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ABSTRACT
Computer vision models based on deep neural networks are proven
to be vulnerable to adversarial attacks. Robustness distillation, as a
countermeasure, takes both robustness challenges and efficiency
challenges of edge models into consideration. However, most ex-
isting robustness distillations are data-driven, which can hardly
be deployed in data-privacy scenarios. Also, the trade-off between
robustness and accuracy tends to transfer from the teacher to the
student, and there has been no discussion on mitigating this trade-
off in the data-free scenario yet. In this paper, we propose a Data-
free Experts-guided Robustness Distillation (DERD) to extend ro-
bustness distillation to the data-free paradigm, which offers three
advantages: (1) Dual-level adversarial learning strategy achieves
robustness distillation without real data. (2) Expert-guided distilla-
tion strategy brings a better trade-off to the student model. (3) A
novel stochastic gradient aggregation module reconciles the task
conflicts of the multi-teacher from a consistency perspective. Ex-
tensive experiments demonstrate that the proposed DERD can even
achieve comparable results to data-driven methods.

CCS CONCEPTS
• Computing methodologies → Computer vision representations.

KEYWORDS
Data-free, Adversarial Robustness, Knowledge Distillation

1 INTRODUCTION
Computer vision (CV) systems relying on deep neural networks
(DNNs) demonstrate outstanding performance across various tasks,
including image classification [22], object detection [33], and per-
son ReID [41, 46, 51]. However, recent studies indicate that DNNs
are vulnerable to adversarial attacks, which involve the addition of
carefully hand-crafted perturbations to the input. These perturba-
tions lead to the complete deception of DNNs, resulting in incorrect
decisions [16, 27, 35]. This vulnerability presents challenges to the
reliable deployment of DNN-based systems.

As countermeasures, various adversarial defense mechanisms
have been proposed [23, 32, 39, 50]. Adversarial Training (AT) [16,
20, 27] is one of the most effective defense strategies. By integrat-
ing adversarial examples into the training process dynamically,
the model learns robust representations through a min-max game
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Figure 1: Illustration of data-free robustness distillation. In
data-driven scenarios, the student model can align with the
teacher’s mapping preference by utilizing real adversarial
examples. However, in data-privacy scenarios, accessing real
natural samples is often impractical and thus it is impossible
to obtain real adversarial examples crafted from benign data.
Thus, the pseudo data is required.

to counter potential attacks. However, the effectiveness of AT for
lightweight models is hindered due to their limited capacity and
representation ability. Moreover, the deployment of large-scale
adversarially trained models in practical applications is often chal-
lenging due to requirements for timeliness and memory. To address
these challenges, robustness distillation [14, 52, 53] has been in-
troduced. This approach tackles both robustness and efficiency
concerns by employing a larger robust model (teacher model) to
guide the robustness training of a smaller model (student model).

However, most existing robustness distillation techniques are
data-driven [12] methods, which may pose challenges in practical
deployment scenarios where data privacy protection and trans-
mission efficiency are crucial. Firstly, these methods often assume
continuous access to the real training data throughout adversarial
training and robust distillation processes. However, some sensitive
and private data (e.g., facial data, pedestrian data, and patients’ med-
ical records) may become inaccessible once the model is published
to the public. Secondly, some approaches rely on access to proxy
or auxiliary data beyond the real data [3, 11]. Unfortunately, these
methods not only require additional training data, but also suffer
from performance degradation when the distribution of the proxy
data differs from that of the original data. In summary, existing
robustness distillation methods still face challenges for data privacy.

The analyses above emphasize the crucial need to extend ro-
bustness distillation to scenarios where real data is unavailable.
Data-free Knowledge Distillation [5, 12, 13, 25, 28, 42] offers valu-
able insights that, the inherent knowledge of a teacher model can be
effectively transferred to a student model by leveraging artificially
constructed pseudo data. In this approach, the teacher model guides
the generation of pseudo data (no matter explicit or implicit), elimi-
nating the necessity for real data. Similarly, the robust knowledge of

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: An intuitive description of the preference (bias) of
natural and adversarial samples. Ideally, both the natural and
robust teachers can correctly classify natural data. However,
adversarial data, crafted to deceive models, is typically only
correctly classified by the robust teacher. This contrast in-
spires the creation of pseudo adversarial data, which should
only be correctly classified by the robust teacher while lead-
ing to misclassification of the natural teacher, effectively
capturing the nuanced preference (bias) of the two models.

a robust teacher model can be transferred to a student model using
the ‘generation-distillation’ paradigm, as illustrated in Figure 1.

To our best knowledge, DFARD [37] is the pioneering and only
work addressing the data-free robustness distillation task. However,
it proposed only several trivial tricks without fully considering
the unique challenges inherent in this task. Firstly, existing data-
free distillation methods, including DFARD, primarily focus on
mining trivial discriminative knowledge (i.e., nature knowledge)
from the teacher, rather than extracting the robustness knowledge
in an adversarial min-max game. Generating adversarial samples is
rather difficult in the absence of authentic benign samples. Secondly,
the common trade-off between robustness and accuracy [45] may
be inadvertently transferred from the teacher to the student during
robustness distillation.While somemethods attempt tomitigate this
trade-off [45, 49], none of them addresses it in data-free scenario.
Optimizing the trade-off in data-privacy scenario demands that
defenders to run out of the dependency on real data and find another
way out move beyond reliance on real data and explore alternative
solutions, such as leveraging gradients. DFARD lacks a min-max
process similar to data-driven robustness distillation, and also fails
to address the sub-optimal solution resulting from the trade-off.

In this paper, we propose data-free experts-guided robustness dis-
tillation (DERD) to address the aforementioned challenges. Firstly,
we propose a 2-stage distillation framework. In stage-I, the student
model learns natural knowledge from a natural teacher, serving as a
warm-up phase, wihch provides a solid pre-training for subsequent
robust learning processes [34]. In stage-II, we craft pseudo adver-
sarial examples by maximizing the output discrepancy between
the natural teacher and the adversarial-defended robust teacher.
The fundamental concept of stage-II is illustrated in Fig. 2, where
the pseudo data is engineered to deceive the nature teacher while
simultaneously maximizing the output descrepancy between the
nature and robust teachers. Essentially, this stage forms a dual-level
adversarial learning mechanism, involving (1) the adversarial mech-
anism between teachers and generators, and (2) the self-adversarial
mechanism between the natural and robust teachers. Secondly, to
mitigate the trade-off between accuracy and robustness, we em-
ploy a homogenized expert-guiding strategy, where both natural

knowledge and robust knowledge are distilled from the natural
teacher and robust teacher respectively, using the same surrogate
data. Lastly, we introduce a stochastic gradient aggregation (SGA)
module to harmonize the gradient of both natural and robust dis-
tillation tasks. This module optimizes the ‘robustness-accuracy’
trade-off by ensuring consistency from a gradient perspective.

Our main contributions can be summarized as follows:
(1) We propose a novel data-free robustness distillation method.

Comparing to the only existing solution, we design a tailored 2-
stage framework aimed at extracting robust knowledge through a
min-max game, similar to data-driven defense strategies.

(2) To balance the inherent trade-off between robustness and
accuracy in data-free manner, we introduce an expert-guiding strat-
egy and employ the SGA regularizer to reconcile this optimization
conflict from both sample level and gradient level.

(3) Our approach demonstrates better performance on main-
stream evaluation datasets compared to the only one previous
data-free robustness distillation method. Furthermore, it is also
comparable to the data-driven distillation methods.

2 RELATEDWORKS
2.1 Knowledge Distillation
Knowledge distillation is a technique aimed to transfer knowledge
from a large model to a more efficient and smaller model. It can
be traced back to decision trees, where a decision tree is trained
to mimic the output of multiple decision trees [1]. Hinton 𝑒𝑡 𝑎𝑙 .
extended this idea to neural networks and termed it as ‘knowledge
distillation’ [18]. In this approach, a compact student model learns
the mapping relationship from a large, high-performance teacher
model. Over time, the introduction of various variants and training
techniques [30] has enabledmodel compression through knowledge
distillation in many fields [6, 47].

The assumption of ‘data availability’ in vanilla knowledge distil-
lation overlooks the more practical scenario of ‘data unavailability.’
Recent research has begun to address this gap by focusing on data-
free knowledge distillation methods, which is promising and draws
lots of attention. For instance, Lopes 𝑒𝑡 𝑎𝑙 . [26] synthesize inputs
based on pre-stored auxiliary layer-wise statistics (meta-data) of
the teacher model. Chen 𝑒𝑡 𝑎𝑙 . [26] train a generator for image gen-
eration while treating the teacher model as a fixed discriminator.
ADI [42] utilizes batch normalization statistics (BNS) from a pre-
trained teacher to optimize input noise for generating high-quality
images. CMI [13] leverages local and global contrast of samples to
optimize the diversity of the generator. ZSKT [28] employs adver-
sarial distillation, transferring knowledge from teacher to student
using KL divergence and spatial attention, while DFAD [12] solely
utilizes MAE loss to perform the min-max process between teacher
and student models for better alignment. However, these methods
aim to extract benign discriminative knowledge, and directly incor-
porating it into robustness distillation won’t be the most effective
approach.

2.2 Adversarial Attack & Defense
Adversarial attacks aim to deceive the target model by introduc-
ing minor perturbations to the inputs. These attacks are catego-
rized based on the level of access the attacker has to the target
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model,resulting in two main categories: white-box and black-box
attacks. In white-box attacks, the attacker has complete access to
the target model, including gradients and parameters. Mainstream
white-box attack methods include gradient-based approaches [8,
16, 21, 27], classifier-based methods [29], and optimization-based
techniques [4]. On the other hand, black-box attacks assume limited
prior information about the target model. These attacks are fur-
ther classified into score-based attacks, decision-based attacks, and
transfer-based attacks. Decision-based attacks operate under the
constraint that the attacker can only access the one-hot hard labels
from the target model. For instance, the boundary attack [2]. Score-
based attacks, such as ZOO [9], enable the attacker to obtain proba-
bility scores of the input queries, offering more detailed information
beyond the final decision. Transfer-based attacks [9, 24, 40, 48, 54]
involve building a proxy model of the target model, commonly used
to evaluate the black-box adversarial robustness of DNNs.

Adversarial defenses aim to maintain the robustness of DNNs
against adversarial attack. Early heuristic defense methods, while
reporting promising results, have been found to rely on ‘obfus-
cated gradients’, rendering their unreliable robustness. Adversarial
training (AT) [16, 20, 27] is considered one of the most effective
defenses. However, the effectiveness of AT for small models is con-
strained by their limited capacity. To address this, robustness distil-
lation [14, 52, 53] is proposed, aiming to transfer robustness from
a large, robust model to a more efficient, smaller model. ARD [14]
and IAD [52] have demonstrated that robustness distillation can
yield a student network with greater robustness than training from
scratch. RSLAD [53] introduces the concept of robust soft labels
(RSL) provided by the robust teacher, which can offer an effective
robust representation for the student. Additionally, MTARD [49]
proposes a dual-teacher structure to optimize the trade-off between
accuracy and robustness in robustness distillation. Furthermore,
Trades [45] and MART [38] can also be considered examples of
robust self-distillation, as they leverage the model’s outputs on
natural samples to guide its outputs on adversarial samples.

However, there have been few works to address robustness dis-
tillation in scenarios where real data is unavailable. To our best
knowledge, only two works have explored data-free robustness
distillation: DFHL-RS [43] and DFARD [37]. However, DFHL-RS
primarily focuses on model stealing attacks rather than robust dis-
tillation and operates in a completely black-box setting. On the
other hand, DFARD only introduces some basic trivial training
techniques for all distillation tasks, without considering how to
efficiently utilize the robust knowledge inherent in robust teachers.
In contrast, our approach achieves superior data-free adversarial
robustness through a tailored framework.

3 METHODOLOGY
3.1 Preliminaries
Adversarial attack (untargeted). Given a target model 𝑓𝑤 param-
eterized by𝑤 , the objective of the attacker can be formulated as a
conditional optimization problem:

argmax
𝑥 ′

L(𝑓𝑤 (𝑥 ′,𝑤), 𝑦), s.t.
𝑥 ′ − 𝑥

𝑝
≤ 𝜀, (1)

where 𝑥 ′ denotes the adversarial examples, L(·) represents the
classification loss (e.g., cross entropy loss), and 𝜀 is the upper bound

of the perturbation under the 𝑙𝑝 -norm. The goal of the attacker is to
deceive the target model with visually imperceptible perturbations.

Adversarial defense aims to preserve the discriminability ca-
pability of 𝑓𝑤 under adversarial attacks, i.e., achieving adversarial
robustness. The objective of defense can be formalized as:

argmin
𝑤

L(𝑓𝑤 (𝑥 ′,𝑤), 𝑦) . (2)

Robustness distillation addresses both robustness and effi-
ciency challenges. Given a student model 𝑆𝜃𝑆 (·) (abbreviated as
𝑆 (·)) and a teacher model𝑇𝜃𝑇 ( ·) (abbreviated as𝑇 (·)), the main goal
of robustness distillation is to transfer the robustness of the teacher
model against adversarial examples to a smaller student model:

argmin
𝜃𝑆

L(𝑆 (𝑥, 𝜃𝑆 ), 𝑦) + D(𝑆 (𝑥 ′),𝑇 (𝑥 ′)), (3)

whereD(·) denotes the discrepancy in output distribution between
the teacher and student models, typically measured using metrics
like KL divergence.

Data-free robustness distillation refers to scenarios that the
real data 𝑥 is inaccessible, making the real adversarial examples 𝑥 ′
based on 𝑥 also unavailable. Consequently, the defender must gen-
erate substitute data and align the mapping relationship between
the teacher and student based on these pseudo data, presenting
additional challenges. This process can be formalized as:

argmin
𝜃𝑆

D(𝑆 (𝐺 (𝑧)),𝑇 (𝐺 (𝑧))), (4)

where𝐺 (·) represents the generator, which can be either explicit
forms (such as generative networks [15]) or implicit forms (such
as model inversion [42]). Here, 𝑧 denotes the random input to the
generator, typically sampled from a Gaussian distribution.

Our proposed Data-free Expert-guided Robustness Distillation
(DERD) is a dual-stage model based on an explicit generator which
also incorporates a regularizer, SGA, to reconcile the trade off be-
tween accuracy (Acc.) and robustness (Rob.), shown in Fig. 3. The
in stage-I and stage-II (including the regularizer) will be introduced
in Sec 3.2 and Sec 3.3 respectively.

3.2 Stage-I: Warm-up
In stage-I, we initialize the student model 𝑆 (·) and generator 𝐺 (·)
using a natural teacher 𝑇𝑛𝑎𝑡 (·). To clarity, the objective function in
the stage-I primarily consists of the loss function of the generator
L𝐺
𝑠𝑡𝑎𝑔𝑒−𝐼 and the loss function of the student model L𝑆

𝑠𝑡𝑎𝑔𝑒−𝐼 :

L𝑠𝑡𝑎𝑔𝑒−𝐼 = L𝐺
𝑠𝑡𝑎𝑔𝑒−𝐼 + L𝑆

𝑠𝑡𝑎𝑔𝑒−𝐼 . (5)

The optimization objective of 𝐺 (·) is to generate substitute data
for real data, facilitating the distillation of natural knowledge to
the student. By pairing a pre-trained teacher with a generative
network𝐺 , a GAN-like framework for adversarial learning [5] is
formed, enabling the generator to produce pseudo-natural data,
where the teacher acts as the discriminator 𝐷 . However, there are
key differences from a vanilla GAN: (1) The teacher model is frozen
as a supervisor 𝐷 . (2) The role of the teacher model is no longer
to determine the authenticity of images but rather to classify the
data generated by 𝐺 into different conceptual sets, transitioning
from a binary classification task to a multi-class classification task.



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Tnat 
(Fixed)

Pseudo
Adv. Data

Random Noise
z

Self Adv.
(SA)

Trob
(Fixed) 

Stage-Ⅱ:
Acc. & Rob.
Distillaltion

S

External
Adv.

SGA

G
Pseudo

Nat. DataRandom Noise
z

Stage-I:
Warm-up

Tnat 
(Fixed)

External
Adv. S

Distill for Acc.

Distil
l fo

r R
ob.

Init

Query Discrimination Acc of TNat Acc of TRobFeedforward Momentum updating 

Distill for Acc.

G

Figure 3: Model details of our DERD. In stage-I, only 𝑇𝑛𝑎𝑡 is used to supervise the warm-up process of both 𝐺 and 𝑆 . In stage-II,
we introduce two key components: the self-adversary (SA) module based on the experts-guiding (EG) strategy and the stochastic
gradient aggregation (SGA) module. The external adversarial component consists of the generator and the teacher group (𝑇𝑛𝑎𝑡
and 𝑇𝑟𝑜𝑏 ), while the self-adversarial strategy only involves the teachers.

Essentially, the teacher model provides supervisory information
for training the generator 𝐺 .

Based on the above analysis, the primary loss of𝐺 in amini-batch
can be formalized as:

Loh =
1
𝑛

𝑛∑︁
𝑖

Lcross
(
𝑇𝑛𝑎𝑡 (𝐺 (𝑧𝑖 )), 𝑦𝑖

)
, (6)

where L𝑜ℎ represents the one-hot classification loss, 𝑧𝑖 denotes a
stochastic input, 𝑦𝑖 represents a pseudo target label, and 𝑛 is the
number of pseudo samples in a minibatch. This loss function aims
to train𝐺 (·) to generate pseudo data from random inputs, ensuring
that the pseudo data 𝐺 (𝑧𝑖 ) is correctly classified by 𝑇𝑛𝑎𝑡 (i.e., the
discriminator) with the corresponding pseudo target labels 𝑦𝑖 .

In addition to direct discriminative supervision, a common as-
sumption is that if the generated data are discriminative, their
patterns should be significantly captured by the filters in the net-
work, leading to higher activation values in the intermediate layers.
Consequently, a prior loss based on feature activation values is:

L𝑎 = − 1
𝑛

𝑛∑︁
𝑖

𝐹𝑒𝑎𝑡𝑛𝑎𝑡 (𝐺 (𝑧𝑖 ))

1 , (7)

where 𝐹𝑒𝑎𝑡𝑛𝑎𝑡 (𝐺 (𝑧𝑖 )) denotes the hidden layer features before the
classifier of 𝑇𝑛𝑎𝑡 , and the objective is for 𝐺 (·) to generate pseudo
data with rich features rather than sparse trivial solutions.

Besides, we aim to fully leverage the statistical prior within the
teacher model, as it is trained on real data. To achieve this, we
propose minimizing the discrepancy between the feature statistics
of real data (indirectly encoded in the batch normalization layers
of the teacher model) and pseudo data:

LBN (𝐺 (𝑧)) =
∑︁
𝑙

∥𝜇𝑙 (𝐺 (𝑧)) − E (𝜇𝑙 (𝑥) | X)∥2 +∑︁
𝑙

𝜎2𝑙 (𝐺 (𝑧)) − E
(
𝜎2
𝑙
(𝑥) | X

)
2
,

(8)

where 𝜇𝑙 (·) and 𝜎𝑙 (·) represent the mean and variance of the input
data in the 𝑙𝑡ℎ layer, respectively, and X represents the distribution
of real data, where 𝑥 ∈ X. This technique was initially employed in
data-free distillation using model inversion [42], but its application
in generator-based approaches has been scarcely discussed.

Moreover, to eliminate the model’s bias for certain categories, it’s
typically desirable for the target label distribution of the conceptual
set to be balanced. This implies that the sample quantity and occur-
rence probability for each category should be consistent. Given a set
of output vectors for the pseudo data {𝑇𝑛𝑎𝑡 (𝐺 (𝑧1)),𝑇𝑛𝑎𝑡 (𝐺 (𝑧2)), · · · ,
𝑇𝑛𝑎𝑡 (𝐺 (𝑧𝑛))}, the count for a specific class 𝑐 is y𝑐

𝑇
=

∑𝑛
𝑖=1 𝛿 (𝑇𝑛𝑎𝑡 (𝐺 (𝑧𝑖 ))

= 𝑐). Here, 𝛿 (·) is an indicator function:

𝛿 (𝐴) =
{

1, if 𝐴 is true
0, if 𝐴 is false. (9)

Then, the information entropy loss of 𝐺 (·) can be expressed as:

L𝑖𝑒 = −Hinfo

(
1
𝑛

∑︁
y𝑐𝑇

)
, (10)

where Hinfo (p) = − 1
𝑘

∑
𝑖 𝑝𝑖 log (𝑝𝑖 ). This loss aims to maximize

the entropy of the distribution of the generated classes. When the
generator produces each class with equal probability, Eq. 10 is
minimized.

Therefore, the loss function for the generator in the stage-I can
be summarized as:

L𝐺
𝑠𝑡𝑎𝑔𝑒1 = 𝜆𝑜ℎL𝑜ℎ + 𝜆𝑎L𝑎 + 𝜆BNLBN + 𝜆𝑖𝑒L𝑖𝑒 . (11)

Based on the pseudo data 𝐺 (𝑧), the optimization goal of the
student is to mimic the mapping relationship of the teacher model:

L𝑆
𝑠𝑡𝑎𝑔𝑒−𝐼 =

1
𝑛

𝑛∑︁
𝑖

KL
(
𝑆 (𝐺 (𝑧𝑖 )),𝑇𝑛𝑎𝑡 (𝐺 (𝑧𝑖 ))

)
, (12)

where KL is the KL-divergence. After stage-I, the student 𝑆 (·)
initially obtains the natural knowledge, which can be used as the
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initialization for stage-II. Additionally,𝐺 (·) acquires the ability to
generate pseudo natural data. As will be discussed below, pseudo
data for adversarial samples can be obtained based on 𝐺 (𝑧).

3.3 Stage-II: Rob & Acc Distillation
In stage-II, we employ the nature teacher 𝑇𝑛𝑎𝑡 and robust teacher
𝑇𝑟𝑜𝑏 for self-adversarial learning and expert strategy to distill natu-
ral and robust knowledge to the student model.

• Self-adversary (SA). The primary task of stage-II is to find
substitute data for adversarial samples to explore the robustness of
the robust teacher 𝑇𝑟𝑜𝑏 . As illustrated in Fig. 2, a natural character-
istic of adversarial samples is to maximize the discrepancy between
the robust and natural teachers. Utilizing 𝐺 (𝑧) as substitute data
for natural data, we construct discrepancy data 𝑥𝑑 based on 𝐺 (𝑧)
as the pseudo adversarial data, to maximize the output discrepancy
between 𝑇𝑛𝑎𝑡 and 𝑇𝑟𝑜𝑏 in a self-adversary manner:

𝑥𝑡
𝑑
= 𝐺 (𝑧), if 𝑡 = 0, (13)

𝑥𝑡+1
𝑑

= (𝑥𝑡
𝑑
+ 𝛼 · sgn

(
∇𝑥𝑡

𝑑
𝐷 (𝑇𝑛𝑎𝑡 (𝑥𝑡𝑑 ),𝑇𝑟𝑜𝑏 (𝑥

𝑡
𝑑
)
)
), if 𝑡 > 0, (14)

where 𝑡 represents the iteration step. In data-free distillation, L1 loss
is considered a bettermetric formeasuring discrepancy compared to
KL divergence [12, 36]. This preference arises because the gradient
of KL divergence tends to be smaller than that of L1 loss, making it
more susceptible to gradient vanishing. Therefore, we choose the
L1 norm to quantify the output difference between 𝑇𝑛𝑎𝑡 and 𝑇𝑟𝑜𝑏 :

𝐷 (𝑇𝑛𝑎𝑡 (𝑥𝑡𝑑 ),𝑇𝑟𝑜𝑏 (𝑥
𝑡
𝑑
)) = E𝑧∼𝑝𝑧 (𝑧 ) ∥𝑇𝑛𝑎𝑡 (𝑥

𝑡
𝑑
) −𝑇𝑟𝑜𝑏 (𝑥𝑡𝑑 )∥1 . (15)

Clearly, 𝑥𝑑 is obtained through an iterative process. Note that
the optimization process is not bound by the norm constraint, as
the pseudo data do not require visual similarity. The discrepancy
metric enables the pseudo-data to search for samples in the input
space that can deceive the natural teacher. However, solely adopting
this objective may be suboptimal, as the pseudo data may tend to
deceive the robust model rather than the natural model to maximize
𝐷 (𝑇𝑛𝑎𝑡 ,𝑇𝑟𝑜𝑏 ). Hence, we introduce an entropy constraint in the
optimization objective to ensure that the pseudo data can indeed
deceive the natural teacher while maximizing the discrepancy:

𝑥𝑡+1
𝑑

= 𝑥𝑡
𝑑
+ 𝛼 · sgn

(
∇
𝑥𝑡
𝑑
(𝐷 (𝑇𝑛𝑎𝑡 (𝑥𝑡𝑑 ),𝑇𝑟𝑜𝑏 (𝑥

𝑡
𝑑
) ) + 𝜆𝑑L𝑐𝑒 (𝑥𝑡𝑑 ,𝑇𝑛𝑎𝑡 (𝑥

𝑡
𝑑
) ) )

)
,

if 𝑡 > 0.
(16)

• Expert-guiding strategy (EG). Using the discrepancy data
𝑥𝑑 , we employ the expert-guiding strategy to simultaneously distill
both natural knowledge and robust knowledge into 𝑆 . InMTARD [49],
where the data is available, natural knowledge is distilled using
natural data, while robust knowledge is distilled using adversarial
examples. However, we find that utilizing 𝑥𝑑 for the nature teacher
can also enhance the distillation of natural knowledge. This may be
because 𝑥𝑑 can serve as challenging samples for the natural teacher,
further leveraging the natural knowledge. The expert distillation
strategy for the student model can be formalized as:

L𝐷𝑖𝑠 = KL(𝑇𝑛𝑎𝑡 (𝑥𝑑 ), 𝑆 (𝑥𝑑 )) + 𝜆𝑟𝑜𝑏KL(𝑇𝑟𝑜𝑏 (𝑥𝑑 ), 𝑆 (𝑥𝑑 )). (17)

• Gradient aggregation. Intuitively, the loss function of the ex-
pert strategy involves two optimization tasks: distillation of natural
knowledge and robust knowledge. However, directly optimizing

these two tasks with the gradient descent algorithm might be unco-
ordinated, as the gradients of the two losses may not align well. The
intuitive representation, as shown in Fig. 4, is that two optimization
directions forming an obtuse angle could lead to a suboptimal aggre-
gated direction. We verify this hypothesis in Fig. 5. In CIFAR10 and
CIFAR100, the gradients of the robustness and natural distillations
consistently form an obtuse angle, resulting in a sub-optimal joint
optimization of the two tasks.

A similar issue has also been raised in unsupervised domain
adaptation (UDA), where the domain adaptation loss and the classi-
fication loss are often have uncoordinated aggregation directions.
To address this, a gradient aggregation (GA) strategy [19] has been
proposed to harmonize the two tasks. GA can be formalized as:

𝑔 =

(
1 − 𝛿

(
𝑔𝑇1 𝑔2 < 0

) 𝑔𝑇2 𝑔1
∥𝑔1∥2

)
𝑔1 +

(
1 − 𝛿

(
𝑔𝑇1 𝑔2 < 0

) 𝑔𝑇1 𝑔2
∥𝑔2∥2

)
𝑔2,

(18)
where 𝑔1 and 𝑔2 represent the gradient of the two losses, and 𝛿 (·)
is the indicator as defined in Eq. (9). For convenience, we have:

𝜏1 = 1 − 𝛿
(
𝑔𝑇1 𝑔2 < 0

)
𝑔𝑇2 𝑔1

∥𝑔1 ∥2
,

𝜏2 = 1 − 𝛿
(
𝑔𝑇1 𝑔2 < 0

)
𝑔𝑇1 𝑔2

∥𝑔2 ∥2
.

(19)

Hence the aggregated gradient can be simplified as:

𝑔 = 𝜏1𝑔1 + 𝜏2𝑔2, (20)

and the GA loss can be simplified as:

�̃� =

∫
(𝜏1𝑔1 + 𝜏2𝑔2) 𝑑𝜃 = 𝜏1𝐿1 + 𝜏2𝐿2 . (21)

The gradient harmonization process described above can be in-
tuitively represented by Figs. 4 (a) and 4 (d). Gradient aggregation
(GA) does not intervene when the gradients of the two loss func-
tions form an acute angle. However, for two loss functions whose
gradients form an obtuse angle, GA calculates the orthogonal basis
for the two gradient directions respectively, and then employs this
orthogonal basis to achieve a more efficient gradient aggregation.

• Stochastic gradient aggregation (SGA). Based on the GA
module, we further propose a SGA strategy. Our objective is to in-
troduce minor perturbations to the two original gradients, thereby
exploring richer and more efficient aggregation directions and en-
hancing the model’s robustness to gradient augmentation. This
approach is based on a simple intuition: by augmenting at the
gradient level, we can implicitly achieve data-level augmentation,
thereby improving the richness and noise resistance of gradient
aggregation [51]. Adding subtle gradient perturbations to both can
be formalized as:

𝑔 = 𝜏1 (𝑔1 + 𝑟1) + 𝜏2 (𝑔2 + 𝑟2), (22)

where 𝑟1 and 𝑟2 are two minor stochastic gradient perturbations.
Integrating Eq. 22 with respect to 𝜃𝑆 results in a loss for SGA:

L𝑆𝐺𝐴 =

∫
(𝜏1 (𝑔1 + 𝑟1) + 𝜏2 (𝑔2 + 𝑟2)) 𝑑𝜃𝑆

= 𝜏1𝐿1 + 𝜏2𝐿2 + (𝜏1𝑟1 + 𝜏2𝑟2)𝜃𝑠
= 𝜏1𝐿1 + 𝜏2𝐿2 + (𝜏𝑟 )𝜃𝑠 ,

(23)
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(a) acute angle (b) SGA of acute angle (c) obtuse angle (d) GA of obtuse angle (e) SGA of obtuse angle

Figure 4: An explanation of gradient aggregation. When the gradients of two tasks form an acute angle (as shown in (a)), SGA
can be directly applied without the need for harmonization (as shown in (b)). However, when the gradients of the two tasks
form an obtuse angle (as shown in (c)), it become necessary to perform gradient harmonization through GA (as illustrated in
(d)), before aggregating the stochastic augmented gradients by SGA (as depicted in (e)).
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Figure 5: The conflict between the gradients of natural knowl-
edge distillation and robust knowledge distillation. Specifi-
cally, the gradients of natural knowledge and robust knowl-
edge consistently form obtuse angles, as evidenced by cosine
values less than 0. This conflict leads to suboptimal robust-
ness and accuracy concurrently.

where 𝜏 is a hyper-parameter controlling the gradient perturbation,
and 𝑟 is the stochastic perturbation composed of 𝑟1 and 𝑟2. There-
fore, the stochastic gradient aggregation can be realized through
such a simple regularizer. To maintain training stability, similar to
SGP [51], we introduce an L2 norm constraint to the regularizer:

L𝑆𝐺𝐴 = 𝜏1𝐿1 + 𝜏2𝐿2 + 𝜏 | |𝑟𝜃𝑠 | |2 . (24)

where 𝐿1 and 𝐿2 represents the original task, and the regularizer
can be simplified as:

L𝑆𝐺𝐴 = 𝜏 | |𝑟𝜃𝑠 | |2 . (25)

The regularizer can be considered as a stochastic extension form
of L2 regularization. On one hand, it allows the student model to
explore richer gradient aggregation directions. On the other hand, it
imposes the norm constraint of the student’s parameters, providing
regularization from the perspective of smoothness and sparsity.

• Overall loss stage-II. For 𝐺 (·), the loss functions in stage-
I and stage-II remain consistent (Eq. (10)), primarily generating
natural alternative data 𝐺 (𝑧) that is more distinguishable by 𝑇𝑛𝑎𝑡 .
𝑆 (·) learns both natural and robust knowledge simultaneously

from the teacher group through the 𝑥𝑑 based on𝐺 (𝑧), and the total
loss in stage-II can be formalized as:

L𝑆
𝑠𝑡𝑎𝑔𝑒−𝐼 𝐼 = L𝐷𝑖𝑠 + 𝜆𝑆𝐺𝐴L𝑆𝐺𝐴 . (26)

Table 1: Evaluation on the teacher models.

Datasets Teachers Backbone Attacks
Clean FGSM PGDS PGDT CW AA Ave

CIFAR10 𝑇𝑛𝑎𝑡 RN34 92.77 12.46 6.71 5.74 6.27 0.44 20.73
𝑇𝑟𝑜𝑏 RN34 70.89 69.34 56.78 56.80 58.42 42.14 59.06

CIFAR100 𝑇𝑛𝑎𝑡 RN50 70.63 6.49 4.75 5.12 5.92 3.69 16.09
𝑇𝑟𝑜𝑏 WRN3420 54.17 43.05 31.94 32.10 30.94 26.74 36.49

ImageNet100 𝑇𝑛𝑎𝑡 ViTs 89.49 52.10 6.15 7.32 2.54 0.00 26.26
𝑇𝑟𝑜𝑏 ViTs 78.44 66.79 50.01 53.68 66.17 55.62 61.78

4 EXPERIMENTS
4.1 Experiments Setup
Datasets and backbones.We evaluate our DERD on two CIFAR
datasets commonly used for adversarial attack and knowledge dis-
tillation, and also discuss DERD’s performance on a relatively larger
dataset ImgageNet100.

• CIFAR10. We employ ResNet34 [17] as the backbone for both
the natural and robust teachermodels, and ResNet18&MobileNet2 [31]
for the student model.

• CIFAR100. ResNet50, Wide-ResNet-3420 [44], and ResNet18 &
MobileNet2 are selected as the backbones for the natural teacher,
robust teacher, and student, respectively.

• ImageNet100. ViT-small [10] is chosen for the natural and
robust teachers, and ViT-tiny for the student.

Our backbone selection is based on previous works in robust
distillation [45, 53] and data-free distillation [5, 12, 42]. Addition-
ally, we consider specific factors for each dataset. Specifically, we
verify our model’s feasibility within a homogenous teacher group
(where the teachers share the same backbone) on CIFAR10, ascer-
tain its performance with a heterogeneous teacher group (where
the teachers own different backbones) on CIFAR100, and validate
its applicability on ViT-based models using ImageNet100.

Attacks.We assess the student’ performance against five com-
monly used thewhite-box attacks: FGSM [16], PGDS [27], PGDT [45],
CW [4], and AutoAttack [7]. For CIFAR10 and CIFAR100, we set the
𝐿∞ norm attack budget 𝜖 = 8/255, perturbation step size𝜂1 = 2/255,
number of iterations 𝐾 = 10, and batch size 𝑚 = 512. For Ima-
geNet100, We set 𝜖 = 0.03, 𝜂1 = 2/255, 𝐾 = 10, and 𝑚 = 128.
Additionally, besides white-box attacks, we also briefly evaluate
the student’s robustness against black-box attacks on CIFAR10,
including transfer-based and query-based black-box attacks.

Details.We employ the SGD optimizer with a momentum of 0.9
and weight decay of 5e-4 to train both the student and teacher mod-
els. The natural teacher and the robust teacher are trained over 2000
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Table 2: White-box robustness evaluation on ResNet18 for CIFAR10 and CIFAR100. The best achieved through data-free
methods are highlighted in bold. MSA denotes the Model-stealing-Attack, which has similar settings to DFARD. ‘−’ means the
PGDT is not evaluated by DFHL_RS.

Models CIFAR10 CIFAR100
Clean FGSM PGDS PGDT CW AA Ave Clean FGSM PGDS PGDT CW AA Ave

Nature 94.65 19.26 0.0 0.0 0.0 0.0 18.98 75.55 9.48 0.0 0.0 0.0 0.0 14.17

Data
Driven

SAT [27] 83.38 56.41 49.11 51.11 48.67 45.83 55.75 57.46 28.56 24.07 25.39 23.68 21.79 30.15
TRADES [45] 81.93 57.49 52.66 53.68 50.58 49.23 57.59 55.23 30.48 27.79 28.53 25.06 23.94 31.83
ARD [14] 83.93 59.31 52.05 54.50 51.22 49.19 58.36 60.64 33.41 29.16 30.30 27.85 25.65 34.50
IAD [52] 83.24 58.60 52.21 54.18 51.25 49.10 58.09 57.66 33.26 29.59 30.58 29.37 25.12 34.26

RSLAD [53] 83.38 60.01 54.24 55.94 53.30 51.49 59.72 57.74 34.20 31.08 31.90 28.34 26.70 34.99

Data
Free

DAFL[5] 54.98 27.04 24.75 25.87 22.90 22.25 29.63 41.67 21.42 20.13 20.81 17.96 17.16 23.19
DFAD [12] 57.58 31.54 29.68 30.65 26.94 26.47 33.81 37.57 18.95 17.53 18.14 15.06 14.57 20.30
ZSKT [28] 58.08 31.98 29.94 30.92 27.21 26.68 34.13 38.91 20.16 18.78 19.41 16.38 15.52 21.52
CMI [13] 53.28 25.78 23.14 23.97 21.03 20.38 27.92 45.04 22.78 21.02 21.90 17.90 16.97 24.26

DFARD [37] 66.44 38.53 35.94 37.15 32.79 32.14 40.49 46.33 24.56 22.94 23.59 20.12 19.19 26.12

MSA DFHL_RS [43] 77.86 44.94 40.07 - 40.64 39.51 48.60 51.94 23.68 20.02 19.88 20.91 19.30 25.95

DERD (Ours) 72.83 62.32 53.64 54.01 53.71 36.03 55.42 40.21 27.26 25.94 26.07 25.88 21.39 27.79

Table 3: White-box robustness evaluation on MobileNet2 for CIFAR10 and CIFAR100. The best results obtained through
data-free methods are highlighted in bold.

Models CIFAR10 CIFAR100
Clean FGSM PGDS PGDT CW AA Ave Clean FGSM PGDS PGDT CW AA Ave

Nature 92.95 14.47 0.0 0.0 0.0 0.0 17.90 74.58 7.19 0.0 0.0 0.0 0.0 13.62

Data
Driven

SAT [27] 83.38 56.41 49.11 51.11 48.67 45.83 55.75 56.85 31.95 28.33 29.5 26.85 24.71 33.03
TRADES [45] 81.93 57.49 52.66 53.68 50.45 49.23 57.57 56.20 31.37 29.21 29.83 25.06 24.16 32.63
ARD [14] 83.93 59.31 52.05 54.20 51.22 49.19 58.31 59.83 33.05 29.13 30.26 27.86 25.53 34.27
IAD [52] 83.24 58.60 52.21 54.18 51.25 49.10 58.09 56.14 32.81 29.81 30.73 27.99 25.74 33.87

RSLAD [53] 83.38 60.01 54.24 55.94 53.30 51.49 59.72 58.97 34.03 30.40 31.36 28.22 26.12 34.85

Data
Free

DAFL[5] 47.53 24.51 21.18 22.09 19.50 18.86 25.61 40.46 20.63 19.03 19.78 16.54 15.82 22.04
DFAD [12] 56.13 29.73 26.48 27.64 24.35 24.02 31.39 25.41 12.75 11.42 11.95 9.58 9.24 13.39
ZSKT [28] 57.02 30.29 27.07 28.25 24.89 24.40 31.98 26.16 12.34 11.36 11.78 9.69 9.16 13.41
CMI [13] 44.53 21.34 19.67 19.97 16.25 15.97 22.95 40.23 19.76 17.96 18.56 14.86 14.02 20.89

DFARD [37] 61.16 34.46 31.66 32.80 28.40 27.90 36.06 41.78 22.04 20.84 21.68 17.93 17.04 23.55

DERD (Ours) 64.28 60.91 47.52 48.04 50.31 34.88 50.99 32.12 24.61 24.89 24.96 25.01 18.13 24.95

epochs, with the learning rate reduced by a factor of 0.1 at epochs
800 and 1600. Madry’s AT [27] is used to train the robust teacher. For
the student models, stage-I includes 2000 epochs of natural training,
followed by stage-II, which consists of 100 epochs of robustness
training. The initial learning rates for CIFAR10 and CIFAR100 are
set to 0.01. For ImageNet100, we fine-tune pre-trained models on
ImageNet as both the nature teacher and robustness teacher, with
an initial fine-tuning learning rate of 0.0001. Table 1 present the
evaluation results for supplementary materials the teacher models.
Please refer to the suppMore details of the experiments

4.2 Experimental Results
White-box robustness. Table 2 and Table 3 present the experimen-
tal results of the white-box attacks on CIFAR10 and CIFAR100. We
report the results of both data-drivenmethods and the direct adapta-
tion of several existing data-free distillation methods to robustness

distillation. We also reported the results ofDFHL_RS [43] in Table 3,
considering that model robust stealing attack (MSA) can serve as
a special data-free robustness distillation. Note that DFHL_RS is
only evaluated on ResNet in its original experiments. The results of
existing methods are obtained from previous literature [37, 43, 53].
The results on ImageNet100 are moved to the supplementary for
sapce reasons. Intuitively, our DERD demonstrates significant supe-
riority compared to directly applying existing data-free distillation
methods to robustness distillation, and it is comparable to data-
driven robustness distillation methods. However, despite adopting
a teacher group-based expert strategy to optimize the trade-off,
the accuracy of the student on clean samples remains significantly
lower than that of data-driven methods. The conflict between ro-
bustness and accuracy is undoubtedly amplified in the absence of
real data. Nonetheless, our DERD brings reliable robustness to the
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Table 4: Black-box robustness on CIFAR10.

Methods ResNet-18 MobileNetV2
PGDS CW Square PGDS CW Square

SAT 60.84 60.52 54.27 60.46 59.83 53.94
TRADES 62.20 61.75 55.13 60.90 60.23 53.46
RSLAD 64.11 63.84 57.90 63.30 63.20 56.70

DERD (ours) 67.83 66.76 56.03 64.16 64.84 57.01

Table 5: Ablation analysis of our DERD on CIFAR10.

Modules Clean FGSM PGDS PGDT CW AA Ave.
+stage-I 91.87 22.24 11.54 12.01 10.41 6.79 25.79

+stage-II
+SA 70.14 52.13 38.24 39.68 37.99 28.62 44.64

+SA & EG 72.03 65.04 52.89 53.62 53.81 35.16 55.42
+EG & SA & SGA 72.83 67.39 53.64 54.04 53.01 36.03 56.29

student model without real data, and the trade-off can be mitigated
by the regularizer, as demonstrated in the ablation analysis later.

Black-box robstness. Following the RSLAD [53] setting, we
also conduct a brief evaluation of the black-box robustness of our
DERD on CIFAR10. We use ResNet50 to create adversarial sam-
ples of PGD and CW attacks for transfer-based attacks, and square
attack for query-based attacks. The attack budgets are consistent
with those used for white-box attacks. The experimental results are
presented in Table 4. Since there is a lack of black-box evaluation
for data-free robustness distillation, we compare DERDwith several
common data-driven adversarial training and robustness distilla-
tion methods. Notably, our DERD achieves comparable black-box
robustness, demonstrating the transferable robustness.

4.3 Ablation Study
Ablation of the modules. We conduct an ablation study to evalu-
ate the incremental effects each module in DERD on CIFAR10 with
ResNet-18 as the backbone. The results are summarized in Table 5.
The complete DERD includes stage-I and stage-II, while stage-II
includes modulus of EG, SA and SGA. Note that when SA strategy
works alone, DERD degenerates into training the student models
by using the discrepancy data 𝑥𝑑 and the sole robust teachers, like
Eq. 12, where𝑇𝑛𝑎𝑡 is replaced by𝑇𝑟𝑜𝑏 . Intuitively, stage-I can be con-
sidered as the pre-training process to obtain the natural knowledge.
The SA module effectively improves the robustness of the student
model. The EG and SGA strategy comprehensively enhance the
model’s robustness and accuracy by promoting gradient harmony
and augmentation. The results of the ablation analysis align with
our expectations for the modules and highlight the importance of
both SA strategy and EG / SGA module in improving the overall
performance of our DERD.

Without stage-I? Directly distilling robust knowledge without
stage-I yields suboptimal results in terms of both accuracy and
adversarial robustness. To verify this, we conduct verification ex-
periments on CIFAR10, and the results are shown in Table 6. The
results indicate that stage-I brings a significant increment to DERD.
The suboptimal robustness without stage-I may stem from twomain
reasons. First, generating pseudo adversarial data relies on pseudo
nature data (refer to Eq. 13). The process of generating pseudo data

Table 6: Ablation analysis of stage-I on CIFAR10. Without
stage-I, DERD directly optimizes the randomly initialized
generator and student.

Clean FGSM PGDS PGDT CW AA Ave

w/o stage-I 30.12 41.67 33.26 33.11 32.87 24.57 32.60
DERD (ours) 72.83 67.39 53.64 54.01 53.71 36.03 56.29

for adversarial samples requires that the generator 𝐺 is already
capable of producing pseudo natural data. Subsequently, both the
generator and the student model can be further optimized based on
this foundation. Secondly, it could be challenging for the student
to directly acquire robust knowledge. However, initializing the stu-
dent with natural knowledge can facilitate more efficient learning
of robust knowledge. According to ARREST [34], pre-training on
natural knowledge can lead to more stable representations during
robustness training. Therefore, it is necessary to introduce stage-I
as a warm-up for both the generator 𝐺 and the student model 𝑆 .

5 DISCUSSION
We briefly discuss the expansibility of DERD from two perspectives.

Extension tomodel inversion framework.Themodel-inversion-
based method is also a main paradigm of data-free distillation. Our
DERD can be extended to this framework as an alternative solution.
In this scenario, the explicit generator𝐺 becomes implicit, where
the input noise tensor is directly optimized.

Handling absence of natural teacher. While DERD relies on
the presence of both a natural teacher and a robust teacher, we
propose an alternative approach for scenarios where only a robust
teacher is available. We find that student tends to first learn the
natural knowledge before acquiring robust knowledge, making
itself a good surrogate for the natural teacher.

For detailed discussions on these issues, please refer to the sup-
plementary materials. In summary, while the alternative solutions
can achieve certain accuracy and adversarial robustness, the com-
plete DERD demonstrates significant superiority. This is attributed
to the controllability of the explicit generator model and the dis-
criminative nature knowledge provided by nature teachers.

6 CONCLUSION AND OUTLOOK
We consider the challenge of distilling the robustness from high-
performance large models to high-efficiency small models without
the real data, and propose Data-free Experts-guided Robustness
Distillation (DERD), where a novel dual-level adversarial learning
mechanism and an efficient stochastic gradient aggregation module
are proposed. Experimental results corroborate that DERD is su-
perior to existing attempts of data-free robustness distillation, and
can even achieve robustness comparable to data-driven robustness
distillation. Still, DERD relies on a strong assumption of the dual-
teacher hypothesis. Although effective, the concurrent requirement
for both a robust teacher and a natural teacher may introduce ad-
ditional memory costs and privacy threats. Furthermore, models
distilled in a data-free paradigm sometimes suffer from unstable
convergence, which is also a potential improvement direction.
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