
Under review as a conference paper at ICLR 2024

A DATASETS

A.1 GRAPH DATA

Graph data includes Gset, synthetic datasets in three distributions: barabasi albert (BA), erdos renyi
(ER), and powerlaw (PL), and TSPLIB instances.

A.2 NON-GRAPH DATA

Non-graph data includes the knapsack dataset, set cover dataset, etc.

B MORE RESULTS FOR GRAPH MAXCUT PROBLEM IN INSTANCE-WISE
SCENARIO

Table 6: Results for graph maxcut on erdos renyi (ER) distribution
Nodes Greedy SDP SA GA Gurobi S2V-DQN PI-GNN iSCO dREINFORCE MCPG Jumanji

(Pattern I) (Pattern I) (Pattern I) (Pattern II) (Pattern II) (Pattern I)
100 489.3 486.5 490.2 507.1 507.1 506.3 491.6 507.1 507.1 507.1 507.1
200 1828.7 1810.4 1829.5 1868.6 1866.0 1853.4 1838.5 1867.0 1868.6 1868.0 1868.6
300 3984.2 3950.9 3986.1 4064.3 4064.0 3986.4 3949.3 4059.4 4069.4 4069.4 4069.4
400 6905.5 6879.6 6907.8 7035.3 7035.0 6756.7 7024.7 7013.1 7038.6 7038.6 6984.9
500 10692.4 10609.1 10693.9 10860.0 10858.3 10608.4 10755.9 10830.3 10864.7 10862.4 10861.0
600 15241.0 15140.8 15242.1 15480.4 15479.4 1514.3 15101.4 15427.4 15482.4 15472.5 15461.8
700 20627.7 20477.0 20629.0 20876.7 20877.6 20293.5 20603.0 20814.9 20879.2 20868.8 20861.2
800 26704.3 26492.4 26708.2 27019.6 27020.4 26216.3 26613.6 26932.6 27058.9 27049.6 27045.6
900 33628.4 33446.9 33630.8 34022.7 34021.8 33051.3 33518.7 33917.9 34073.6 34070.4 34061.7
1000 41279.6 41017.9 41281.1 41734.1 41737.8 40753.2 41540.3 41613.2 41796.7 41787.1 41762.4

Table 7: Results for graph maxcut on powerlaw (PL) distribution
Nodes Greedy SDP SA GA Gurobi S2V-DQN PI-GNN iSCO dREINFORCE MCPG Jumanji

(Pattern I) (Pattern I) (Pattern I) (Pattern II) (Pattern II) (Pattern I)
100 268.2 270.6 268.4 282.9 282.9 278.5 271.3 282.8 282.9 282.9 282.9
200 548.0 554.4 550.5 578.0 578.7 563.1 572.5 578.3 578.7 578.7 578.7
300 824.6 833.9 826.4 877.2 877.2 859.4 843.2 876.1 879.5 878.2 879.5
400 1107.1 1117.8 1110.1 1173.2 1173.1 1152.7 1135.8 1169.6 1178.4 1173.9 1178.4
500 1386.6 1399.0 1391.5 1471.5 1468.1 1440.2 1455.3 1467.0 1475.6 1475.6 1460.4
600 1660.5 1683.4 1664.1 1768.3 1760.8 1725.6 1693.7 1758.5 1773.9 1770.1 1769.5
700 1950.8 1970.0 1955.0 2064.9 2056.7 2004.9 1982.4 2055.5 2067.2 2067.2 2058.6
800 2228.0 2260.7 2232.2 2361.4 2349.8 2302.4 2346.7 2353.4 2378.9 2375.4 2352.7
900 2507.0 2540.0 2514.1 2658.1 2643.9 2526.4 2594.3 2645.0 2676.1 2671.9 2667.4
1000 2784.3 2817.4 2792.7 2955.5 2942.1 2723.3 2903.4 2949.1 2982.8 2978.4 2963.9

From Table 6 and 7, we see that, with the support of massively parallel environments, the RL method
dREINFORCE has the same or better performance compared to the best-known solutions. PI-GNN
does not achieve the best performance in any instance. We see that RL algorithms in Pattern II (e.g.,
dREINFORCE and MCPG) demonstrate much clearer advantages over the methods of Pattern I and
conventional methods (e.g., Greedy, SA, and GA).

C TYPICAL CO PROBLEMS

• Partitioning problems: graph maxcut, graph partitioning, number partitioning. Graph
maxcut and number partitioning are widely used in social networks (e.g., social influence
maximization problem) which maximizes the social influence between two sets, and wireless
mesh networks which maximize the total throughput between the transmitter set and the
receiver set. Graph partitioning is often used in parallel computations, and the choice of
partitioning strategies has strong impact on not only the performance of graph algorithms,
but also the design of the algorithms.

• Covering problems: maximum independent set (MIS), knapsack, and set cover. MIS is
widely used in chemical molecules analysis such as macromolecular docking: given two
proteins, the protein docking problem is to find whether they interact to form a stable
complex. Knapsack is widely used in stock trading, which maximizes the total value of the
assets. Set cover is widely used in sensor networks which minimizes the number of sensors
over all nodes.

14

Under review as a conference paper at ICLR 2024

• Coloring problems: graph coloring. It is used in routing and wavelength assignment problem,
where light-path requests are given, generate a set of routing for each request and select a
light-path per request and assign wavelengths to these selected paths.

• Mixed integer linear programming (MILP): binary integer linear programming (BILP). BILP
is widely used in CO problem if all variables are binary, e.g., the assignment problem.

• Finance: portfolio optimization. It is widely used in finance, where we select a set of assets
so that the total profits are maximized and the risk is minimized or constrained.

• Hamiltonian cycle: traveling salesman problem (TSP). It widely used in path planning
problems such as designing a path for a taxi.

• Quantum: TNCO. It is a typical problem in quantum circuits, and it is also an important
problem in quantum simulating by classical computers.

• Transportation: vehicle routing problem (VRP). It is widely used in transporting goods
through multiple inventories.

D BUILDING MASSIVELY PARALLEL ENVIRONMENTS ON GPUS

D.1 PATTERN I FOR CO ENVIRONMENTS

In this subsection, we introduce three important functions of Pattern I: reset(), step(), and reward().

def reset(self, graph_list):
self.simulator = Simulator(graph_list=graph_list, device=self.device)
xs = self.simulator.empty_xs()
vs = reward(xs)
return xs, vs

The “reset" function initializes a simulator, and sets the set as empty, i.e., d(s0) in Table 1. “graph_list"
is a graph topology.

def step(self, start_xs):
xs = self.simulator.add(start_xs)
vs = reward(xs)
return xs, vs

In the “step" function, We add one node to the set in each environment, and the state changes to new
ones, and the objective value is obtained. “start_xs" is the initial solutions over environments, and it
returns the new solutions together with objective values.

def reward(self, xs):
num_sims = xs.shape[0]
if num_sims != self.sim_ids.shape[0]:

self.n0_ids = self.n0_ids[0].repeat(num_sims, 1)
self.n1_ids = self.n1_ids[0].repeat(num_sims, 1)
self.sim_ids = self.sim_ids[0:1] + th.arange(num_sims, dtype=self

.int_type, device=self.
device)[:, None]

values = xs[self.sim_ids, self.n0_ids] ^ xs[self.sim_ids, self.n1_ids
]

values = values.sum(1) // 2
return values

In the “reward" function, we obtain the objective values of all environments given the states, i.e., r in
Table 1.

D.2 PATTERN II FOR CO ENVIRONMENTS

In this subsection, we introduce three important functions of Pattern II: reset(), step(), and obj().

15

Under review as a conference paper at ICLR 2024

def reset(self, graph_list):
self.simulator = Simulator(graph_list=graph_list, device=self.device)
self.searcher = LocalSearch(simulator=self.simulator, num_nodes=self.

num_nodes)
good_xs = self.searcher.good_xs
good_vs = self.searcher.good_vs
return good_xs, good_vs

The “reset" function initializes random solutions, i.e., d(s0) in Table 1, and the RL algorithm searches
better solutions based on them. “graph_list" is a graph topology, and the return is the good solutions
with objective values. “Simulator" is a simulator for maxcut problem, and “LocalSearch" is a local
search trick which returns the best neighborhood node within limited iterations.

def step(self, start_xs, probs):
xs = metropolis_hastings_sampling(probs=probs, start_xs=start_xs,

num_repeats=self.num_repeats,
num_iters=-1)

vs = self.searcher.reset(xs)
for _ in range(self.num_searches):

xs, vs, num_update = self.searcher.random_search(num_iters)
return xs, vs

The “step" function returns new solutions based on current solutions, which includes two tricks:
Metropolis Hastings (MH) sampling and local search. The MH sampling algorithm ensures the global
balance in stochastic process, and make the MCMC simulations in stationary distributions. The local
search helps the agent to search better solutions in neighborhoods.“start_xs" is the initial solutions,
and the “probs" are the probabilities obtained by the policy. “metropolis_hastings_sampling" is the
MH sampling algorithm; “self.searcher" is the local search algorithm.

def obj(self, xs):
num_sims = xs.shape[0]
if num_sims != self.sim_ids.shape[0]:

self.n0_ids = self.n0_ids[0].repeat(num_sims, 1)
self.n1_ids = self.n1_ids[0].repeat(num_sims, 1)
self.sim_ids = self.sim_ids[0:1] + th.arange(num_sims, dtype=self

.int_type, device=self.
device)[:, None]

values = xs[self.sim_ids, self.n0_ids] ^ xs[self.sim_ids, self.n1_ids
]

values = values.sum(1) // 2
return values

The “obj" function returns the objective values of parallel environments given the states xs, i.e., f in
Table 1. All the solutions are stored by PyTorch tensors, thus the calculations are executed in parallel.

E LICENSE AND USAGE

The license is MIT License.

The following processes show how to run the algorithm.

1: select problem

config.py

PROBLEM = Problem.maxcut # We can select a problem such as maxcut.

2: select dataset Take methods/greedy.py as an example:

directory_data = ’../data/syn_BA’ # the directory of datasets
prefixes = [’barabasi_albert_100_’] # select the graphs with 100 nodes

16

Under review as a conference paper at ICLR 2024

3: run method

python methods/greedy.py # run greedy

python methods/gurobiy.py # run gurobi

python methods/simulated_annealing.py # run simulated annealing

python methods/mcpg.py # run mcpg

python methods/iSCO/main.py # run iSCO

python methods/PI-GNN/main.py # run PI-GNN

python methods/L2A/maxcut_end2end.py # run ours

F ILP AND QUBO FORMULATIONS FOR 12 CO PROBLEMS

We show the basic denotations of graphs. Let G = (V, E ,W) denote a weighted graph, where V is
the node set, E is the edge set, |V| = V , |E| = E, and W : E → R+ is the edge weight function, i.e.,
Wu,v is the weight of edge (u, v) ∈ E . Wu,v > 0 if (u, v) is an edge and 0 otherwise. Let δ+(i) and
δ−(i) denote the out-arcs and in-arcs of node i.

Integer linear programming (ILP) is a standard formulation of combinatorial optimization problems
Ibaraki (1976). It has the canonical form:

min cTx

s.t. Ax ≤ b,

x ≥ 0,

x ∈ Zn,

(6)

where x is a vector of n decision variables, c is a vector of n coefficients for x in the objective
function, A ∈ Rm×n and b ∈ Rm together denote m linear constraints, and x ∈ Zn implies that we
are interested in integer solutions. Let x∗ denote the optimal solution and f∗ denote the corresponding
objective value. Only a few problems such as portfolio optimization is quadratic programming, which
will be described later.

With respect to QUBO or Ising model, we consider a 1D Ising model with a ring structure and
an external magnetic field hi, there are N nodes with (N + 1) = 1 mod N ; a node i has a spin
si ∈ {+1,−1} (where +1 for up and −1 for down). Two adjacent sites i and i+ 1 have an energy
wi,i+1 or −wi,i+1 if they have the same direction or different directions, respectively.

The whole system will evolve into the ground state with the minimum Hamiltonian Cipra (1987) :

argmin
s

f(x) = −
N∑
i=1

hisi︸ ︷︷ ︸
fA

+ α

N∑
i=1

−wi,i+1sisi+1︸ ︷︷ ︸
fB

, (7)

where α is a weight, fA is defined on each node’s effect on its own, and fB is defined on each two
adjacent nodes’ interactions. In fact, we generally use binary variables (0 or 1) to formulate the
objective function, and si ∈ {+1,−1} can be replaced by

xi =
si + 1

2
, (8)

where xi ∈ {0, 1}.

F.1 GRAPH MAXCUT

The graph maxcut problem is defined as follows. Given a graph G = (V, E ,W), split V into two
subsets V+ (with edge set E+) and V− (with edge set E−), and the the cut set is δ = {(i, j)|i ∈
V+, j ∈ V−}. The goal is to maximize the cut value: max

∑
(i,j)∈δ Wi,j .

17

Under review as a conference paper at ICLR 2024

5

2

1

4

3

5

2

1

4

3

5

2

1

4

3
k k+1

Figure 7: An example of graph maxcut.

F.1.1 ILP FORMULATION

The ILP formulation of graph maxcut is:

max
∑
(ij)

Wijyij (9)

s.t. yij ≤ xi + xj ,∀i, j ∈ V, i < j,

yij ≤ 2− xi − xj ,∀i, j ∈ V, i < j,

yij ≥ xi − xj ,∀i, j ∈ V, i < j,

yij ≥ −xi + xj ,∀i, j ∈ V, i < j,

where xi is a binary variable denoting if node i belongs to the selected subset; and yij is 1 if nodes i
and j are in different subsets and is 0 otherwise.

F.1.2 QUBO FORMULATION

The QUBO formulation of graph maxcut is:

min
x

f(x) = −1

2

∑
(i,j)∈E

Wij (1− (2xi − 1)(2xj − 1)) , (10)

where
∑

(i,j)∈E Wi,j is a constant, xi is 1 if node i ∈ V+, and 0 otherwise. The cut value 1− (2xi−
1)(2xj − 1) is 1 if nodes i and j are in different subsets, and 0 otherwise.

For an illustrative example in the left graph of Fig. 7, the edge set is E = {(1, 2), (1, 4), (2, 3), (2, 4),
(3, 5)} and the weights are w1,2 = w1,4 = w2,3 = w2,4 = w3,5 = w4,5 = 1. The edge set of black
nodes is E+ = {(1, 4)}, and the edge set of white nodes is E− = ∅. The edges connect the two
subsets are δ = {(1, 2), (2, 3), (2, 4), (3, 5), (4, 5)}. The solution is x ∈ {0, 1}5 and the Hamiltonian
in (8) becomes

min
x

f(x) = −
(
1

2
− 1

2
(2x1 − 1)(2x2 − 1)

)
−
(
1

2
− 1

2
(2x1 − 1)(2x4 − 1)

)
−
(
1

2
− 1

2
(2x2 − 1)(2x3 − 1)

)
−
(
1

2
− 1

2
(2x2 − 1)(2x4 − 1)

)
−
(
1

2
− 1

2
(2x3 − 1)(2x5 − 1)

)
−
(
1

2
− 1

2
(2x4 − 1)(2x5 − 1)

)
. (11)

F.1.3 EXAMPLE

Pattern I In left part of Fig. 8, the initial state is empty, i.e., no node is selected. Then we select node
1 with the maximum Q-value and add it to the state, thus the new state is [1]. The reward is 2.

Pattern II In right part of Fig. 8, the current state is [2, 3], i.e., node 2 and 3 are selected, and the
objective value is 2. The new state is [1, 3, 4], i.e., node 1, 3, and 4 are selected, and the objective
value is 4.

18

Under review as a conference paper at ICLR 2024

1

3

54

s=[] s=[1]

2

Pattern I

1

3

54

2

a = 1
r = 2

s=[0,1,1,0,0]
f(s) = 2

s=[1,0,1,1,0]
f(s) = 4

Pattern II

1

3

54

2
1

3

54

2

Figure 8: Two patterns for graph maxcut.

F.2 GRAPH PARTITIONING

Given a graph, partition all nodes into two subsets (V+ and V−) of equal size V
2 , such that the number

of edges connecting the two subsets is minimized.

F.2.1 ILP FORMULATION

The ILP formulation of graph partitioning is:

min
∑

(i,j)∈E

Wijyij (12)

s.t. yij ≤ xi + xj ,∀i, j ∈ V, i < j,

yij ≤ 2− xi − xj ,∀i, j ∈ V, i < j,

yij ≥ xi − xj ,∀i, j ∈ V, i < j,

yij ≥ −xi + xj ,∀i, j ∈ V, i < j,∑
i∈V

xi =
V

2
,

where xi is a binary variable denoting if node i belongs to the selected subset; and yij is 1 if nodes i
and j are in different subsets and is 0 otherwise. The first four constraints calculate the cut value yi,j

based on xi and xj , and the last constraint makes sure that the nodes are partitioned into two subsets
with equal size.

F.2.2 QUBO FORMULATION

We consider a node i ∈ V , and let xi be a binary variable with +1 denoting in the subset V+ and 0
denoting in the subset V−. The Hamiltonian is

fA =

(∑
i∈V

xi −
V

2

)2

, (13)

fB =
1

2

∑
(i,j)∈E

Wij (1− (2xi − 1)(2xj − 1)) . (14)

F.2.3 EXAMPLE

Pattern I In left part of Fig. 9, the initial state is empty, i.e., no node is selected. Then we select node
2 and add it to the state, i.e., the new state is [2]. The reward is 1.

Pattern II In right part of Fig. 9, the current state is [2, 4], i.e., node 2 and 4 are put to the set, and the
objective value is 4. The new state is [1, 2], i.e., node 1 and 2 are put to the set, and the new objective
value is 2.

19

Under review as a conference paper at ICLR 2024

s=[] s=[1]

Pattern I

a = [2]
r = 1

s=[0,1,0,1]
f(s) = 4

s=[1,1,0,0]
f(s) = 3

Pattern II

1

3

4

2

1

3

4

2

1

3

4

2

1

3

4

2

Figure 9: Two patterns for graph partitioning.

F.3 NUMBER PARTITIONING

Given a set of I positive numbers I = {n1, . . . , nI}, partition this set of numbers into two disjoint
subsets S and I\S , such that the discrepancy between the sum of elements in both sets is minimized.

F.3.1 ILP FORMULATION

The ILP formulation of number partitioning is
min y (15)

s.t.
∑
i∈I

nixi −
∑
i∈I

ni(1− xi) ≥ y,∑
i∈I

nixi −
∑
i∈I

ni(1− xi) ≤ −y,

xi ∈ {0, 1} ∀i ∈ I, y ≥ 0, (16)
where xi is a binary variable with 1 denoting the i-th element is in the selected subset S, and 0
otherwise, and y is the absolute value of the discrepancy between the sum of elements in both sets.

F.3.2 QUBO FORMULATION

The QUBO formulation of number partitioning is

min f =

(∑
i∈I

ni(2xi − 1)

)2

(17)

where xi is a binary variable with 1 denoting the i-th element is in the selected subset S, and 0
otherwise.

F.3.3 EXAMPLE

Let [1, 3, 5, 8, 9] be a list of numbers.

Pattern I The initial state is empty, i.e., no number is selected. Then we select number 5 and add it
to the state, i.e., the new state is [5]. The reward is 16.

Pattern II The current state is [0, 0, 1, 0, 1], i.e., number 5 and 9 are in a set, and others are put into
another set. The new state is [0, 0, 1, 1, 0], i.e., remove number 9 and add number 8 to the set. The
reward is 4.

F.4 BILP

The binary integer linear programming (BILP) aims to obtain the max value an objective function
with equation constraints, where all variables are binary. We assume there are I binary variables with
indices I = {1, . . . , I} and J constraints with indices J = {1, . . . , J}.

20

Under review as a conference paper at ICLR 2024

F.4.1 ILP FORMULATION

The ILP formulation of BILP is

max
∑
i∈I

cixi (18)

s.t.
∑
i∈I

sj,ixi = bj ,∀j ∈ J ,

where xi is a binary variable (1 or 0), ci is a coefficient, and bj is a right-hand constant.

F.4.2 QUBO FORMULATION

The QUBO formulation of BILP is

min f = −
∑
i∈I

cixi + α
∑
j∈J

(
bj −

∑
i∈I

sj,ixi

)2

, (19)

where α ≫ 1 is a positive constant.

F.4.3 EXAMPLE

Take a BILP as an example:

max 3x1 + 2x2

s.t. 2x1 + 3x2 ≤ 4,

x1,x2 ∈ {0, 1}.
(20)

Pattern I The initial state is empty, i.e., x1 = x2 = 0. Then we select x1 and add it to the state, i.e.,
the new state is [1]. The reward is 3.

Pattern II The current state is [0, 0], i.e., x1 = x2 = 0, and the objective value is 0. The new state is
[0, 1], i.e., x1 = 0,x2 = 1, and the objective value is 2.

F.5 PORTFOLIO OPTIMIZATION

We consider n assets S1, . . . ,Sn with future returns r = [r1, . . . , rn]. The portfolio is denoted
by x = [x1, . . . ,xn]. To ensure the number of assets to hold is k, we introduce a binary vector
y = [y1, . . . ,yn]. The symmetric covariance matrix of the returns of assets is denoted by A. The
aim is to minimize the variance with ensuring the total return.

F.5.1 QUADRATIC PROGRAMMING FORMULATION

The quadratic programming (QP) formulation of portfolio optimization is

min xTAx (21)
s.t. rTx ≥ Rmin,

1Tx = 1,

x ≤ By,

1Ty = k,

x ≥ 0,y ∈ {0, 1},

where the superscript T denotes the transpose of a vector or matrix, Rmin is the minimum return of
all assets, 1 is a column of with all elements being 1, and B is a large positive number.

21

Under review as a conference paper at ICLR 2024

F.5.2 QUBO FORMULATION

The QUBO formulation of portfolio optimization is

min xTAx− α sgn(rTx−Rmin) + α (1Tx− 1)2 + α sgn(x−By)2 + α (1Ty − k)2,

(22)

where sgn(z) is a sign function with 1 if z >= 0 and 0 otherwise, and α is a large positive constant
to ensure the constraints are satisfied.

F.5.3 EXAMPLE

Take the following as an example:

min 2x2
1 + x2

2 (23)
s.t. x1 + x2 ≥ 0,

x1 + x2 = 1,

x1 ≤ By1,

x2 ≤ By2,

y1 + y2 = 1,

x1,x2 ≥ 0,y1,y2 ∈ {0, 1},

where B is a large positive value.

Pattern I The initial state is empty, i.e., x1 = x2 = 0, and then we select x1 and add it to the state,
i.e., the new state is [1]. The reward is B − 2 since the constraint is satisfied now.

Pattern II The current state is [0, 1], and the objective value is 1. The new state is [1, 0], and the
objective value is 2.

F.6 MIS

An independent set S ⊂ V is a set of mutually non-adjacent nodes of the graph. The maximum
independent set (MIS) problem aims to obtain the largest independent set.

F.6.1 ILP FORMULATION

The ILP formulation of MIS is

max
∑
i∈V

xi (24)

s.t. xi + xj ≤ 1,∀(i, j) ∈ E ,

where xi is a binary variable with 1 denoting in the independent set, and 0 otherwise.

F.6.2 QUBO FORMULATION

If we write the QUBO formulation of MIS as

minH = −
∑
i∈V

xi − α
∑

(i,j)∈E

(2− xi − xj)
2, (25)

where α ≫ 1 is a constant. However, it does not work since the penalties are different when
xi+xj = 0 and xi+xj = 1. To make the penalties equal under the two cases, we have to introduce
the item γα(1− xi − xj)

2 where γ is unknown and should be calculated. We list the values of all
cases of (xi,xj): Let α(γ− 3) = 0, and we obtain γ = 3. Therefore, the correct QUBO formulation
of MIS is

min−
∑
i∈V

xi − α
∑

(i,j)∈E

(2− xi − xj)
2 + 3α

∑
(i,j)∈E

(1− xi − xj)
2, (26)

22

Under review as a conference paper at ICLR 2024

Table 8: All cases of (xi,xj) in MIS.
xi xj −α(2 − xi − xj)

2 γα(1 − xi − xj)
2

0 0 −4α γα
0 1 −α 0
1 0 −α 0
1 1 0 γα

1

3

54

s=[] s=[1]

2

Pattern I

1

3

54

2

a = 1
r = 1

s=[0,1,0,0,0]
f(s) = -6

s=[0,1,0,0,1]
f(s) = -7

Pattern II

1

3

54

2
1

3

54

2

Figure 10: Two patterns for MIS.

F.6.3 EXAMPLE

Pattern I In left part of Fig. 10, the initial state is empty, i.e., no node is selected. Then we select
node 1 with the maximum Q-value and add it to the state, i.e., the new state is [1]. The reward is 1.

Pattern II In right part of Fig. 10, the current state is [0, 1, 0, 0, 0], which only includes node 2,
and the objective value is -6. The new state is [0, 1, 0, 0, 1], which includes node 2 and 5, and the
objective value is -7.

F.7 KNAPSACK

Knapsack problem. Given a set of items I, each item i with an integer weight Wi and a value µi,
determine which items to include in the collection so that the total weight is less than or equal to a
given limit U and the total value is maximized.

F.7.1 ILP FORMULATION

The ILP formulation of Knapsack is

max
∑
i∈I

µixi (27)

s.t.
∑
i∈I

Wixi ≤ U,

where xi is a binary variable (1 denoting in the knapsack, and 0 otherwise), and U is a constant.

F.7.2 QUBO FORMULATION

We consider an item i, and let xi be a binary variable with 1 denoting in the knapsack and 0 otherwise.
Let yn for 1 ≤ n ≤ U be a binary variable with 1 denoting the final weight of the knapsack is n and
0 otherwise. The QUBO formulation of Knapsack is

min
x

f =

(
U∑

n=1

yn

)2

+

(
U∑

n=1

nyn −
∑
i∈I

Wixi

)2

− α
∑
i∈I

µixi, (28)

where α > 0 is a weight. The first two items should not be violated; therefore, we require that
0 < αmax(µi) < 1.

23

Under review as a conference paper at ICLR 2024

F.7.3 EXAMPLE

We assume there are 3 items, and their values are [1, 1, 2], and their weights are [1, 1, 1], and the
limit of total weight is 2.

Pattern I The initial state is empty. Then we select item 2 and add it to the state, i.e., the new state is
[2]. The reward is 1.

Pattern II The current state is [0, 1, 0], and the objective value is 1. The new state is [0, 1, 1], and
the objective value is 3.

F.8 SET COVER

Set cover problem: Given a finite set U and subsets Vi ⊆ U (i ∈ I = {1, . . . , I}), find the smallest
number of subsets so that the union of them is U , i.e.,

⋃
i∈I Vi = U .

F.8.1 ILP FORMULATION

The ILP formulation of set cover problem is

min
∑
i∈I

xi (29)

s.t.
∑

i:u∈Vi

xi ≥ 1,∀u ∈ U ,

where xi is a binary variable with 1 denoting the subset Si is selected, and 0 otherwise.

F.8.2 QUBO FORMULATION

Let yu,m be a binary variable with 1 denoting the number of subsets which include element u is
m ≥ 1, and 0 otherwise. Let xi be a binary variable with 1 denoting the subset Vi is selected, and 0
otherwise. The QUBO formulation of set cover is

min
x

H =
∑
i∈I

xi + α
∑
u∈U

(
1−

∑
m∈I

yu,m

)2

+ α
∑
u∈U

(∑
m∈I

myu,m −
∑

i:u∈Vi

xi

)2

, (30)

where α > 1 is a constant. The first item minimizes the total number of selected subsets; the second
item means that exactly one yu,m over m must be 1 since each element of U must be selected a fixed
number of times; the third item ensures that the number of times u is included is equal to the number
of Vi which is included.

F.8.3 EXAMPLE

We assume the universe set U = {1, 2, 3, 4, 5} and the collection of sets S =
{{1, 2, 3}, {2, 4}, {4, 5}}.

Pattern I The current state is [4, 5]. Then we select the first set {1, 2, 3} and add it to the state, i.e.,
the new state is [1, 2, 3, 4, 5]. The reward is B − 2 since they cover all elements of the universe set.

Pattern II We assume α = 10 in equation 30. The current state is [0, 1, 0], the objective value is 11
since it cannot cover all the elements. The new state is [1, 0, 1], and the objective value is 2 since
they cover all the elements.

F.9 GRAPH COLORING

Given a graph and I colors where each color i with a weight Wi, color each vertex with a specific
color using the minimum sum of weights, such that no edge connects two vertices with the same
color.

24

Under review as a conference paper at ICLR 2024

F.9.1 ILP FORMULATION

The ILP formulation of graph coloring problem is

min
∑
i∈I

Wi

∑
v∈V

xvi (31)

s.t.
∑
i∈I

xvi = 1,∀v ∈ V,

xui + xvi ≤ 1,∀(u, v) ∈ E ,

where xvi is a binary variable with 1 denoting vertex v is colored using the i-th color, and 0 otherwise.

F.9.2 QUBO FORMULATION

The QUBO formulation of graph coloring problem is

min
x

f =
∑
i∈I

Wi

∑
v∈V

xvi +B
∑
v∈V

(
1−

∑
i∈I

xvi

)2

+B
∑

(u,v)∈E

∑
i∈I

xuixvi, (32)

where B ≫ Wi is a positive constant, and xv,i is a binary variable with 1 denoting vertex v is
colored using the i-th color, and 0 otherwise.

F.9.3 EXAMPLE

s=[(1,1),
(2,2)]

s=[(1,1),
(2,2),(3,3)]

Pattern I

a = [(3,3)]
r = B-1

s=[2,3,1]
f(s) = 3

s=[3,2,1]
f(s) = 3

Pattern II

1

32

1

32

1

32

1

32

Figure 11: Two patterns for graph coloring.

We assume color 1, 2, and 3 are denoted by red, green, and blue, respectively.

Pattern I In left part of Fig. 11, the current state is [(1,1),(2,2)], i.e., node 1 is colored by color 1
(red), and node 2 is colored by color 2 (green). Then we color node 3 by color 3 (blue) and add it to
the state. The new state is [(1,1),(2,2), (3,3)]. The number of used colors increases by 1, thus the
reward is B − 1.

Pattern II In right part of Fig. 11, the current state is [2, 3, 1], the objective value is 3. The new state
is [3, 2, 1], and the objective value is still 3 since the number of used colors does not changed.

F.10 TSP

Traveling salesman problem (TSP). Find a tour with the minimum total weights, where the tour is a
Hamilton cycle that visits each node of the graph exactly once.

25

Under review as a conference paper at ICLR 2024

1 2

4 3

4

3

2

1

98

Figure 12: An example of TSP

order

no
de

1 2 3 4 5
1

2

3

4

Figure 13: QUBO of TSP.

F.10.1 ILP FORMULATION

The ILP formulation of TSP problem is

min
∑

(u,v)∈E

Wuvxuv, (33)

s.t.
∑

v∈V,(u,v)∈E

xu,v = 1, u ∈ V,

∑
u∈V,(u,v)∈E

xuv = 1, v ∈ V,

tu +Wuv ≤ tv +B(1− xuv),∀(u, v) ∈ E ,
x ∈ {0, 1}, t ≥ 0,

where xuv = 1 if edge (u, v) is passed and 0 otherwise, and tu denotes the arrival time at node u,
and B is a big positive value. The first and second set of constraints ensure each node is visited
exactly once, and the third set of constraints is the subtour elimination.

26

Under review as a conference paper at ICLR 2024

F.10.2 QUBO FORMULATION

Let xij be 1 if node i appears with the order j in the cycle and 0 otherwise. The Hamiltonian is

min
x

fA =

n∑
i=1

1−
n∑

j=1

xij

2

+

n∑
j=1

(
1−

n∑
i=1

xij

)2

, (34)

min
x

fB =
∑

(u,v)/∈E

n∑
j=1

xujxvj+1 + α
∑

(u,v)∈E

Wuv

n∑
j=1

xujxvj+1, (35)

where α > 0. fA ensures that each node appears once in the cycle. For fB , the first item provides a
penalty if (i, j) is not the edge, and the second item is the total weights of edges in the cycle.

As shown in Fig. 12, the edge set is E = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}, and the weights
W1,2 = W2,1 = 1,W1,3 = W3,1 = 9,W1,4 = W4,1 = 4,W2,3 = W3,2 = 2,W2,4 = W4,2 =
8,W3,4 = W4,3 = 3. The solution at the k-th iteration is xk ∈ {−1,+1}5 and its Hamiltonian
becomes

min
xk

f(xk) = α(xk
1,1x

k
2,2 + 2xk

2,2x
k
3,3 + 3xk

3,3x
k
4,4 + 4xk

4,4x
k
1,5). (36)

F.10.3 EXAMPLE

s=[1,2] s=[1,2,3]

Pattern I

a = [3]
r = B-10

s=[1,2,4,3]
f(s) = 23

s=[1,2,3,4]
f(s) = 10

Pattern II

1

3

4

2

4

3

2

1

98
1

3

4

2

4

3

2

1

98
1

3

4

2

4

3

2

1

98
1

3

4

2

4

3

2

1

98

Figure 14: Two patterns for TSP.

Pattern I In left part of Fig. 14, the current state is [1, 2], i.e., edge (1, 2) is passed. Then we select
node 3 and add it to the state, i.e., the new state is [1, 2, 3]. Node 4 is clearly the last node. These
nodes constitute a Hamiltonian cycle, thus the reward is B − 10. The objective value, i.e., the total
distance, is 10.

Pattern II In right part of Fig. 14, the current state is [1,2,4,3], i.e., the path is 1 =⇒ 2 =⇒ 4 =⇒
3 =⇒ 1, and the objective value is 23. The new state is [1,2,3,4], i.e., the path is 1 =⇒ 2 =⇒ 3 =⇒
4 =⇒ 1, and the objective value is 10.

F.11 TNCO

Given a graph G representing a tensor network, where a node represents a tensor, an edge represents a
contraction operation, and the weight is the contraction cost defined as the number of multiplications.
Starting with G1 = G, a contraction ordering path P = (e1, . . . , eN−1) will generate a sequence of
graphs (G1, . . .GN−1,GN), where Gt with Et is the t-th tensor network, GN has only one tensor, and
et ∈ Et, t = 1, . . . , N − 1. The goal is to find a contraction ordering path P with minimum cost.

27

Under review as a conference paper at ICLR 2024

1

32

4

s

k
i

j

m

1

2

34
s

k

i

12

34

s 1234

j
i
j

G1 G2 G3 G4

Figure 15: An example of TNCO.

F.11.1 ILP FORMULATION

The ILP formulation of TNCO is

P ∗(G) = argmin
P

N−1∑
t=1

Wt(et),

s.t. P = (e1, . . . , eN−1), t = 1, ..., N − 1,

(37)

where Wt(et) is defined as the number of multiplications for the tensor contraction along edge
et. Fig. 15 shows a TNCO example with corresponding contacted graphs, where a red solid line
denotes a contraction of two nodes. Graph G1 has V1 = (1, 2, 3, 4), E1 = (k, j,m, i, s),W =
{K,J,M, I, S}. Assuming that the first contraction operation is on index m in G1, tensors 3 and
4 are contracted into tensor 34 at a computation cost of IJMS multiplications. Then, the graph
is updated to G2 with V2 = (1, 2, 34), E2 = (k, ij, s),W = {K, IJ, S}. Assuming the second
contraction operation is on index k in G2, tensor 1 and 2 are contracted into tensor 12 at a computation
cost of SKIJ multiplications. The updated graph G3 has V3 = (12, 34), E3 = (sij),W = {sij}.
Finally, tensors 12 and 34 are contracted into a real number using SIJ multiplications. The total
number of multiplications is IJMS + SKIJ + SIJ .

F.11.2 QUBO FORMULATION

The QUBO formulation of TNCO problem uses N(N − 1) spins xu,j , where u denotes the tensor
and j denotes its order in the TNCO path. We use J i

u,v to denote the cost introduced by the tensor
contraction between u and v for the i-th order, i.e., the number of multiplications. The energy of the
original TNCO problem has three terms. The first term requires there are exactly two tensors selected
at order j along a path. The second term measures the contraction cost at order j. These are encoded
in the following Hamiltonian:

f(x) =

N−1∑
i=1

{
(2−

N−i∑
u=1

xu,i)
2 +

N∑
u=1

N∑
v=1

J i
u,vxu,ixv,i

}
. (38)

As shown in the right graph in Fig. 16, a red solid line denotes the contraction of two nodes, and
the Hamiltonian is f(x) = (2− x1,1 − x2,1 − x3,1 − x4,1)

2 + (2− x1,2 − x2,2 − x3,2)
2 + (2−

x1,3 −x2,3)
2 +W1(1, 4)x1,1x4,1 +W1(1, 2)x1,1x2,1 +W1(2, 3)x2,1x3,1 +W1(2, 4)x2,1x4,1 +

W1(3, 4)x3,1x4,1+W2(1, 3)x1,2x3,2+W2(1, 2)x1,2x2,2+W2(2, 3)x2,2x3,2+W3(1, 2)x1,3x2,3.

F.11.3 EXAMPLE

Pattern I In left part of Fig. 17, the initial state is empty. Then we select the edge (3, 4) and add it to
the state, thus the new state is [(3, 4)]. The reward is 48.

28

Under review as a conference paper at ICLR 2024

4

1
order

2 3

te
n

so
r

1

2

3

Figure 16: QUBO formulation of TNCO.

s=[] s=[(3,4)]

Pattern I

a = [(3,4)]
r = 48

s=[0,0,1,1]
f(s) = 48

s=[2,2,1,1]
f(s) = 64

Pattern II

1

3

4

2

4

3

2

1

8

1

342

4 2

1

8

1

342

4

3

2

1

8

12

34

2
1 8

Figure 17: Two patterns for TNCO.

Pattern II In right right of Fig. 17, node 3 and node 4 are with the order 1, thus the current state is [0,
0, 1, 1] and the objective value is 48. Then node 1 and node 2 are with the order 2, thus the new state
is [2, 2, 1, 1], and the objective value is 64.

F.12 VRP

There some goods in a depot denoted by point 0, given a set of N other points N = {1, 2, . . . , N},
referred as customers. Each customer i has a demand qi ≥ 0. There are a set of vehicles K =
{1, 2, . . . ,K} with the same capacity Q > 0. We define q0 = 0. Design each route for each vehicle
so that each vehicle starts from the depot and finally return to the depot after visiting customers, and
each customer is visited by exactly one vehicle.

29

Under review as a conference paper at ICLR 2024

F.12.1 ILP FORMULATION

We introduce binary variables xi,j ((i, j) ∈ E) indicating how often a vehicle directly moves from i
to j. The ILP formulation of VRP is

min
∑

(i,j)∈E

Wijxij , (39)

s.t.
∑

j∈δ+(i)

xij = 1, i ∈ N ,

∑
i∈δ−(j)

xij = 1, j ∈ N ,

∑
j∈δ+(0)

x0j = K,

∑
(i,j)∈δ+(S)

xij ≥ r(S),S ⊆ N ,S ≠ ∅,

xij ∈ {0, 1},∀(i, j) ∈ E ,
where r(S) is the minimum number of vehicle routes needed to serve S . The first constraint indicates
that each customer has one successor. The second constraint indicates that each customer has one
predecessor. The third constraint means that K routes are constructed. The fourth constraint is serve
at the capacity constraints and the subtour elimination constraints.

F.12.2 QUBO FORMULATION

The QUBO formulation of VRP is

min
x

f =
∑

(i,j)∈E

Wijxij +B
∑
i∈N

 ∑
j∈δ+(i)

xij − 1

2

+B
∑
j∈N

 ∑
i∈δ−(j)

xij − 1

2

+B

 ∑
j∈δ+(0)

x0j −K

2

−B
∑

S⊆N ,S̸=∅

sgn

 ∑
(i,j)∈δ+(S)

xij − r(S)

 , (40)

where sgn(z) is a sign function with 1 if z >= 0 and 0 otherwise, and B is a large positive constant
to ensure the constraints are satisfied.

F.12.3 EXAMPLE

s=[] s=[(0,1),(1,0)]

Pattern I

a = [(1,1)]
r = 2

s=[(0,2),(2,1),(1,0),
(0,3),(3,4),(4,0)]

f(s) = 12

Pattern II

1

3

4

2

4

3

4

3

0
1 1

1 1

1

3

4

2

4

3

4

3

0
1 1

1 1

1

3

4

2

4

3

4

3

0
1 1

1 1

1

3

4

2

4

3

4

3

0
1 1

1 1

s=[(0,1),(1,4),(4,0),
(0,2),(2,3),(3,0)]

f(s) = 10

:depot

: customer

:depot

: customer

Figure 18: Two patterns for VRP.

In Fig. 18, the depot is denoted by a square, and a customer is denoted by a circle.

Pattern I In left part of Fig. 18, the initial state is empty. Then we select node 1 for vehicle 1, i.e.,
the action is (1, 1), and add it to the state, and the new state is [(0,1),(1,0)], and the reward is 2.

30

Under review as a conference paper at ICLR 2024

Pattern II We assume the path for vehicle 1 is denoted by the green line, and the path for vehicle 2 is
denoted by the blue line. In right part of Fig. 18, the current state is [(0,2),(2,1),(1,0), (0,3),(3,4),(4,0)]
since the path for vehicle 1 is 0 =⇒ 2 =⇒ 1 =⇒ 0, and the path for vehicle 2 is 0 =⇒ 3 =⇒ 4 =⇒ 0,
and the objective value is 12. The new state is [(0,1),(1,4),(4,0),(0,2),(2,3),(3,0),] since the path
for vehicle 1 is 0 =⇒ 1 =⇒ 4 =⇒ 0 and the path for vehicle 2 is 0 =⇒ 2 =⇒ 3 =⇒ 0, and the
objective value is 10.

31

