
Under review as a conference paper at ICLR 2024

A ADDITIONAL NOTES ON EXPERIMENTAL SETUP

We have tested QUICKDROP and baselines with a commonly used deep neural network architecture,
i.e., ConvNet (Gidaris & Komodakis, 2018). Its modular architecture contains D duplicate blocks,
and each block has a convolutional layer with W (3⇥3) filters, a normalization layer N , an activa-
tion layer A, and a pooling layer P , denoted as [W,N,A, P ] ⇥ D. The default ConvNet (unless
specified otherwise) includes 3 blocks, each with 128 filters, followed by InstanceNorm, ReLU and
AvgPooling modules. The final block is followed by a linear classifier.

After the integration of DD and FL training, we have the following hyper-parameters – the number
of FL global rounds K, the number of local update steps T , the number of optimization step &S for
synthetic sample updating, and the learning rate ⌘S . In all experiments, we set K = 200, T = 50,
&S = 1, ⌘S = 0.1. The number of FL global rounds is set to K = 200 since our trials indicated
that the model will converge before that. Other hyperparameters follow previous work (Zhao et al.,
2021). In mini-batch sampling for DD with gradient matching, we randomly sample 256 real images
of a class as a mini-batch to calculate the gradients. We employ Stochastic Gradient Descent (SGD)
as the optimizer.

For the evaluation of independent DD and FL, the definition of hyperparameters is slightly different
— we have the number of outer-loop steps K, the number of inner-loop steps T , the number of
optimization steps &S for synthetic sample updating, and the learning rate ⌘S . We set K = 500,
T = 50, &S = 1, ⌘S = 0.1 following the same settings in previous work (Zhao et al., 2021).

B ADDITIONAL RESULTS WITH DIFFERENT DATASETS, NETWORK SIZES,
AND RELEARNING

In this section, we present additional accuracy results on a single unlearning request with different
datasets (MNIST and CIFAR-10) and network sizes (10 and 20 clients). Since we already included
the results on CIFAR-10 with 10 clients in Table 1, we include in this section the remaining com-
binations in Table 4 (CIFAR-10 with 20 clients), Table 5 (MNIST with 10 clients), and Table 6
(MNIST with 20 clients), respectively. All these experiments follow the same setup as the results
shown in Table 1, e.g., we use a non-IID data distribution (↵ = 0.1). We also attach the additional
results of the Relearning stage in each Table to show the effectiveness of different methods in re-
learning the eliminated knowledge again. The approach used in the relearning stage is the same for
different baselines, we adopt the traditional SGD-based model training to update the “unlearning
model” over the rejoined data. Note that our QUICKDROP still uses the distilled data in the relearn-
ing stage while other baselines use the original data, thus QUICKDROP can still keep its superiority
in computation efficiency.

Stage Unlearning Recovery Relearning
FU approach F-Set R-Set F-Set R-Set F-Set R-Set
QUICKDROP 0.53% 31.52% 0.69% 65.78% 74.39% 66.21%
RETRAIN-OR 0.68% 71.48% — — 78.65% 71.83%

SGA-OR 0.49% 25.37% 0.71% 70.04% 75.83% 69.75%
FU-MP 0.43% 20.43% 0.59% 69.82% — —

Table 4: The testing accuracies for CIFAR-10 and 20 clients on the F-Set and R-Set, after the
unlearning, recovery and relearning stages.

For all reported combinations of dataset and network sizes, we observe that all methods effectively
eliminate the knowledge of a target class from the model as the testing accuracy on the F-Set is
near-zero after the unlearning stage. Then, after the recovery stage, QUICKDROP, SGA-OR, and
FU-MP all restore the accuracy of the R-Set close to the value on RETRAIN-OR. Consistent with
our observations from Table 1, the accuracy on the R-Set by QUICKDROP after the recovery stage
is slightly below the baselines. This is because the distilled data is not a perfect representation of
the original training data. This accuracy gap can be reduced by additional fine-tuning of the distilled
dataset, at the expense of computation overhead.

13



Under review as a conference paper at ICLR 2024

Stage Unlearning Recovery Relearning
FU approach F-Set R-Set F-Set R-Set F-Set R-Set
QUICKDROP 0.53% 68.24% 0.61% 94.16% 96.39% 94.73%
RETRAIN-OR 0.47% 96.28% — — 97.36% 96.75%

SGA-OR 0.41% 71.38% 047% 96.26% 97.05% 95.82%
FU-MP 0.28% 66.45% 0.44% 95.37% — —

Table 5: The testing accuracies for MNIST and 10 clients on the F-Set and R-Set, after the unlearn-
ing, recovery and relearning stages.

Stage Unlearning Recovery Relearning
FU approach F-Set R-Set F-Set R-Set F-Set R-Set
QUICKDROP 0.33% 64.58% 0.44% 94.26% 96.37% 94.58%
RETRAIN-OR 0.47% 95.63% — — 96.82% 95.74%

SGA-OR 0.38% 73.57% 0.51% 95.03% 96.28% 95.18%
FU-MP 0.26% 58.36% 0.31% 94.83% — —

Table 6: The testing accuracies for MNIST and 20 clients on the F-Set and R-Set, after the unlearn-
ing, recovery and relearning stages.

Table 4-6 also report the testing accuracy on the F-Set and R-Set after relearning. Ideally, we want
these accuracies to be high since we attempt to restore the model the state before unlearning. Table 4-
6 show that all evaluated FU approaches successfully relearn the previously eliminated knowledge
again, while our QUICKDROP can still keep its superiority in computation efficiency since the re-
learning stage uses the compact, distilled dataset (66.7⇥ faster than RETRAIN-OR and 47.29⇥ than
SGA-OR). We are unable to relearning using FU-MP. This is because the unlearning method of
FU-MP is based on model pruning, which irreversibly destroys the model structure during the un-
learning stage. In particular, all channels related to the target class are pruned, and it is impossible
to recover the knowledge of that particular class with such a damaged model.

C CLIENT-LEVEL UNLEARNING EVALUATION

Our evaluation in Section 4 establishes the performance of QUICKDROP and baselines when per-
forming class-level unlearning. We now evaluate the effectiveness of QUICKDROP when performing
client-level unlearning. The goal of client-level unlearning is to erase the data samples of a specific
target client from the trained model. Being able to quickly perform client-level unlearning is es-
sential to adhere to privacy regulations such as the right to be forgotten European Union (2018).
We illustrate the performance of our QUICKDROP on client-level unlearning by comparing it with
other baselines. FU-MP is unable to perform client-level unlearning as this approach is specifically
designed for class-level unlearning. We conduct experiments on the CIFAR-10 dataset using two
different data distributions: Non-IID (↵ = 0.1) and IID (uniform distribution). The target unlearn-
ing client is selected randomly from all available clients and we reset the random seed to change the
data distribution of clients in each run of the experiments.

Table 7 shows the results on client-level unlearning with Non-IID distribution (using ↵ = 0.1). This
table shows that for all evaluated FU approaches, the testing accuracy on the F-Set after unlearning
is not near zero (8.37% for QUICKDROP), unlike when doing class-level unlearning (see Table 1).
The reason for this is that even though we unlearned the data samples of a particular client, some
features associated with the classes that a particular target client holds might still be embedded
in the model’s knowledge. Because of this, it happens that these forgotten samples are correctly
classified, even after unlearning. Furthermore, a target client t may have the majority of data for a
particular class c, while it only holds small amounts of data for other classes. Therefore, the model
performance after the recovery stage now critically depends on the individual data distribution of
clients as unlearning the data of client t may significantly hurt the model performance on class c.
Conversely, the knowledge on the classes of which the target client holds a small amount of data

14



Under review as a conference paper at ICLR 2024

Distribution Non-IID (↵ = 0.1)
Stage Unlearning Recovery Relearning

FU approach F-Set R-Set F-Set R-Set F-Set R-Set
QUICKDROP 8.37% 32.59% 11.57% 70.89% 71.88% 71.61%
RETRAIN-OR 10.48% 73.69% — — 72.94% 74.51%

SGA-OR 6.72% 21.49% 9.58% 72.63% 72.49% 73.53%

Table 7: The testing accuracy of QUICKDROP and other baselines for client-level unlearning on
CIFAR-10 with a Non-IID (↵ = 0.1) data distribution.

will not be completely eliminated from the model. Table 7 also shows that after the recovery stage,
the testing accuracy on the R-Set (70.89%) is a bit lower than, but close to the performance of
RETRAIN-OR on the R-Set (73.69%). These results are consistent with the accuracies obtained for
class-level unlearning.

Distribution IID
Stage Unlearning Recovery Relearning

FU approach F-Set R-Set F-Set R-Set F-Set R-Set
QUICKDROP 30.53% 34.29% 68.59% 68.48% 71.57% 70.69%
RETRAIN-OR 70.81% 71.64% — — 71.40% 74.08%

SGA-OR 28.76% 37.85% 69.32% 70.25% 72.31% 73.94%

Table 8: The testing accuracy of QUICKDROP and other baselines for client-level unlearning on
CIFAR-10 with an IID data distribution.

Table 8, shows the results for client-level unlearning with IID data distributions. Similar to the re-
sults in Table 7, we observe relatively high accuracies on the F-Set after the unlearning stage. When
comparing the accuracies of RETRAIN-OR on the F-Set (70.81%) and R-Set (71.64%), we find that
unlearning the data samples of the target client has minimal impact on the overall model perfor-
mance. This is because with an IID distribution, each client holds the same number of data samples
for all classes. Therefore, when we unlearn the target client, much of its contributed knowledge is
still represented by the remaining data (R-Set) in the system and the departure of the target client
will barely impact the model performance.

Sample-level Unlearning. So far, we have shown the effectiveness and efficiency of QUICKDROP
when performing class-level and client-level unlearning. These two levels of unlearning already
cover many applications of machine unlearning. One might want to perform sample-level unlearn-
ing, where the goal is to unlearn a subset of data samples of a particular client. This is difficult to
achieve with QUICKDROP since each client creates a distilled dataset that contains the knowledge
of individual training samples in a compressed format. Even though the SGA algorithm can be per-
formed with a subset of a client’s samples, the recovery phase cannot be performed with the distilled
dataset as this dataset again contains the knowledge of the samples being unlearned. Therefore, we
consider this challenge beyond the scope of our work. However, we remark that QUICKDROP can
be used to unlearn all samples of a particular class that a client holds since distilled datasets on the
granularity of a class.

D EXECUTING MULTIPLE UNLEARNING REQUESTS IN PARALLEL

In Section 4.3, we have demonstrated how QUICKDROP is able to execute subsequent, multiple un-
learning requests for different classes. While we assume in this experiment that unlearning requests
are processed one-by-one, batching multiple unlearning requests could save time and compute re-
sources. QUICKDROP supports the processing of multiple unlearning requests at the same time by
having clients execute SGA using the distilled data representing the samples being unlearned, and
then execute the recovery stage with the distilled data representing the remaining data. This enables

15



Under review as a conference paper at ICLR 2024

the network to unlearn multiple classes, or the data of multiple clients using a single unlearning and
recovery stage.

16


	Introduction
	Background and Related Work
	Design of QuickDrop
	The unlearning algorithm
	Dataset Distillation for Efficient Unlearning
	Integrating DD with FL training by Re-using Gradients
	End-to-end Workflow of QuickDrop

	Evaluation
	Experimental Setup
	Performance Evaluation on a Single Unlearning Request
	The Performance of QuickDrop with Sequential Unlearning Requests
	Dataset Distillation and Additional Fine-tuning
	Performance and Efficiency of QuickDrop in Larger Networks

	Conclusion
	Additional Notes on Experimental Setup
	Additional Results with Different Datasets, Network Sizes, and Relearning
	Client-level Unlearning Evaluation
	Executing Multiple Unlearning Requests in Parallel

