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A Task descriptions

A N-Bits Flip Flop Delayed Discrimination Sine Wave Generation Path Integration
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Figure 1: Our task suite spans memory, integration, pattern generation, and decision-making.
Each task is designed to place distinct demands on the network’s dynamics. N-Bit Flip-Flop: The
network must remember the last nonzero input on each of IV independent channels. Delayed Dis-
crimination: The network compares the magnitude of two pulses, separated by a variable delay, and
outputs their sign difference. Sine Wave Generation: A static input specifies a target frequency,
and the network generates the corresponding sine wave over time. Path Integration: The network
integrates velocity inputs to track position in a bounded 2D or 3D arena (schematic shows 2D case).

N-Bit Flip-Flop Task Each RNN receives N independent input channels taking values in
{—1,0,+41}, which switch with probability pswich. The network has N output channels that must
retain the most recent nonzero input on their respective channels. The network dynamics form 2V
fixed points, corresponding to all binary combinations of {—1,+1}%.

Delayed Discrimination Task The network receives two pulses of amplitudes f1, fa € [2,10],
separated by a variable delay ¢ € [5,20] time steps, and must output sign(fo — f1). In the N-
channel variant, comparisons are made independently across channels. The network forms task-
relevant fixed points to retain the amplitude of f; during the delay period.

Sine Wave Generation The network receives a static input specifying a target frequency f € [1, 30]
and must generate the corresponding sine wave sin(27 ft) over time. We define Nf.q target fre-
quencies, evenly spaced within the range [1, 30], and use them during training. In the N-channel
variant, each input channel specifies a frequency, and the corresponding output channel generates
a sine wave at that frequency. For each frequency, the network dynamics form and traverse a limit
cycle that produces the corresponding sine wave.

Path Integration Task Starting from a random position in 2D, the network receives angular direc-
tion # and speed v at each time step and updates its position estimate. In the 3D variant, the network
takes as input azimuth 6, elevation ¢, and speed v, and outputs updated (z,y, z) position. The net-
work performs path integration by accumulating velocity vectors based on the input directions and
speeds. After training, the network forms a Euclidean map of the environment in its internal state
space.

B Additional axes of task complexity

In the main text, we controlled task complexity by varying the number of independent input—output
channels, effectively duplicating the task across dimensions. Here, we explore two alternative ap-
proaches: increasing the task’s memory demand and adding auxiliary objectives.

Changing memory demand. Of the four tasks, only Delayed Discrimination requires extended
memory, as its performance depends on maintaining the first stimulus across a variable delay. See
Appendix [H| for a quantification of each task’s memory demand. We increased the memory load
in Delayed Discrimination by lengthening the delay period. This manipulation reduced degeneracy
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at the dynamical and behavioral levels but increased it at the weight level, mirroring the effect of

increasing task dimensionality (Figure2JA).
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Figure 2: Memory demand and auxiliary loss modulate degeneracy in distinct ways. In the De-
layed Discrimination task, both manipulations reduce dynamical and behavioral degeneracy while
increasing weight degeneracy. The auxiliary loss also induces additional line attractors in the net-
work’s dynamics, as shown in (C).

Adding auxiliary loss. We next examined how adding an auxiliary loss affects solution degeneracy
in the Delayed Discrimination task. Specifically, the network outputs both the sign and the mag-
nitude of the difference between two stimulus values (fo — f1), using separate output channels for
each. This manipulation added a second output channel and increased memory demand by requiring
the network to track the magnitude of the difference between incoming stimuli. Consistent with
our hypothesis, this manipulation reduced dynamical and behavioral degeneracy while increasing
weight degeneracy (Figure 2B). Crucially, the auxiliary loss induced additional line attractors in
the network dynamics, further structuring internal trajectories and aligning neural responses across
networks (Figure [2IC). While the auxiliary loss increases both output dimensionality and temporal
memory demand, we interpret its effect holistically as a structured increase in task complexity.

C Higher task complexity induces more feature learning

We hypothesize that the increased weight degeneracy observed in harder tasks reflects stronger fea-
ture learning. Specifically, harder tasks may force network weights to travel farther from their initial-
ization. If more complex task variants, like those in Section ??, truly induce greater feature learning,
then networks should traverse a greater distance in weight space, resulting in more dispersed final
weights. To test this idea, we measured feature learning strength in networks trained on different task
variants using two complementary metrics [Liu et al.l [2023| |George et al [2022]: Weight-change
norm: ||[W7 — Wy|| -, where larger values indicate stronger feature learning. Kernel alignment
(KA): measures the directional change of the neural tangent kernel (NTK) before and after training:

KA (KD, K©) = Tr (KWK ©)
| EOTEor, ™
NTK rotation and thus stronger feature learning.

, where K = V9" Viyg. Lower KA indicates greater

More complex tasks consistently drive stronger feature learning and greater dispersion in weight
space, as reflected by increasing weight-change norm and decreasing kernel alignment across all
tasks (Figure[3).
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Figure 3: More complex tasks drive stronger feature learning in RNNs. Increased input—output
dimensionality leads to higher weight-change norms and lower kernel alignment. Error bars indicate
=+1 standard error.
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Figure 4: Stronger feature learning reduces dynamical degeneracy but increases weight and
behavioral degeneracy. Panels show degeneracy at the dynamical, weight, and behavioral levels
(top to bottom). Shaded area indicates -1 standard error.

E Network size effect for all tasks
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Figure 5: Larger networks reduce degeneracy across weight, dynamics, and behavior. Con-
trolling for feature learning strength, wider RNNs yield more consistent solutions across all three
levels of analysis. Panels show degeneracy at the dynamical, weight, and behavioral levels (top to
bottom). Shaded area indicates 41 standard error.

F Task details

F.1 N-Bit Flip Flop

Task Parameter Value
Probability of flip 0.3
Number of time steps 100
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Task Parameter Value

Number of time steps 60
Max delay 20
Lowest stimulus value 2

Highest stimulus value 10

F.2 Delayed Discrimination

F.3 Sine Wave Generation

F.4 Path Integration

G Training details

G.1 N-Bit Flip Flop

Task Parameter Value
Number of time steps 100
Time step size 0.01
Lowest frequency 1
Highest frequency 30
Number of frequencies 100
Task Parameter Value
Number of time steps 100

Maximum speed (Vpax) 0.4
Direction increment std (fgq / ¢qa) ~ 7/10
0

Speed increment std 1
Noise std 0.0001
Mean stop duration 30
Mean go duration 50
Environment size (per side) 10
Training Hyperparameter Value
Optimizer Adam
Learning rate 0.001
Learning rate scheduler None
Max epochs 300
Steps per epoch 128
Batch size 256
Early stopping threshold 0.001
Patience 3
Time constant (i P) 1




85

86

87

88

89
90

91
92

G.2 Delayed Discrimination

Training Hyperparameter Value
Optimizer Adam
Learning rate 0.001

Learning rate scheduler

CosineAnnealingWarmRestarts

Max epochs 500
Steps per epoch 128
Batch size 256
Early stopping threshold 0.01
Patience 3
Time constant (uP) 0.1
G.3 Sine Wave Generation
Training Hyperparameter Value
Optimizer Adam
Learning rate 0.0005
Learning rate scheduler None
Max epochs 500
Steps per epoch 128
Batch size 32
Early stopping threshold 0.05
Patience 3
Time constant (uP) 1
G.4 Path Integration
Training Hyperparameter Value
Optimizer Adam
Learning rate 0.001
Learning rate scheduler ReduceLROnPlateau
Learning rate decay factor 0.5
Learning rate decay patience 40
Max epochs 1000
Steps per epoch 128
Batch size 64
Early stopping threshold 0.05
Patience 3
Time constant (i P) 0.1

H Memory demand of each task

In this section, we quantify each task’s memory demand by measuring how far back in time its inputs
influence the next output. Specifically, for each candidate history length h, we build feature vectors

= [$t7h+17 sy Tt yt]

hdin+d
c R i out7

and train a two-layer MLP to predict the subsequent target v, ;. We then evaluate the held-
out mean-squared error MSE(h), averaged over multiple random initializations. We identify the
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smallest history length ~A* at which the error curve plateaus or has a minimum, and take h* as the
task’s intrinsic memory demand.

From the results, we can see that the N-Bits Flip-Flop task requires only one time-step of mem-
ory—exactly what’s needed to recall the most recent nonzero input in each channel. The Sine Wave
Generation task demands two time-steps, reflecting the need to track both phase and direction of
change. Path Integration likewise only needs one time-step, since the current position plus instanta-
neous velocity and heading suffice to predict the next position. Delayed Discrimination is the only
memory-intensive task: our method estimates a memory demand of 25 time-steps, which happens
to be the time interval between the offset of the first stimulus and the onset of the response period,
during which the network needs to first keep track of the amplitude of the first stimulus and then its
decision.

3Bits Flip Flip Delayed Discrimination Sine Wave Generation Path Integration
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Figure 6: Memory demand of each task. The held-out mean-squared error MSE(h) of a two-layer
MLP predictor is plotted against history length h. The intrinsic memory demand h*, defined by
the plateau or minimum of each curve, is 1 for the N-Bits Flip-Flop and Path Integration tasks, 2
for Sine Wave Generation, and 25 for Delayed Discrimination—matching the inter-stimulus delay
interval in that task.

I More details on the degeneracy metrics

I.1 Dynamical Degeneracy

Briefly, DSA proceeds as follows: Given two RNNs with hidden states h; (¢) € R™ and hy(t) € R™,
we first generate a delay-embedded matrix, H; and Hy of the hidden states in their original state
space. Next, for each delay-embedded matrix, we use Dynamic Mode Decomposition (DMD)
[Schmidl [2022] to extract linear forward operators A; and A of the two systems’ dynamics. Fi-
nally, a Procrustes distance between the two matrices A; and A is used to quantify the dissimilarity
between the two dynamical systems and provide an overall DSA score, defined as:

dProcrustes(Ala AQ) = QrenOu(ln) ||A1 - QA2Q_1HF

where Q is a rotation matrix from the orthogonal group O(n) and || - || ¢ is the Frobenius norm. This
metric quantifies how dissimilar the dynamics of the two RNNs are after accounting for orthogonal
transformations. We quantify Dynamical Degeneracy across many RNNs as the average pairwise
distance between pairs of RNN neural-dynamics (hidden-state trajectories).

After training, we extract each network’s hidden-state activations for every trial in the training set,
yielding a tensor of shape (trials X time steps X neurons). We collapse the first two dimensions and
yield a matrix of size (trials x time steps) x neurons. We then apply PCA to retain the components
that explain 99% of the variance to remove noisy and low-variance dimensions of the hidden state
trajectories. Next, we perform a grid search over candidate delay lags, with a minimum lag of 1
and a maximum lag of 30, selecting the lag that minimizes the reconstruction error of DSA on the
dimensionality reduced trajectories. Finally, we fit DSA with full rank and the optimal lag to these
PCA-projected trajectories and compute the pairwise DSA distances between all networks.

1.2 Weight degeneracy

We computed the pairwise distance between the recurrent matrices from different networks using
Two-sided Permutation with One Transformation [[Schonemann, |1966, Ding et al., 2008]] function
from the Procrustes Python package [Meng et al.| [2022].
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J Representational degeneracy

We further quantified solution degeneracy at the representational level—that is, the variability in
each network’s internal feature space when presented with the same input dataset—using Singular
Vector Canonical Correlation Analysis (SVCCA). SVCCA works by first applying singular value
decomposition (SVD) to each network’s activation matrix, isolating the principal components that
capture most of its variance, and then performing canonical correlation analysis (CCA) to find the
maximally correlated directions between the two reduced subspaces. The resulting canonical cor-
relations therefore measure how similarly two networks represent the same inputs: high average
correlations imply low representational degeneracy (i.e., shared feature subspaces), whereas lower
correlations reveal greater divergence in what the models learn. We define the representational de-
generacy (labeled as the SVCCA distance below) as
drepr(Az, 4y) = 1 — SVCCA(Az7 Ay).
Task Complexity
3BFF Delayed Discrimination Sinewave Path Integration
8 g 082 8 0.9575 g
£ 09 g g £07
2 2080 2 0.9550 £
Sos ) B Sos
o o078 O 0.9525 o
a T T T T 5) T T T 5) T T T 5 T T
3BFF 8BFF  16BFF  32BFF 2 channels 3 channels 4 channels 2 channels 3 channels 4 channels 2D 3D
Task Variant Task Variant Task Variant Task Variant
Feature Learning
3BFF Delayed Discrimination Sinewave Path Integration
076 @ o 04900  0.56
8 8 052 g 2
g % % 0.4875 L‘: 055
o7 z o051 2 04850 2
8 8 8 gos4
5072 & 050 S 04825 e
0 5I 1I 2I 3I 1I 2I 3I 4I 0.1I 05I 1I 2I 6I 7I 8I
Y Y Y Y
Network Size
3BFF Delayed Discrimination 0.490 Sinewave Path Integration
806 g g g 0510
.% .(Z“ 082 .g ﬁ 0.505
g 074 g g 0.488 g 0500
o 0O 0.50 o o
%072 % @ 0486 ? 0495
6‘1I 128I 256I 64I 128I 256I 64I 128I 256I 64I 128 256I
Network width Network width Network width Network width
Low-rank Regularization
3BFF Delayed Discrimination Sinewave Path Integration
8 0.745 8 082 8 0560 g
20740 2080 Z 0555 o087
Q Q Q Q
o o o o
@ 0735 3 @ 0550 % 056
0 le™® 5e7¢ 0 le® 5e® le™* 0 le”’ 5e~7 le™® le™® le™*
Regularization strength Regularization strength Regularization strength Regularization strength
Sparsity (L1) Regularization
3BFF Delayed Discrimination Sinewave Path Integration
@ @ 0.82 @ @
s o800 s S 0575 5056
50775 5 080 s E
S ) S o570 S osa
% 0.750 % 0.78 % %
0 le’sl Se’sl 0 1e’5' 36"3‘ Se’sl 0 58’7‘ le’sl 16": 1e’5‘ le"“
Regularization strength Regularization strength Regularization strength Regularization strength
Figure 7: Representational degeneracy, as measured by the average SVCCA distance between
networks, does not necessarily change uniformly as we vary task complexity, feature learning
strength, network size, and regularization strength.
139 We found that as we vary the four factors that robustly control the dynamical degeneracy across task-
140 trained RNNs, the representational-level degeneracy isn’t necessarily constrained by those same
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factors in the same way. In RNNSs, task-relevant computations are implemented at the level of net-
work’s dynamics instead of static representations, and RNNs that implement similar temporal dy-
namics can have disparate representaional geometry. Therefore, it is expected that task complexity,
learning regime, and network size change the task-relevant computations learned by the networks
by affecting their neural dynamics instead of representations. DSA captures the dynamical aspect
of the neural computation by fitting a forward operator matrix A that maps the network’s activity at
one time step to the next, therefore directly capturing the temporal evolution of neural activities. By
contrast, SVCCA aligns the principal subspaces of activation vectors at each time point but treats
those vectors as independent samples—it never examines how one state evolves into the next. As a
result, SVCCA measures only static representational similarity and cannot account for the temporal
dependencies that underlie RNN computations. Nonetheless, we expect SVCCA might be more
helpful in measuring the solution degeneracy in feedforward networks.

K Detailed characterization of OOD generalization performance

In addition to showing the behavioral degeneracy in the main text, here we provide a more detailed
characterization of the OOD behavior of networks by showing the mean versus standard deviation,
and the distribution of the OOD losses.

K.1 Changing task complexity
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Figure 8: Detailed characterization of the OOD performance of networks while changing task com-
plexity.
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158 K.2 Changing feature learning strength

14-le-d 3BFF 1e-3 Delayed Discrim. 1e-2 Sine Wave Gen. 1e-1  Path Integr.
T F °
@ ® y=05 36 L4 ® y=01 121 ® y=6
1.2 o v=1 344 61 ® y=05 o v=7
o y=2 e v=1 ® y=8
1 L4 ) 11
10 ® y-3 324 51 o y=2 .
© ° © S S
0.84 3.04 ® v=1 4 10
o y=2 )
0.64 2.8-. ® y-3 3
© ° 267 o o y=4 ° 09
0 5 6 7 12 13 14 15 16 e, y — y y y
4 5 6 7 : 10 15 20
u Te-4 H 1e-2 u o1 20 22” 24 26
12 124 2z 12
104 104 1 10
15
g & g 81 z z8
] 5 S 12 S
2 6 3 6+ 2 = 6
g g g 9 g
w44 [ g [
2+ 5 s )
0 o 0 .
2 4 6 8 10 15 20 25 ; 1 2 3 20 25 30
O0DLoss  x10 OODLoss x40 00D Loss x10°" 00D Loss

Figure 9: Detailed characterization of the OOD performance of networks while changing feature
learning strength. Across Delayed Discrimination, Sine Wave Generation, and Path Integration
tasks, networks trained with larger v — and thus undergoing stronger feature learning — exhibit higher

mean OOD generalization loss together with higher variability, potentially reflecting overfitting to
the training task.

159 K.3 Changing network size
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Figure 10: Detailed characterization of the OOD performance of networks while changing network
size.
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K.4 Changing regularization strength

K.4.1 Low-rank regularization
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Figure 11: Detailed characterization of the OOD performance of networks while changing low-rank
regularization strength.

K.4.2 Sparsity (1) regularization
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Figure 12: Detailed characterization of the OOD performance of networks while changing sparsity
(L1) regularization strength.

L A short introduction to Maximal Update Parameterization ()

Under the NTK parametrization, as the network width goes to infinity, the network operates in the
lazy regime, where its functional evolution is well-approximated by a first-order Taylor expansion
around the initial parameters [Jacot et al., [2018| [Lee et al., 2019} [Chizat et al., 2019 [Woodworth

2020]. In this limit feature learning is suppressed and training dynamics are governed by the
fixed Neural Tangent Kernel (NTK).

To preserve non-trivial feature learning at large width, the Maximal Update Parametrization
(uP) rescales both the weight initialisation and the learning rate. P keeps three quantities
width-invariant at every layer—(i) the norm/variance of activations (ii) the norm/variance of the
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gradients, and (iii) the parameter updates applied by the optimizer [Yang et al., 2022} [2023] |Geiger
et al.,[2020, [Bordelon and Pehlevan, 2022].

For recurrent neural networks, under Stochastic Gradient Descent (SGD), the network output, ini-
tialization, and learning rates are scaled as

1
I = @A), .
1
Oh=—h + ﬁJqﬁ(h), Jij ~N(0,1), &
7IsGD = 1o 73 N. )

Under Adam optimizer, the network output, initialization, and learning rates are scaled as

L
f= N dh), @
dh=—h + %Jqﬁ(h), Jij ~ N(0,N), )
T)Adam = 7]o Y0- ©

M Theoretical relationship between parameterizations

We compare two RNN formalisms used in different parts of the main manuscript: a standard
discrete-time RNN trained with fixed learning rate and conventional initialization, and a pP-style
RNN trained with leaky integrator dynamics and width-aware scaling.

In the standard discrete-time RNN, the hidden activations are updated as
h(t+ 1) = ¢(Wrh(t) + Wox(t)),
In ;2P RNNGs, the hidden activations are updated as

h(t 4+ 1)~ h(t) = 7(=h(t) + - JO(h(D) + Ua()

Whent =1,
h(t+1) — h(t) = —h(t) + %J@b(h(t)) + Uz(t)

i+ 1) = - To((0) + Ut

Aside from the overall scaling factor, the difference between the two parameterizations lies in the
placement of the non-linearity:

» Standard RNN: ¢ is applied post-activation, i.e. after the recurrent and input terms are
linearly combined,

* uP RNN: ¢ is applied pre-activation; i.e. before the recurrent weight matrix, so the hidden
state is first non-linearized and then linearly combined

Miller and Fumarola [Miller and Fumarola, |2012|] demonstrated that two classes of continuous-time
firing-rate models which differ in their placement of the non-linearity are mathematically equivalent
under a change of variables:

v-model Till—: = —v 4 I(t) + Wf(v)

r-model: T% =—r+ f(Wr+1(t))
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207
208

with equivalence holding under the transformation v(t) = Wr(t) + I(t) and I(t) = I(t) + 7L,
assuming matched initial conditions.

Briefly, they show that Wr + I evolves according to the v-equation as follows:

v(t) =Wr(t) + I(t)

W= L) + 1)
—w (i (—r+f(Wr+I))> +&
T% = —Wr+Wf(Wr+I)+T%
- (=D + W) +T%
:—v—i-I—i-T%—l-Wf(v)
T% = —v 4 I(t) + Wf(v)

This mapping applies directly to RNNs viewed as continuous-time dynamical systems and helps
relate v-type pP-style RNNs to standard discrete-time RNNs. It suggests that the 4P RNN (in v-
type form) and the standard RNN (in r-type form) can be treated as different parameterizations of
the same underlying dynamical system when:

* Initialization scales are matched
* The learning rate is scaled appropriately with -y

e Qutput weight norms are adjusted according to width

In summary, while a theoretical equivalence exists, it is contingent on consistent scaling across all
components of the model. In this manuscript, we use the standard discrete-time RNNs due to its
practical relevance for task-driven modeling community, while switching to P to isolate the effect
of feature learning and network size. Additionally, we confirm that the feature learning and network
size effects on degeneracy hold qualitatively the same in standard discrete-time RNNs, unless where
altering network width induces unstable and lazier learning in larger networks (Figure [Q|and [R).
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N Verifying larger v reliably induces stronger feature learning in P

In p P parameterization, the parameter y interpolates between lazy training and rich, feature-learning
dynamics, without itself being the absolute magnitude of feature learning. Here, we assess feature-
learning strength in RNNs under varying y using two complementary metrics:

Weight-change norm which measures the magnitude of weight change throughout training. A
larger weight change norm indicates that the network undergoes richer learning or more feature
learning.

W1 — Wollp
N )

where N is the number of parameters in the weight matrices being compared.

Kernel alignment (KA), which measures the directional change of the neural tangent kernel (NTK)
before and after training. A lower KA score corresponds to a larger NTK rotation and thus stronger
feature learning.

Tr(K(f)K(O))

_ Ty -
o], ko), T Ywe v

KA(K(f), K(O)) -
We demonstrate that higher « indeed amplifies feature learning inside the network.

N.1 N-BFF

Per-seed weight change Mean + SE

0.106
0.105
0.104

0.103

Y
Mean + SE
0.304

0.28
0.26
0.244
0.224

0.154 0.20

Y Y

Figure 13: Weight change norm and kernel alignment for networks trained on the 3-Bits Flip Flop
task as we vary . On the left panels, we show the per-seed metrics where connected dots of the
same color are networks of identical initialization trained with different . On the right panels, we
show the mean and standard error of the metrics across 50 networks. For larger ~, the weights move
further from their initializations as shown by the larger weight change norm, and their NTK evolves
more distinct from the network’s NTK at initialization as shown by the reduced KA. Both indicate
stronger feature learning for networks trained under larger .
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223 N.2 Delayed Discrimination

Per-seed weight change Mean + SE
0.354
_0.357
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08 Per-seed kernel alignment Mean + SE
S 06-
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X
§ 0.2
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1 2 3 4
Y

Figure 14: Stronger feature learning for networks trained under larger v on the Delayed Discrimi-
nation task.

224 N.3 Sine Wave Generation

Per-seed weight change Mean + SE
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o
gl 0.110
0.110
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0.105- 0.106 4
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Figure 15: Stronger feature learning for networks trained under larger -y on the Sine Wave Genera-
tion task.
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N.4 Path Integration

Per-seed weight change Mean + SE
0.240+

0.235
0.230
0.225
0.220

0.215

o
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0.56

0.54 4

(K™

KA
2

0.524
0.2

Figure 16: Stronger feature learning for networks trained under larger v on the Path Integration task.

O Verifying ;. P reliably controls for feature learning across network width

Here, we only use Kernel Alignment to assess the feature learning strength in the networks since
the unnormalized weight-change norm ||[Wp — Wy || . scales directly with matrix size (therefore
network size) and there exists no obvious way to normalize across different dimensions. In our ear-
lier analysis where we compared weight-change norms at varying -, network size remained fixed,
so those Frobenius-norm measures were directly comparable. We found that, for all tasks except
Delayed Discrimination, the change in mean KA across different network sizes remains extremely
small (less than 0.1), which demonstrates that ;P parameterization with the same ~ has effec-
tively controlled for feature learning strength across network sizes. On Delayed Discrimination, the
networks undergo slightly lazier learning for larger network sizes. Nevertheless, we still include
Delayed Discrimination in our analyses of solution degeneracy to ensure our conclusions remain
robust even when pP can’t perfectly equalize feature-learning strength across widths. As shown
in the main paper, lazier learning regime generally increases dynamical degeneracy; yet, larger net-
works which exhibit lazier learning in the N-BFF task actually display lower dynamical degeneracy.
This reversed trend confirms that the changes in solution degeneracy arise from network size itself,
not from residual variation in feature learning strength.

0.1 N-BFF
Per-seed kernel alignment Mean + SE
0.30
S
X 025
E ) /
g 0.20
0.15
T T T T T T
64 128 256 64 128 256
Network width Network width

Figure 17: Kernel alignment (KA) for different network width on the 3 Bits Flip-Flop task. (Lower
KA implies more feature learning.)
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243 0.2 Delayed Discrimination

Per-seed kernel alignment
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0.50
—05 0.45
3
¥. 0.4 0.40
S
X 03 0.35
< 02 0.30
T T T 025 T T T
64 128 256 64 128 256
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Figure 18: Kernel alignment for different network width on the Delayed Discrimination task.

244 0.3 Sine Wave Generation

Per-seed kernel alignment Mean + SE
0.05

é‘ 0.06
14

£ 004
X

S 0.02

0.00-— T — 0.00-— T T
64 128 256 64 128 256

Network width Network width

Figure 19: Kernel alignment for different network width on the Sine Wave Generation task.

245 0.4 Path Integration

Per-seed kernel alignment Mean + SE
é‘ 0.8
4
= t07
X
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0.5
T T T T T T
64 128 256 64 128 256
Network width Network width

Figure 20: Kernel alignment for different network width on the Path Integration task.
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26 P Regularization’s effect on degeneracy for all tasks

247 In addition to showing regularization’s effect on degeneracy in Delayed Discrimination task in the
248 main paper, here we show that heavier low-rank regularization and sparsity regularization also re-

249 liably reduce solution degeneracy across neural dynamics, weights, and OOD behavior in the other
250  three tasks.

251 P.1 Low-rank regularization

. 3-BFF Sine Wave Gen. Path Integr.
©T O
g g 01004 0.2350 1 0.1445+
c
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Figure 21: Low-rank regularization reduces degeneracy across neural dynamics, weight, and OOD
behavior on the N-BFF, Sinewave Generation, and Path Integration task.

252 P2 Sparsity regularization
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Figure 22: Sparsity regularization reduces degeneracy across neural dynamics, weight, and OOD
behavior on the N-BFF, Sinewave Generation, and Path Integration task.
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Q Test feature learning effect on degeneracy in standard parameterization

While ;1 P lets us systematically vary feature-learning strength to study its impact on solution degen-
eracy, we confirm that the same qualitative pattern appears in standard discrete-time RNNs: stronger
feature learning lowers dynamical degeneracy and raises weight degeneracy (Figure 23).

To manipulate feature-learning strength in these ordinary RNNs we applied the y-trick—scaling the
network’s outputs by y—and multiplied the learning rate by the same factor. With width fixed, these
two operations replicate the effective changes induced by p.P. Figure[24]shows that this combination
reliably tunes feature-learning strength. Besides weight-change norm and kernel alignment, we
also report representation alignment (RA), giving a more fine-grained view of how much the
learned features deviate from their initialization [Liu et al} [2023]]. Representation alignment is the
directional change of the network’s represenational dissimilarity matrix before and after training,
and is defined by

RA(R(T), R(O)) _ Tr(R(T)R(O))

= R := H'H,
[REO | RO

A lower RA means more change in the network’s representation of inputs before and after training,
and indicates stronger feature learning.

- N-BFF Delayed Discrim. Sine Wave Gen. Path Integr.
B 0.21
g S ol 0.245 1 0.150
S 5 0.240
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28 ' 0.0012- 0.001350 1
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=93 0.001325
3 0.0011
8 0.001- —
05 1 2 1 2 3 4 01 05 1 2 6 7 8
Y Y 14 Y

Figure 23: Stronger feature learning reliably decreases dynamical degeneracy while increasing
weight degeneracy in standard discrete-time RNNs.
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Figure 24: Larger ~y reliably induces stronger feature learning in standard discrete-time RNNs.
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R Test network size effect on degeneracy in standard parameterization

When we vary network width, both the standard parameterization andu P parameterization display
the same overall pattern: larger networks exhibit lower dynamical and weight degeneracy. An
exception arises in the 3BFF task, where feature learning becomes unstable and collapses in the
wider models. In that setting we instead see higher dynamical degeneracy, which we suspect because
the feature learning effect (lazier learning leads to higher dynamical degeneracy) dominates the
network size effect.
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Figure 25: Larger network sizes lead to lower dynamical and weight degeneracy, except in the case
where feature learning is unstable across width (in N-BFF).
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Figure 26: When changing network width in standard discrete-time RNNS, feature learning strength
remains stable across width except in N-BFF, where notably lazier learning happens in the widest
network.
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S Disclosure of compute resources

In this study, we conducted 50 independent training runs on each of four tasks, systematically sweep-
ing four factors that modulate solution degeneracy—task complexity (15 experiments), learning
regime (15 experiments), network size (12 experiments), and regularization strength (26 experi-
ments), resulting in a total of 3400 networks. Each experiment was allocated 5 NVIDIA V100/A100
GPUs, 32 CPU cores, 256 GB of RAM, and a 4-hour wall-clock limit, for a total compute cost of
approximately 68 000 GPU-hours.
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