTIONAL INFORMATION

ELICIT generalizes across unseen tasks. In Table 3, we observe that ELICIT significantly
improves model performance on unseen tasks (GLUE-COLA, BBQ Religion, Deepmind (Saxton
et al., 2019), MMLU-Psychology, and BBH-Logical-Deduction-Five-objects) not present in its
capability library. Across all models, ELICIT consistently outperforms the Zero-shot baseline. In
several cases, it even approaches or surpasses the BM25 retrieval baseline, despite using substantially
fewer tokens. For instance, on the MMLU-Psychology task, ELICIT achieves a 15.8% absolute
improvement over Zero-shot for Llama3 Model. These results are achieved without additional token
usage and task information, demonstrating ELICIT’s efficiency, flexibility, and generalization ability.

4.5 COMPLEMENTARY INTERGRATION

ELICIT shows potential as a plug-and-play performance booster. While ELICIT demonstrates
compatibility with existing solutions like BM25 retrieval, Table 4 reveals nuanced performance
patterns. For smaller models (Pythia-2.8B and Mamba-2.8B), combining ELICIT with BM25
yields consistent improvements, with Pythia’s average performance increasing from 22.1% to 28.3%
(+5.9%). However, larger models (Llama3-8B and Mistral-7B) exhibit mixed results: while NLU
and Reasoning tasks show modest gains (e.g., +2.6% for Llama3), Knowledge and Safety tasks
experience slight declines. Aligning with the findings of Li et al. (2024), this phenomenon can be
attributed to two factors: (1) smaller models’ relatively weak in-context learning capabilities benefit
more from additional task-relevant information provided by our method, while (2) larger models’
inherently stronger in-context adaptation abilities may be disrupted by the introduction of additional
context that alters their learned representations. Future work could investigate this scale-dependent
phenomenon.

5 ABLATION STUDY

5.1 SIMILARITY-BASED RETRIEVE

We also explored similarity-based retrieval methods, such as cosine similarity, t-SNE distance,
and Euclidean distance between the query embedding and the task vectors θ in capability library.
However, as illustrated in Figure 6, the precision-recall curves for these methods on Llama3 exhibit
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Table 4: ELICIT as a potential plug-and-play performance booster: performance when combined with
BM25 on in-domain tasks. Results indicate stronger complementary effects for smaller models (Pythia, Mamba),
while larger models (Llama3, Mistral) show task-specific variations.

Model NLU Reasoning Knowledge Math Safety Avg.
Llama BM25 56.1 ± 1.5 68.8 ± 0.2 69.5 ± 0.9 28.0 ± 2.3 56.7 ± 2.0 55.8 ± 0.7

BM25+ELICIT 58.0 ± 0.4 62.7 ± 0.5 65.1 ± 0.5 25.1 ± 1.6 54.5 ± 3.5 53.1 ± 1.1

Mistral BM25 55.2 ± 0.3 66.0 ± 0.5 70.2 ± 1.9 24.1 ± 0.4 62.1 ± 0.5 55.5 ± 0.4
BM25+ELICIT 54.5 ± 0.8 62.6 ± 0.4 67.5 ± 1.7 24.8 ± 1.9 58.0 ± 1.4 53.5 ± 0.5

Pythia BM25 33.3 ± 2.2 25.8 ± 0.4 12.9 ± 0.5 11.0 ± 1.8 27.3 ± 2.1 22.1 ± 0.5
BM25+ELICIT 53.5 ± 1.5 26.5 ± 1.1 14.5 ± 0.6 13.2 ± 1.7 33.7 ± 0.7 28.3 ± 0.3

Mamba BM25 29.3 ± 2.2 34.9 ± 0.9 24.7 ± 0.5 15.1 ± 2.2 35.4 ± 1.2 27.9 ± 0.3
BM25+ELICIT 38.4 ± 1.2 31.6 ± 0.4 28.9 ± 0.2 15.2 ± 3.8 42.9 ± 1.9 31.4 ± 0.3

very low AUC scores, with the highest being a mere 0.28. These poor AUC values indicate that the
discrimination ability of these similarity-based approaches is inadequate for effectively identifying
relevant task vectors from the library. The precision-recall curves for similarity-based methods on
other models are presented in Appendix G, further highlighting their suboptimal performance. In
stark contrast, the trained retriever in our proposed design can achieve a remarkably high AUC of
0.96 (Figure 4a). This substantial improvement in retrieval performance underscores the benefits
of our design, which effectively leverages learning-based techniques to intelligently retrieve and
integrate relevant capabilities from the library.

(a) Cosine Similarity (b) Euclidean Distance (c) t-SNE Distance
Figure 6: Precision-Recall Curves for Similarity-based methods for Llama3.

5.2 SELECTION AFTER THRESHOLD FILTERING

Table 5: Ablation study on DDT on
valid for Llama3-8B.

TP

zs-shot 33.62

n=5 44.71
n=15 45.02
n=10,w/o DTT 45.17

n=10 45.29

In Table 5, we investigate the impact of the number of selected
states n when the top1 similarity score reaches the threshold, as
well as the effect of using Dynamic Top-K Thresholding (DTT)
or not as Section 3.3 mentioned. The results show that selecting
n = 10 and using Dynamic Top-K Thresholding achieves the
best performance on the validation set. Choosing fewer vector
quantities (e.g., n=5) would limit the method’s potential, while
selecting too many (e.g., n=15) could introduce irrelevant noise,
thereby degrading performance. Dynamic Top-K adaptively
sets the similarity threshold to ensure that only sufficiently
relevant vectors are utilized. This ablation study highlights the
rationale and effectiveness of our design choices.

6 CONCLUSION

In this paper, we explore the vision of eliciting and harnessing the potential of large language
models’ inherent capabilities when adapting to new tasks, akin to in-context learning (ICL), while
maintaining efficiency and flexibility. We propose ELICIT, a novel framework consisting of two
key modules: Build Capability Library and Dynamic Capability Elicitation. ELICIT achieves
consistent improvements across diverse tasks, input formats, and model architectures. Our results
show that ELICIT not only has the potential to harness models’ latent abilities without introducing
substantial additional computational cost, but also advances language models’ performance, versatility,
adaptability, and scalability.

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENT

This work was supported in part by the National Science and Technology Major Project (No.
2022ZD0115101), Research Center for Industries of the Future (RCIF) at Westlake University,
Westlake Education Foundation, and Westlake University Center for High-performance Computing.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Rishabh Agarwal, Avi Singh, Lei M Zhang, Bernd Bohnet, Stephanie Chan, Ankesh Anand, Zaheer
Abbas, Azade Nova, John D Co-Reyes, Eric Chu, et al. Many-shot in-context learning. arXiv
preprint arXiv:2404.11018, 2024.

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
Mathqa: Towards interpretable math word problem solving with operation-based formalisms.
arXiv preprint arXiv:1905.13319, 2019.

Cem Anil, Esin Durmus, Mrinank Sharma, Joe Benton, Sandipan Kundu, Joshua Batson, Nina
Rimsky, Meg Tong, Jesse Mu, Daniel Ford, et al. Many-shot jailbreaking. Anthropic, April, 2024.

Amanda Bertsch, Maor Ivgi, Uri Alon, Jonathan Berant, Matthew R Gormley, and Graham Neu-
big. In-context learning with long-context models: An in-depth exploration. arXiv preprint
arXiv:2405.00200, 2024.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-
ties and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre Richemond,
James McClelland, and Felix Hill. Data distributional properties drive emergent in-context learning
in transformers. Advances in Neural Information Processing Systems, 35:18878–18891, 2022.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Ning Ding, Shengding Hu, Weilin Zhao, Yulin Chen, Zhiyuan Liu, Hai-Tao Zheng, and Maosong Sun.
Openprompt: An open-source framework for prompt-learning. arXiv preprint arXiv:2111.01998,
2021.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
language models. Nature Machine Intelligence, 5(3):220–235, 2023.

11



Published as a conference paper at ICLR 2025

Tuan Dinh, Yuchen Zeng, Ruisu Zhang, Ziqian Lin, Michael Gira, Shashank Rajput, Jy-yong
Sohn, Dimitris Papailiopoulos, and Kangwook Lee. Lift: Language-interfaced fine-tuning for
non-language machine learning tasks. Advances in Neural Information Processing Systems, 35:
11763–11784, 2022.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. A survey on in-context learning. arXiv preprint arXiv:2301.00234, 2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

William Fedus, Jeff Dean, and Barret Zoph. A review of sparse expert models in deep learning. arXiv
preprint arXiv:2209.01667, 2022.

Changjiang Gao, Shujian Huang, Jixing Li, and Jiajun Chen. Roles of scaling and instruction tuning
in language perception: Model vs. human attention. arXiv preprint arXiv:2310.19084, 2023a.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 12 2023b. URL https://zenodo.org/records/10256836.

Shahriar Golchin, Mihai Surdeanu, Steven Bethard, Eduardo Blanco, and Ellen Riloff. Memorization
in in-context learning. arXiv preprint arXiv:2408.11546, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Demi Guo, Alexander M Rush, and Yoon Kim. Parameter-efficient transfer learning with diff pruning.
arXiv preprint arXiv:2012.07463, 2020.
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A INTERVENTION STRATEGIES

As mentioned in Section 3.2, we choose h̃l = hl + α · θl as the intervention strategy, where α is a
scaling factor that controls the intervention strength. We observe the performance and cross-entropy
loss across a diverse set of 20 tasks by varying α. The results for Mistral, Mamba, and Pythia
are shown in Figures 7, 8, and 9, respectively. The results reveal a similar trade-off between task
performance and language modeling capability as the intervention strength increases. Among the
strategies tested, the additive approach consistently demonstrates superior performance across a wide
range of tasks while minimizing degradation in language modeling ability. Across different models,
α can be set to 2.0 to achieve a good balance between task performance and language modeling
capability.
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Figure 7: Varying intervention strengths affect accuracy and cross-entropy loss in Mamba on valid set of 20
tasks across different layer.
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Figure 8: Varying intervention strengths affect accuracy and cross-entropy loss in Mistral on valid set of 20 tasks
across different layer.

Layer

0.
2

0.
4

0.
6

0.
8

1.
0

2.
0

3.
0

Re
pl

ac
e

Performance

Layer

0.
2

0.
4

0.
6

0.
8

1.
0

2.
0

3.
0

Re
pl

ac
e

CrossEntropy Loss

5

10

15

20

25

30

Ac
cu

ra
cy

2.54

2.56

2.58

2.60

2.62

2.64

2.66

2.68

Cr
os

sE
nt

ro
py

 L
os

s

Figure 9: Varying intervention strengths affect accuracy and cross-entropy loss in Pythia on valid set of 20 tasks
across different layer.

A.1 POSSIBLE INTERPRETATION OF TRADE-OFF

The trade-off between intervention strength and language modeling performance can be explained
through neural circuit interactions. Prior work suggests ICL and general language modeling operate
with different circuits (Chan et al., 2022; Olsson et al., 2022; Singh et al., 2024). We hypothesize
that stronger interventions redirect activation patterns from pretrained language modeling circuitry
towards ICL-specific patterns, creating tension between these distinct computational paths. As inter-
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vention strength increases, activations appear to deviate further from their pretrained configurations,
potentially explaining the degraded performance on general language modeling tasks like Wiki-
Text. This observation suggests that optimal intervention strength requires careful balancing rather
than maximization. Further investigation of these circuit-level understanding remains an important
direction for future research.

B BEST LAYER FOR DIFFERENT TASKS.

As mentioned in Section 3.2, we identify the optimal intervention layer for different tasks. Figures 10,
11, and 12 illustrate that the optimal intervention layer varies significantly across tasks. For instance,
the ARC challenge task achieves the best performance when intervening in the middle layers, while
the GLUE SST2 task performs best when intervening in the later layers for the Llama-3 model.
Furthermore, intervening at different layers leads to substantial performance variations. Therefore,
instead of fixing the intervention layer as in Todd et al. (2023), we propose a dynamic layer selection
approach to identify the optimal intervention layer for each task.

Figure 10: Performance distribution varying intervention layer on Llama3 8B in 20 tasks on Valid Set.
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Figure 11: Performance distribution varying intervention layer on Mistral in 20 tasks on Valid Set.
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Figure 12: Performance distribution varying intervention layer on Mamba in 20 tasks on Valid Set.

C DATA CONSTRUCTION FOR RETRIEVER

As mentioned in Section 3.3, we train a retriever on the constructed data. To train the retriever as a
classifier, we construct data pairs to determine whether a task-specific prompt and an ICL prompt
belong to the same task. For each task and each template, we sample two examples from the validation
set. We create positive and negative pairs, where each pair consists of a task-specific prompt and
an ICL prompt from the library. Negative examples are formed by randomly pairing task-specific
prompts with ICL prompts from different tasks. We balance the data distribution across different
tasks, ensuring that each task has an equal number of positive and negative pairs.

D RECALL SWEEP

As mentioned in Section 3.3, we sweep the threshold determined by recall, and as shown in Figure13,
the results reveal that a recall of 0.8 provides an optimal balance between accuracy and recall for our
pipeline across Pythia, Mamba, and Mistral models.

We observe a similar increasing trend in performance as recall increases for all three models. At lower
recall values, the intervene accuracy is close to the zero-shot accuracy, indicating that the retrieved
prompts may not be relevant to the task. As recall increases, the intervene accuracy improves
significantly, demonstrating the effectiveness of the proposed approach in selecting appropriate
prompts for intervention.

Based on these observations, we choose a recall value of 0.8 to determine the threshold for filtering
prompts across different models, as it strikes a balance between maximizing accuracy and maintaining
a reasonable recall level.
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(a) Pythia (b) Mamba

(c) Mistral
Figure 13: Accuracy vs. Recall curves for Pythia, Mamba, and Mistral models, illustrating the performance
trade-off at different recall levels.

E EVALUATION SETTING

E.1 ICL SETTING

As 4.1 states, we first primarily implement ELICIT on the traditional In-Context Learning (ICL)
setting. We find that zero-shot Large Language Models (LLMs) cannot answer properly with
contextual guidance. Although ELICIT works on such a traditional ICL setting, as shown in Table 6
and 7, the zero-shot accuracy is almost 0, which is not plausible to evaluate model’s performance.
Therefore, we think it’s not fair to augment model performance on such traditional zero-shot queries.

Table 6: Performance of ELICIT across model and tasks in ICL setting.

model #Tokens NLU Reasoning Knowledge Math Safety Avg.
16-shot 1553.4 ± 2.8 60.3 ± 1.2 55.6 ± 0.2 69.2 ± 2.0 27.0 ± 0.0 60.9 ± 0.5 54.6 ± 0.6
BM25 1799.2 ± 26.8 59.4 ± 0.3 54.7 ± 0.2 66.7 ± 0.2 30.3 ± 0.9 55.4 ± 1.2 53.3 ± 0.5

Zero-shot 87.6 ± 0.8 0.0 ± 0.0 21.6 ± 0.2 26.2 ± 0.2 0.0 ± 0.0 3.1 ± 0.6 10.2 ± 0.1Llama

Ours 87.6 ± 0.8 45.5 ± 1.5 45.2 ± 0.2 57.6 ± 0.1 12.7 ± 0.9 43.6 ± 2.0 40.9 ± 0.1
16-shot 1779.0 ± 3.4 59.5 ± 1.5 51.7 ± 0.7 69.4 ± 1.6 24.0 ± 3.7 62.2 ± 1.8 53.4 ± 1.3
BM25 2045.0 ± 27.9 57.5 ± 1.3 51.8 ± 0.5 66.2 ± 2.5 23.8 ± 1.6 59.2 ± 1.3 51.7 ± 0.6

Zero-shot 100.9 ± 1.7 0.1 ± 0.1 22.6 ± 0.8 16.9 ± 0.9 0.7 ± 0.5 2.7 ± 0.4 8.6 ± 0.1Mistral

Ours 100.9 ± 1.7 31.8 ± 0.5 44.4 ± 0.6 48.0 ± 0.7 17.0 ± 3.1 41.8 ± 1.0 36.6 ± 0.1
16-shot 1581.1 ± 0.3 52.7 ± 1.7 21.7 ± 1.0 13.7 ± 1.2 12.2 ± 1.5 34.1 ± 0.2 26.8 ± 0.2
BM25 1848.6 ± 26.4 47.9 ± 1.7 20.8 ± 0.8 20.2 ± 0.8 12.3 ± 2.8 36.4 ± 1.0 27.5 ± 0.3

Zero-shot 88.3 ± 1.5 0.2 ± 0.0 7.7 ± 0.3 3.2 ± 0.4 0.3 ± 0.2 2.0 ± 0.0 2.7 ± 0.1Pythia

Ours 88.3 ± 1.5 46.3 ± 0.8 23.2 ± 1.1 11.1 ± 0.8 15.2 ± 2.0 36.9 ± 3.0 26.5 ± 0.8
16-shot 1581.1 ± 1.3 40.4 ± 1.1 31.9 ± 1.1 34.2 ± 1.0 15.0 ± 2.9 40.9 ± 2.1 32.5 ± 0.3
BM25 1848.6 ± 26.4 43.7 ± 1.9 31.4 ± 0.0 25.2 ± 1.9 14.7 ± 2.1 38.3 ± 0.8 30.7 ± 0.5

Zero-shot 88.3 ± 1.5 0.2 ± 0.2 12.3 ± 0.2 0.6 ± 0.2 0.0 ± 0.0 5.1 ± 1.5 3.6 ± 0.3Mamba

Ours 88.3 ± 1.5 33.7 ± 0.6 26.5 ± 0.6 25.6 ± 1.1 16.3 ± 2.2 39.2 ± 0.5 28.3 ± 0.2
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Table 7: Unseen task for ICL Setting

# Tokens GLUE COLA BBQ Religion Deepmind MMLU-Psychology BBH-five-objects Avg
BM25 1684.3 ± 3.3 33.3 ± 1.9 69.3 ± 2.4 32.0 ± 1.4 83.7 ± 0.5 35.0 ± 0.0 50.7 ± 0.1

Zero-shot 76.5 ± 0.2 0.7 ± 0.5 5.3 ± 2.4 0.0 ± 0.0 62.7 ± 0.5 0.0 ± 0.0 13.7 ± 0.7Llama
Ours 76.5 ± 0.2 1.3 ± 0.5 24.3 ± 3.8 19.3 ± 2.4 66.0 ± 0.0 5.0 ± 0.0 23.2 ± 1.1
BM25 1913.3 ± 20.0 27.0 ± 1.6 69.0 ± 1.4 28.3 ± 3.9 79.7 ± 1.2 26.2 ± 0.0 46.1 ± 0.6

Zero-shot 85.5 ± 0.8 1.7 ± 1.2 1.0 ± 0.8 1.3 ± 1.2 35.3 ± 1.2 0.0 ± 0.0 7.9 ± 0.3Mistral
Ours 85.5 ± 0.8 1.3 ± 1.2 18.3 ± 2.1 20.0 ± 0.8 54.7 ± 1.2 10.0 ± 0.0 20.9 ± 1.1
BM25 1747.6 ± 20.2 13.7 ± 1.9 33.7 ± 1.7 20.3 ± 2.6 18.7 ± 1.7 6.2 ± 0.0 18.5 ± 1.2

Zero-shot 78.1 ± 0.7 43.0 ± 2.9 0.0 ± 0.0 0.3 ± 0.5 3.3 ± 0.5 0.0 ± 0.0 9.3 ± 0.7pythia
Ours 78.1 ± 0.7 37.0 ± 2.4 14.7 ± 4.6 15.0 ± 0.8 13.0 ± 1.4 6.2 ± 0.0 17.2 ± 0.8
BM25 1747.6 ± 20.2 36.7 ± 1.2 33.3 ± 2.6 25.3 ± 4.5 25.3 ± 0.5 21.2 ± 0.0 28.4 ± 1.1

Zero-shot 78.1 ± 0.7 19.7 ± 2.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 3.9 ± 0.5Mamba
Ours 78.1 ± 0.7 18.0 ± 1.4 19.3 ± 3.4 13.7 ± 3.8 13.0 ± 0.8 7.5 ± 0.0 14.3 ± 1.1

E.2 TASK SPECIFIC PROMPT

To ensure fair comparisons in zero-shot scenarios, we prepend task-specific prompts before each test
query. These task-specific prompts are manually crafted following guidelines from lm-harness
(Gao et al., 2023b) and the chain-of-thought-hub 3. The complete set of prompts used is
provided in Figure 8.

Table 8: Task Specific Prompts for Various Tasks

Task Prompts
bbh_date_understanding

• Infer the date from context. Finish your
answer with ’X’ where X is the correct letter
choice.

Question: {input}
• Determine the date based on contextual

clues. End your response with ’X’, where X
represents the correct option.

Question: {input}
• Use the given context to deduce the date.

Conclude your answer with ’X’, X being the
right letter choice.

Question: {input}

bbh_boolean_expressions
• Evaluate the result of a random Boolean

expression.

Question: {input}
• Calculate the outcome of a given Boolean

expression.

Question: {input}
• Determine the result of the provided Boolean

logic statement.

Question: {input}

Continued on next page

3https://github.com/FranxYao/chain-of-thought-hub.git
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Prompts for Various Tasks (Continued)
Task Prompts
bbh_date_understanding

• Infer the date from context. Finish your
answer with ’X’ where X is the correct letter
choice.

Question: {input}
• Determine the date based on contextual

clues. End your response with ’X’, where X
represents the correct option.

Question: {input}
• Use the given context to deduce the date.

Conclude your answer with ’X’, X being the
right letter choice.

Question: {input}

bbh_boolean_expressions
• Evaluate the result of a random Boolean

expression.

Question: {input}
• Calculate the outcome of a given Boolean

expression.

Question: {input}
• Determine the result of the provided Boolean

logic statement.

Question: {input}

mmlu_pro_math
• The following are multiple choice questions

(with answers) about math. Finish your
answer with ’X’ where X is the correct letter
choice.

Question: {input}
• Below are multiple-choice math questions.

Conclude your response with ’X’, X being the
correct option.

Question: {input}
• Answer these math multiple-choice questions.

Answer with ’X’, where X is the right letter
choice.

Question: {input}

Continued on next page
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Prompts for Various Tasks (Continued)
Task Prompts
superglue_rte

• {input}
Question: Is the hypothesis correct based on
the premise? Answer True or False.

• {input}
Question: Based on the premise, is the hypoth-
esis accurate? Respond with True or False.

• {input}
Question: Does the premise support the hy-
pothesis? Answer True or False.

bbh_temporal_sequences
• Answer questions about which times certain

events could have occurred. Finish your
answer with ’X’ where X is the correct letter
choice.

Q: {input}
• Determine possible occurrence times for

specific events. Answer with ’X’, X being the
correct option.

Q: {input}
• Identify when certain events could have

happened. Conclude with ’X’, where X is the
right letter choice.

Q: {input}

bbh_reasoning_about_colored_objects
• Answer extremely simple questions about the

colors of objects on a surface. Finish your
answer with ’X’ where X is the correct letter
choice.

Q: {input}
• Respond to basic questions about object colors

on a surface. Answer with ’X’, X being the
correct option.

Q: {input}
• Address simple queries regarding the colors of

items on a surface. Conclude with ’X’, where
X is the right letter choice.

Q: {input}

Continued on next page
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Prompts for Various Tasks (Continued)
Task Prompts
ethics_commonsense

• {input}
Question: Is this wrong? Answer Yes or No.

• {input}
Question: Is this ethically incorrect? Respond
with Yes or No.

• {input}
Question: Does this violate ethical norms? An-
swer Yes or No.

ethics_justice
• {input}

Question: Would most people believe this rea-
sonable or unreasonable to say? Answer Yes
or No.

• {input}
Question: Would the majority consider this
statement reasonable or unreasonable? Answer
Yes or No.

• {input}
Question: Is this statement generally perceived
as reasonable or unreasonable? Respond with
Yes or No.

glue_mnli
• {input} True, False or Neither?
• {input} Answer selecting from: True, False, or

Neither?
• {input} Choose one as answer: True, False, or

Neither?

glue_sst2
• {input}

Question: Is this sentence positive or negative?
Answer positive or negative.

• {input}
Question: Does this sentence convey a posi-
tive or negative sentiment? Answer positive or
negative.

• {input}
Question: Is the tone of this sentence positive
or negative? Respond with positive or nega-
tive.

glue_qnli
• {input}

Question: Does this response answer the ques-
tion? Answer Yes or No.

• {input}
Question: Is the response answer to the ques-
tion? Answer Yes or No.

• {input}
Question: Does the given response address the
question? Respond with Yes or No.

Continued on next page
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Prompts for Various Tasks (Continued)
Task Prompts
hellaswag

• The following are multiple choice questions
(with answers) about commonsense NLI.
Finish your answer with ’X’ where X is the
correct letter choice.

Question: {input}
• The following are multiple-choice questions

about commonsense natural language infer-
ence. Answer with ’X’, X being the correct
option.

Question: {input}
• Answer these multiple-choice questions

on commonsense language understanding.
Conclude with ’X’, where X is the right letter
choice.

Question: {input}

crows_pairs
• {input}

Question: Which sentence is more stereotypi-
cal? Answer A or B.

• {input}
Question: Which sentence contains more
stereotypical content? Answer A or B.

• {input}
Question: Identify the sentence with stronger
stereotypical elements. Respond with A or B.

boolq
• {input}

Answer True or False.
• {input}

Respond with True or False.
• {input}

Is this statement correct? Answer True or
False.

Continued on next page
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Prompts for Various Tasks (Continued)
Task Prompts
math_qa

• The following are multiple choice questions
(with answers) about math word problem.
Finish your answer with ’X’ where X is the
correct letter choice.

Question: {input}
• Below are multiple-choice questions about

math word problems. Answer with ’X’, X
being the correct option.

Question: {input}
• Solve these multiple-choice math word

problems. Conclude with ’X’, where X is the
right letter choice.

Question: {input}

superglue_wic
• {input}

Question: Is the word used in the same way in
the two sentences above? Answer Yes or No.

• {input}
Question: Is the word used similarly in both
sentences above? Respond with Yes or No.

• {input}
Question: Does the word have the same mean-
ing in the two given sentences? Answer Yes or
No.

openbookqa
• The following are multiple choice questions

(with answers) about multi-step reasoning.
Finish your answer with ’X’ where X is the
correct letter choice.

Question: {input}
• The following are multiple-choice questions

testing multi-step reasoning. Answer with ’X’,
X being the correct option.

Question: {input}
• Answer these multiple-choice questions in-

volving multi-step logical thinking. Conclude
with ’X’, where X is the right letter choice.

Question: {input}

Continued on next page
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Prompts for Various Tasks (Continued)
Task Prompts
commonsense_qa

• The following are multiple choice questions
(with answers) about commonsense knowl-
edge reasoning. Finish your answer with ’X’
where X is the correct letter choice.

Question: {input}
• Below are multiple-choice questions about

commonsense reasoning. Answer with ’X’, X
being the correct option.

Question: {input}
• Respond to these multiple-choice questions on

commonsense knowledge. Conclude with ’X’,
where X is the right letter choice.

Question: {input}

bbq_age
• The following are multiple choice questions

(with answers) about social bias on age. Finish
your answer with ’X’ where X is the correct
letter choice.

Question: {input}
• The following are multiple-choice questions

about age-related social bias. Answer with
’X’, X being the correct option.

Question: {input}
• Answer these multiple-choice questions on

social bias regarding age. Conclude with ’X’,
where X is the right letter choice.

Question: {input}

arc_challenge
• The following are multiple choice questions

(with answers) about science. Finish your
answer with ’X’ where X is the correct letter
choice.

Question: {input}
• Below are multiple-choice science questions.

Answer with ’X’, X being the correct option.

Question: {input}
• Respond to these multiple-choice questions on

scientific topics. Conclude with ’X’, where X
is the right letter choice.

Question: {input}

Continued on next page
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Prompts for Various Tasks (Continued)
Task Prompts
glue_cola

• {input}
Question: Does this sentence make sense? An-
swer Yes or No.

• {input}
Question: Is this sentence logically coherent?
Respond with Yes or No.

• {input}
Question: Evaluate if this sentence is meaning-
ful. Reply with Yes or No.

bbh_logical_deduction_five_objects
• A logical deduction task which requires

deducing the order of a sequence of objects.
Finish your answer with ’X’ where X is the
correct letter choice.

Question: {input}
• This challenge involves logically determining

the sequence of a set of objects. Conclude
your response with ’X’, where X is the
appropriate letter option.

Question: {input}
• In this logical reasoning exercise, deduce

the correct order of a series of objects. End
your answer with ’X’, X being the right letter
choice.

Question: {input}

mmlu_high_school_psychology
• The following are multiple choice questions

(with answers) about high school psychology.
Finish your answer with ’X’ where X is the
correct letter choice.

Question: {input}
• Below are multiple-choice questions testing

high school level psychology knowledge. Con-
clude your response with ’X’, X representing
the correct option.

Question: {input}
• These questions assess understanding of high

school psychology concepts. End your answer
with ’X’, where X is the letter of the correct
choice.

Question: {input}

Continued on next page
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Prompts for Various Tasks (Continued)
Task Prompts
bbq_religion

• The following are multiple choice questions
(with answers) about social bias on religion.
Finish your answer with ’X’ where X is the
correct letter choice.

Question: {input}
• Here are multiple-choice questions addressing

social biases related to religion. Conclude
your answer with ’X’, X being the correct
letter option.

Question: {input}
• These questions explore social biases in the

context of religion. End your response with
’X’, where X represents the right letter choice.

Question: {input}

deepmind
• The following are multiple choice questions

(with answers) about algebraic word problems.
Finish your answer with ’X’ where X is the
correct letter choice.

Question: {input}
• Below are multiple-choice questions testing

algebraic word problem solving skills. Con-
clude your answer with ’X’, X being the
correct option letter.

Question: {input}
• These questions assess your ability to solve

algebraic word problems. End your response
with ’X’, where X is the letter of the right
choice.

Question: {input}

F ADAPTIVE ELICITATION

As mentioned in Section 4.3, we show that when provided the library with only math-related task
vectors, performance shows a significant improvement on the math domain while retaining or slightly
improving in other domains for Mistral. Figure 14 illustrates similar results on other models such as
Mamba, Pythia, and Llama3.
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(a) Mamba (b) Pythia (c) Llama3
Figure 14: Performance on ELICITacross different domains when the li-brary only contains math-related
taskvectors on Mamba, Pythia, and Llama3.

G SIMILARITY-BASED RETRIEVE METHOD

Section 5.1 demonstrates the poor precision-recall performance of similarity-based retrieval methods
on the Llama3 model. Figure 15 presents the Precision-Recall curves for Mistral and Mamba under
different similarity-based approaches, which also exhibit poor results. In contrast, our proposed
retrieval module achieves significantly higher precision and recall across all models. This highlights
the effectiveness of our method in accurately retrieving relevant task vectors to support different
tasks.

(a) (b) (c)

(d) (e) (f)

Figure 15: Precision-Recall Curves for Similarity-based Prompt Retrieval Methods on Mistral and Mamba
Models. Top Row: Mistral, Bottom Row: Mamba. From Left to Right: Cosine Similarity, t-SNE, and Distance-
based Methods.

H ORTHOGONAL AUGMENTATION IN UNSEEN TASKS.

As shown in Section 4.5, ELICIT demonstrates its plug-and-play capability by seamlessly integrating
with existing methods such as BM25 Retrieval for in-domain tasks. Table 9 showcases ELICIT
combined with BM25 in unseen tasks, combined with BM25 for unseen tasks, where we can observe
performance improvements across various models and tasks. This highlights the versatility and
effectiveness of ELICIT in augmenting existing methods and tasks.
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Table 9: ELICIT combined with BM25 on unseen tasks. Improvements are concentrated in smaller models
(Pythia, Mamba), while larger models exhibit task-specific trade-offs (e.g., Llama3 shows gains in Deepmind
but declines in GLUE-COLA).

Model GLUE COLA BBQ Religion Deepmind MMLU-Psychology BBH-five-objects Avg
Llama BM25 55.4 ± 1.0 64.6 ± 1.3 30.7 ± 1.7 83.0 ± 0.1 48.3 ± 0.0 56.4 ± 0.4

BM25+ELICIT 47.6 ± 2.2 60.6 ± 1.0 26.4 ± 1.0 81.4 ± 0.8 44.4 ± 0.0 52.1 ± 0.3

Mistral BM25 44.4 ± 2.2 70.7 ± 0.7 26.6 ± 3.9 78.7 ± 1.1 25.7 ± 0.0 49.2 ± 0.3
BM25+ELICIT 36.4 ± 1.1 59.4 ± 1.8 25.2 ± 1.6 70.5 ± 0.3 26.9 ± 0.0 43.7 ± 0.5

Pythia BM25 5.8 ± 1.0 19.1 ± 1.2 14.1 ± 1.2 4.7 ± 0.3 1.0 ± 0.0 8.9 ± 0.3
BM25+ELICIT 7.3 ± 0.8 30.9 ± 3.3 14.0 ± 0.6 11.9 ± 0.6 3.5 ± 0.0 13.5 ± 0.7

Mamba BM25 48.1 ± 3.1 30.6 ± 1.1 21.6 ± 3.3 19.1 ± 0.9 25.8 ± 0.0 29.0 ± 0.9
BM25+ELICIT 46.6 ± 1.7 30.9 ± 1.8 22.7 ± 0.6 22.7 ± 0.4 21.8 ± 0.0 28.9 ± 0.5

I DATASET SPLITS

We provide detailed information about our dataset curation and splitting strategies to ensure re-
producibility. Our primary objective was to maintain robust evaluation capabilities while ensuring
sufficient training data for ICL prompt construction. For datasets with pre-existing splits (ARC-
Challenge, Ethics, GLUE, MathQA, OpenbookQA), we preserved the original partitioning. When
handling datasets with only train-valid splits, we employed two approaches: for those with validation
sets exceeding 350 samples (e.g., BoolQ, Hellaswag), we split the validation set into new validation
and test sets at a 7:3 ratio; for those with smaller validation sets (e.g., CommonsenseQA), we divided
the training set into new train and test sets (7:3). For test-only datasets, we implemented different
strategies based on size: smaller datasets like BBH (250 samples) were split to ensure 128 samples
for training and 80-100 samples for testing, with remaining samples allocated to validation. Larger
test-only datasets (>1000 samples) such as MMLU-Pro-Math, BBQ, and Crows Pairs were split
into train-valid-test sets at a 7:2:1 ratio. The same 7:2:1 split was applied to train-only datasets like
SuperGLUE and DeepMind. This systematic approach ensures a minimum of 80 test samples for
reliable evaluation metrics and at least 128 training samples for ICL prompt construction across all
tasks.

J ANALYSIS OF ELICIT’S SELECTIVE ACTIVATION

We investigate why ELICIT can selectively activate capability in Figure 5 and the importance of this
mechanism. Using a library containing only math-related task vectors on Mistral, we analyzed the
number of chosen states per domain, shown in Table 10. Math-related tasks showed consistent high
utilization (9.8 ± 0.1 chosen states), while other domains maintained minimal selection (approximately
0.0). This pattern confirms that ELICIT’s performance improvements stem from its dynamic retrieval
and selective activation of relevant capabilities.

Table 10: The average number of chosen numbers per domain per sample. The statistics come from Mistral
when the capability library only contains math-related task vectors.

in-domain
NLU Reasoning Knowledge Math Safety

chosen nums 0.0 ± 0.0 0.1 ± 0.0 0.0 ± 0.0 9.8 ± 0.1 0.0 ± 0.0

Out-of-domain
GLUE COLA BBQ Religion Deepmind MMLU-Psychology BBH-five-objects

chosen nums 0.0 ± 0.0 0.0 ± 0.0 9.9 ± 0.1 0.0 ± 0.0 0.0 ± 0.0

We observed minor improvements in reasoning tasks, exemplified by this ARC Challenge case in
Table 11. It demonstrates our pipeline’s ability to selectively activate relevant capabilities based
solely on query and handle unseen tasks flexibly, without requiring explicit task information.

Experiments forcing the application of top task vectors to all queries (Table 12), showed significant
performance degradation in NLU and knowledge tasks, highlighting the importance of selective
activation.
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Table 11: A successful case from Arc-Challenge when capability library only contains math-related task vectors
on Mistral.

input

Below are multiple-choice science questions.Answer with ’X’,
X being the correct option.\n\nQuestion: An unbalanced
equation for the reaction of methane gas (CH_{4}) with oxygen
is shown below. CH_{4} + \\Box O_{2} ->2CO_{2} + 4H_{2}O
How many molecules of oxygen gas (O_{2}) are needed to
properly balance this equation?\nOptions:\nA. 1\nB. 2\nC. 3
\nD. 4\nAnswer:

chosen task vectors 10 task vectors from MathQA

Original Output B

ELICIT Output D (correct)

Table 12: The results of forcibly applying the top task vectors for each query. The experiments were conducted
on Mistral. Domains with degraded performance are marked in bold.

nlu reasoning knowledge math safety
Zero-shot 28.8 27.4 58.8 4.0 42.2

ELICIT 15.7 31.4 47.8 18.3 53.1

These experimental results demonstrate that ELICIT’s performance improvement stems from its
selective activation mechanism and the importance of selectively using only task-relevant vectors to
dynamically activate capabilities.

We analyzed the usage frequency of task vectors in the capability library, which contains 20 distinct
task vector types. The analysis was performed on Pythia-6.9B while evaluating 25 tasks in total: 20
in-domain tasks and 5 out-of-domain tasks. Our findings confirmed that all 20 task vector types in
the library were utilized during the evaluation.

Figure 16: Usage Frequency Distribution of Different Types of Task Vectors Across all In-Domain and OOD
(Out-of-Domain) Samples. The results is based on Pythia-6.9B.
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K MORE MODELS AND TASKS ON ELICIT

Beyond our primary experiments, we evaluate the scalability and generalizability of ELICIT across
larger language models and more challenging tasks. As shown in Table 13, ELICIT maintains its
performance advantages when applied to more base models. Furthermore, Table 14 demonstrates
that ELICIT achieves consistent improvements across a diverse set of complex tasks, validating its
effectiveness and versatility.

We further explore the applicability of ELICIT to instruction-tuned models, with preliminary results
shown in Table 15. While this initial experiment suggest the potential compatibility of ELICIT with
instruction-tuned models, several challenges remain. Instruction-tuned models exhibit heightened
sensitivity to prompts and instructions (Sun et al., 2023; Gao et al., 2023a), necessitating more
investigation and analysis. Key challenges include identifying effective task vectors for in-context
learning (ICL) and developing robust methods for zero-shot performance evaluation. We leave the
comprehensive adaptation of ELICIT for instruction-tuned models as promising future work.

Table 13: Performance of ELICIT on more different models. ELICIT are effective for larger models.

Length nlu reasoning knowledge math safety avg
zs 109.8 ± 1.5 37.6 ± 0.4 16.1 ± 0.5 17.4 ± 0.6 5.9 ± 0.7 31.7 ± 0.5 21.8 ± 0.1Pythia-6.9B ELICIT 109.8 ± 1.5 38.7 ± 1.4 28.1 ± 0.5 27.9 ± 1.0 18.2 ± 2.6 47.8 ± 2.0 32.2 ± 0.7
zs 109.8 ± 1.5 34.7 ± 0.6 20.7 ± 0.2 18.1 ± 0.6 7.9 ± 1.7 34.6 ± 0.6 23.2 ± 0.2Pythia-12B ELICIT 109.8 ± 1.5 38.5 ± 0.5 29.7 ± 0.7 29.8 ± 0.6 17.5 ± 2.1 46.8 ± 0.2 32.5 ± 0.5
zs 101.1 50.9 66.8 59.7 37.6 44.2 51.8Llama3-70B ELICIT 101.1 55.9 80.5 84.6 52.4 67.4 68.2

Table 14: The results of ELICIT on GSM8K and MMLU-Professional-Law on Llama3-8B. GSM8K is as
in-domain task and MMLU-Profeesional-Law is out-of-domain.

GSM8K MMLU-Professional-Law
zs 30.44 31.67

ELICIT 32.44 41.11

Table 15: The preliminary experiment of ELICIT on Llama3-8B-Instruct.

nlu reasoning knowledge safety avg
zs 45.0 4.9 31.9 42.5 31.1

ELICIT 52.7 36.2 70.9 49.0 52.2

L DIVERSITY-OPTIMIZAED CAPABILITY LIBRARY

We conduct an experiment on maximizing the diversity of prompts in the given capability library.
Instead of random demonstration selection, we construct a new capability library of diversity-
optimized prompts as described in Su et al. (2022).

Spefically, we used Sentence-BERT to generate embeddings by averaging the resulting vectors over
the words in each text input. For each task, after computing embeddings for all training data, we
implemented an iterative approach to find diverse examples to construct ICL prompts. Starting
with a random example, we selected examples that maximized the distance from previously chosen
examples in each iteration. We then conducted a new capability library using these more diverse ICL
prompts.

As shown in Table 16, the diversity-optimized prompts yielded mixed results. Compared to the
original ELICIT, while performance improved in reasoning (+1.1%), math (+0.5%) and NLU tasks
(+4.5%), there was a decline in Knowledge (-5.9%) and Safety (-2.3%) ability.

This result suggests the potential for future work to improve our pipeline by enhancing the quality of
task vectors through better demonstration selection methods.
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Table 16: The comparison of ELICIT using different capability library based on different ICL prompts. The
experiments are conducted on Llama3-8B.

NLU Reasoning Knowledge Math Safety Avg.
Zero-shot 32.2 ± 1.2 32.9 ± 0.2 42.5 ± 1.2 14.0 ± 1.0 35.5 ± 1.2 31.4 ± 0.7
ELICIT 38.1 ± 0.9 46.1 ± 0.3 60.7 ± 1.2 19.4 ± 1.1 49.4 ± 2.1 42.7 ± 0.8

ELICIT (diversity) 42.6 ± 0.3 47.2 ± 0.1 54.8 ± 1.5 19.9 ± 0.8 47.1 ± 2.6 42.3 ± 0.9

M MULTI-LAYER INTERVENTION

While our primary analysis focuses on single-layer intervention, we also conduct preliminary exper-
iments on multi-layer intervention, with the intervention strength α = 2 distributed evenly across
layers. We evaluated four settings: (1) the zero-shot baseline, (2) intervention on three consecutive
layers (centered on the previously identified optimal layer), (3) intervention across all layers, and (4)
our original single-layer implementation.

Results from Llama3-8B (Table 17) reveal an intriguing pattern: distributing intervention across
multiple layers tends to yield better performance. This observation opens promising directions for
future research into the mechanisms and benefits of multi-layer interventions.

Table 17: Comparison of multiple intervention layers on ELICIT. The experiments are conducted on Llama3-8B.

nlu reasoning knowledge math safety avg
zs 32.4 31.8 42.8 15.4 36.6 31.8
ELICIT (1 layer) 38.3 46.9 60.7 20.6 51.1 43.5
ELICIT (3 layers) 38.2 47.1 61 21.6 51.6 43.9
ELICIT (all layers) 40.9 46.3 61.4 21.7 52.4 44.5

N ANALYSIS OF COMPUTATIONAL EFFICIENCY WITH RETRIEVAL MODULE

To demonstrate the effciency of ELICIT, We conducted a detailed analysis of ELICIT’s computational
efficiency using the Pythia-6.9B model, measuring the average processing time per sample across
different pipeline stages. The results are shown in Table 18. Our quantitative results demonstrate that
the integration of the retrieval module maintains the method’s efficiency. Specifically, the retrieval
module adds only 0.105 seconds of computational overhead per sample. The total inference time,
including retrieval operations, remains efficient at 0.172 seconds per sample. ELICIT demonstrates
superior efficiency compared to baseline approaches, processing samples 2-3 times faster than both 16-
shot inference and BM25-based inference methods. These results validate that ELICIT’s performance
improvements do not come at the cost of computational efficiency, even with the addition of retrieval
module.

Table 18: The running time of different stages per sample across different domains.

zs inference time ELCIT inference time retrieve time bm25 inference time 16shot inference time
nlu 0.063 0.064 0.097 0.302 0.181

reasoning 0.065 0.066 0.104 0.349 0.315
knowledge 0.066 0.069 0.108 0.517 0.371

math 0.065 0.067 0.111 0.351 0.352
safety 0.067 0.069 0.104 0.611 0.366

avg 0.065 0.067 0.105 0.426 0.317
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