
Appendix Contents1

A Task descriptions 22

B Additional axes of task complexity 23

C Higher task complexity induces more feature learning 34

D Feature learning effect for all tasks 55

E Network size effect for all tasks 56

F Task details 57

G Training details 68

H Memory demand of each task 79

I More details on the degeneracy metrics 810

J Representational degeneracy 911

K Detailed characterization of OOD generalization performance 1012

L A short introduction to Maximal Update Parameterization (µP) 1213

M Theoretical relationship between parameterizations 1314

N Verifying larger γ reliably induces stronger feature learning in µP 1515

O Verifying µP reliably controls for feature learning across network width 1716

P Regularization’s effect on degeneracy for all tasks 1917

Q Test feature learning effect on degeneracy in standard parameterization 2018

R Test network size effect on degeneracy in standard parameterization 2219

S Disclosure of compute resources 2320

1

A Task descriptions21

Freq (Hz)B

A

Figure 1: Our task suite spans memory, integration, pattern generation, and decision-making.
Each task is designed to place distinct demands on the network’s dynamics. N-Bit Flip-Flop: The
network must remember the last nonzero input on each of N independent channels. Delayed Dis-
crimination: The network compares the magnitude of two pulses, separated by a variable delay, and
outputs their sign difference. Sine Wave Generation: A static input specifies a target frequency,
and the network generates the corresponding sine wave over time. Path Integration: The network
integrates velocity inputs to track position in a bounded 2D or 3D arena (schematic shows 2D case).

N-Bit Flip-Flop Task Each RNN receives N independent input channels taking values in22

{−1, 0,+1}, which switch with probability pswitch. The network has N output channels that must23

retain the most recent nonzero input on their respective channels. The network dynamics form 2N24

fixed points, corresponding to all binary combinations of {−1,+1}N .25

Delayed Discrimination Task The network receives two pulses of amplitudes f1, f2 ∈ [2, 10],26

separated by a variable delay t ∈ [5, 20] time steps, and must output sign(f2 − f1). In the N -27

channel variant, comparisons are made independently across channels. The network forms task-28

relevant fixed points to retain the amplitude of f1 during the delay period.29

Sine Wave Generation The network receives a static input specifying a target frequency f ∈ [1, 30]30

and must generate the corresponding sine wave sin(2πft) over time. We define Nfreq target fre-31

quencies, evenly spaced within the range [1, 30], and use them during training. In the N -channel32

variant, each input channel specifies a frequency, and the corresponding output channel generates33

a sine wave at that frequency. For each frequency, the network dynamics form and traverse a limit34

cycle that produces the corresponding sine wave.35

Path Integration Task Starting from a random position in 2D, the network receives angular direc-36

tion θ and speed v at each time step and updates its position estimate. In the 3D variant, the network37

takes as input azimuth θ, elevation ϕ, and speed v, and outputs updated (x, y, z) position. The net-38

work performs path integration by accumulating velocity vectors based on the input directions and39

speeds. After training, the network forms a Euclidean map of the environment in its internal state40

space.41

B Additional axes of task complexity42

In the main text, we controlled task complexity by varying the number of independent input–output43

channels, effectively duplicating the task across dimensions. Here, we explore two alternative ap-44

proaches: increasing the task’s memory demand and adding auxiliary objectives.45

Changing memory demand. Of the four tasks, only Delayed Discrimination requires extended46

memory, as its performance depends on maintaining the first stimulus across a variable delay. See47

Appendix H for a quantification of each task’s memory demand. We increased the memory load48

in Delayed Discrimination by lengthening the delay period. This manipulation reduced degeneracy49

2

at the dynamical and behavioral levels but increased it at the weight level, mirroring the effect of50

increasing task dimensionality (Figure 2A).51

A

B

CChanging memory demand

Adding auxiliary loss

Figure 2: Memory demand and auxiliary loss modulate degeneracy in distinct ways. In the De-
layed Discrimination task, both manipulations reduce dynamical and behavioral degeneracy while
increasing weight degeneracy. The auxiliary loss also induces additional line attractors in the net-
work’s dynamics, as shown in (C).

Adding auxiliary loss. We next examined how adding an auxiliary loss affects solution degeneracy52

in the Delayed Discrimination task. Specifically, the network outputs both the sign and the mag-53

nitude of the difference between two stimulus values (f2 − f1), using separate output channels for54

each. This manipulation added a second output channel and increased memory demand by requiring55

the network to track the magnitude of the difference between incoming stimuli. Consistent with56

our hypothesis, this manipulation reduced dynamical and behavioral degeneracy while increasing57

weight degeneracy (Figure 2B). Crucially, the auxiliary loss induced additional line attractors in58

the network dynamics, further structuring internal trajectories and aligning neural responses across59

networks (Figure 2C). While the auxiliary loss increases both output dimensionality and temporal60

memory demand, we interpret its effect holistically as a structured increase in task complexity.61

C Higher task complexity induces more feature learning62

We hypothesize that the increased weight degeneracy observed in harder tasks reflects stronger fea-63

ture learning. Specifically, harder tasks may force network weights to travel farther from their initial-64

ization. If more complex task variants, like those in Section ??, truly induce greater feature learning,65

then networks should traverse a greater distance in weight space, resulting in more dispersed final66

weights. To test this idea, we measured feature learning strength in networks trained on different task67

variants using two complementary metrics [Liu et al., 2023, George et al., 2022]: Weight-change68

norm: ∥WT −W0∥F , where larger values indicate stronger feature learning. Kernel alignment69

(KA): measures the directional change of the neural tangent kernel (NTK) before and after training:70

KA
(
K(f),K(0)

)
=

Tr
(
K(f)K(0)

)∥∥K(f)
∥∥
F

∥∥K(0)
∥∥
F

, where K = ∇W ŷ⊤∇W ŷ. Lower KA indicates greater71

NTK rotation and thus stronger feature learning.72

More complex tasks consistently drive stronger feature learning and greater dispersion in weight73

space, as reflected by increasing weight-change norm and decreasing kernel alignment across all74

tasks (Figure 3).75

3

Figure 3: More complex tasks drive stronger feature learning in RNNs. Increased input–output
dimensionality leads to higher weight-change norms and lower kernel alignment. Error bars indicate
±1 standard error.

4

D Feature learning effect for all tasks76

Figure 4: Stronger feature learning reduces dynamical degeneracy but increases weight and
behavioral degeneracy. Panels show degeneracy at the dynamical, weight, and behavioral levels
(top to bottom). Shaded area indicates ±1 standard error.

E Network size effect for all tasks77

Figure 5: Larger networks reduce degeneracy across weight, dynamics, and behavior. Con-
trolling for feature learning strength, wider RNNs yield more consistent solutions across all three
levels of analysis. Panels show degeneracy at the dynamical, weight, and behavioral levels (top to
bottom). Shaded area indicates ±1 standard error.

F Task details78

F.1 N-Bit Flip Flop79

Task Parameter Value

Probability of flip 0.3
Number of time steps 100

5

Task Parameter Value

Number of time steps 60
Max delay 20
Lowest stimulus value 2
Highest stimulus value 10

F.2 Delayed Discrimination80

F.3 Sine Wave Generation81

Task Parameter Value

Number of time steps 100
Time step size 0.01
Lowest frequency 1
Highest frequency 30
Number of frequencies 100

F.4 Path Integration82

Task Parameter Value

Number of time steps 100
Maximum speed (vmax) 0.4
Direction increment std (θstd / ϕstd) π/10
Speed increment std 0.1
Noise std 0.0001
Mean stop duration 30
Mean go duration 50
Environment size (per side) 10

G Training details83

G.1 N-Bit Flip Flop84

Training Hyperparameter Value

Optimizer Adam
Learning rate 0.001
Learning rate scheduler None
Max epochs 300
Steps per epoch 128
Batch size 256
Early stopping threshold 0.001
Patience 3
Time constant (µP) 1

6

G.2 Delayed Discrimination85

Training Hyperparameter Value

Optimizer Adam
Learning rate 0.001
Learning rate scheduler CosineAnnealingWarmRestarts
Max epochs 500
Steps per epoch 128
Batch size 256
Early stopping threshold 0.01
Patience 3
Time constant (µP) 0.1

G.3 Sine Wave Generation86

Training Hyperparameter Value

Optimizer Adam
Learning rate 0.0005
Learning rate scheduler None
Max epochs 500
Steps per epoch 128
Batch size 32
Early stopping threshold 0.05
Patience 3
Time constant (µP) 1

G.4 Path Integration87

Training Hyperparameter Value

Optimizer Adam
Learning rate 0.001
Learning rate scheduler ReduceLROnPlateau
Learning rate decay factor 0.5
Learning rate decay patience 40
Max epochs 1000
Steps per epoch 128
Batch size 64
Early stopping threshold 0.05
Patience 3
Time constant (µP) 0.1

H Memory demand of each task88

In this section, we quantify each task’s memory demand by measuring how far back in time its inputs89

influence the next output. Specifically, for each candidate history length h, we build feature vectors90

s
(h)
t = [xt−h+1, . . . , xt; yt] ∈ Rh din+dout ,

and train a two-layer MLP to predict the subsequent target yt+1. We then evaluate the held-91

out mean-squared error MSE(h), averaged over multiple random initializations. We identify the92

7

smallest history length h∗ at which the error curve plateaus or has a minimum, and take h∗ as the93

task’s intrinsic memory demand.94

From the results, we can see that the N-Bits Flip-Flop task requires only one time-step of mem-95

ory—exactly what’s needed to recall the most recent nonzero input in each channel. The Sine Wave96

Generation task demands two time-steps, reflecting the need to track both phase and direction of97

change. Path Integration likewise only needs one time-step, since the current position plus instanta-98

neous velocity and heading suffice to predict the next position. Delayed Discrimination is the only99

memory-intensive task: our method estimates a memory demand of 25 time-steps, which happens100

to be the time interval between the offset of the first stimulus and the onset of the response period,101

during which the network needs to first keep track of the amplitude of the first stimulus and then its102

decision.103

Figure 6: Memory demand of each task. The held-out mean-squared error MSE(h) of a two-layer
MLP predictor is plotted against history length h. The intrinsic memory demand h∗, defined by
the plateau or minimum of each curve, is 1 for the N-Bits Flip-Flop and Path Integration tasks, 2
for Sine Wave Generation, and 25 for Delayed Discrimination—matching the inter-stimulus delay
interval in that task.

I More details on the degeneracy metrics104

I.1 Dynamical Degeneracy105

Briefly, DSA proceeds as follows: Given two RNNs with hidden states h1(t) ∈ Rn and h2(t) ∈ Rn,106

we first generate a delay-embedded matrix, H1 and H2 of the hidden states in their original state107

space. Next, for each delay-embedded matrix, we use Dynamic Mode Decomposition (DMD)108

[Schmid, 2022] to extract linear forward operators A1 and A2 of the two systems’ dynamics. Fi-109

nally, a Procrustes distance between the two matrices A1 and A2 is used to quantify the dissimilarity110

between the two dynamical systems and provide an overall DSA score, defined as:111

dProcrustes(A1,A2) = min
Q∈O(n)

∥A1 −QA2Q
−1∥F

where Q is a rotation matrix from the orthogonal group O(n) and ∥ · ∥F is the Frobenius norm. This112

metric quantifies how dissimilar the dynamics of the two RNNs are after accounting for orthogonal113

transformations. We quantify Dynamical Degeneracy across many RNNs as the average pairwise114

distance between pairs of RNN neural-dynamics (hidden-state trajectories).115

After training, we extract each network’s hidden-state activations for every trial in the training set,116

yielding a tensor of shape (trials × time steps × neurons). We collapse the first two dimensions and117

yield a matrix of size (trials × time steps)× neurons. We then apply PCA to retain the components118

that explain 99% of the variance to remove noisy and low-variance dimensions of the hidden state119

trajectories. Next, we perform a grid search over candidate delay lags, with a minimum lag of 1120

and a maximum lag of 30, selecting the lag that minimizes the reconstruction error of DSA on the121

dimensionality reduced trajectories. Finally, we fit DSA with full rank and the optimal lag to these122

PCA-projected trajectories and compute the pairwise DSA distances between all networks.123

I.2 Weight degeneracy124

We computed the pairwise distance between the recurrent matrices from different networks using125

Two-sided Permutation with One Transformation [Schönemann, 1966, Ding et al., 2008] function126

from the Procrustes Python package [Meng et al., 2022].127

8

J Representational degeneracy128

We further quantified solution degeneracy at the representational level—that is, the variability in129

each network’s internal feature space when presented with the same input dataset—using Singular130

Vector Canonical Correlation Analysis (SVCCA). SVCCA works by first applying singular value131

decomposition (SVD) to each network’s activation matrix, isolating the principal components that132

capture most of its variance, and then performing canonical correlation analysis (CCA) to find the133

maximally correlated directions between the two reduced subspaces. The resulting canonical cor-134

relations therefore measure how similarly two networks represent the same inputs: high average135

correlations imply low representational degeneracy (i.e., shared feature subspaces), whereas lower136

correlations reveal greater divergence in what the models learn. We define the representational de-137

generacy (labeled as the SVCCA distance below) as138

drepr(Ax, Ay) = 1 − SVCCA
(
Ax, Ay

)
.

Figure 7: Representational degeneracy, as measured by the average SVCCA distance between
networks, does not necessarily change uniformly as we vary task complexity, feature learning
strength, network size, and regularization strength.

We found that as we vary the four factors that robustly control the dynamical degeneracy across task-139

trained RNNs, the representational-level degeneracy isn’t necessarily constrained by those same140

9

factors in the same way. In RNNs, task-relevant computations are implemented at the level of net-141

work’s dynamics instead of static representations, and RNNs that implement similar temporal dy-142

namics can have disparate representaional geometry. Therefore, it is expected that task complexity,143

learning regime, and network size change the task-relevant computations learned by the networks144

by affecting their neural dynamics instead of representations. DSA captures the dynamical aspect145

of the neural computation by fitting a forward operator matrix A that maps the network’s activity at146

one time step to the next, therefore directly capturing the temporal evolution of neural activities. By147

contrast, SVCCA aligns the principal subspaces of activation vectors at each time point but treats148

those vectors as independent samples—it never examines how one state evolves into the next. As a149

result, SVCCA measures only static representational similarity and cannot account for the temporal150

dependencies that underlie RNN computations. Nonetheless, we expect SVCCA might be more151

helpful in measuring the solution degeneracy in feedforward networks.152

K Detailed characterization of OOD generalization performance153

In addition to showing the behavioral degeneracy in the main text, here we provide a more detailed154

characterization of the OOD behavior of networks by showing the mean versus standard deviation,155

and the distribution of the OOD losses.156

K.1 Changing task complexity157

Figure 8: Detailed characterization of the OOD performance of networks while changing task com-
plexity.

10

K.2 Changing feature learning strength158

Figure 9: Detailed characterization of the OOD performance of networks while changing feature
learning strength. Across Delayed Discrimination, Sine Wave Generation, and Path Integration
tasks, networks trained with larger γ – and thus undergoing stronger feature learning – exhibit higher
mean OOD generalization loss together with higher variability, potentially reflecting overfitting to
the training task.

K.3 Changing network size159

Figure 10: Detailed characterization of the OOD performance of networks while changing network
size.

11

K.4 Changing regularization strength160

K.4.1 Low-rank regularization161

Figure 11: Detailed characterization of the OOD performance of networks while changing low-rank
regularization strength.

K.4.2 Sparsity (L1) regularization162

Figure 12: Detailed characterization of the OOD performance of networks while changing sparsity
(L1) regularization strength.

L A short introduction to Maximal Update Parameterization (µP)163

Under the NTK parametrization, as the network width goes to infinity, the network operates in the164

lazy regime, where its functional evolution is well-approximated by a first-order Taylor expansion165

around the initial parameters [Jacot et al., 2018, Lee et al., 2019, Chizat et al., 2019, Woodworth166

et al., 2020]. In this limit feature learning is suppressed and training dynamics are governed by the167

fixed Neural Tangent Kernel (NTK).168

To preserve non-trivial feature learning at large width, the Maximal Update Parametrization169

(µP) rescales both the weight initialisation and the learning rate. µP keeps three quantities170

width-invariant at every layer—(i) the norm/variance of activations (ii) the norm/variance of the171

12

gradients, and (iii) the parameter updates applied by the optimizer [Yang et al., 2022, 2023, Geiger172

et al., 2020, Bordelon and Pehlevan, 2022].173

For recurrent neural networks, under Stochastic Gradient Descent (SGD), the network output, ini-174

tialization, and learning rates are scaled as175

f =
1

γ0N
w⃗ · ϕ

(
h
)
, (1)

∂th = −h +
1√
N

J ϕ
(
h
)
, Jij ∼ N (0, 1), (2)

ηSGD = η0 γ
2
0 N. (3)

Under Adam optimizer, the network output, initialization, and learning rates are scaled as176

f =
1

γ0N
w⃗ · ϕ

(
h
)
, (4)

∂th = −h +
1

N
J ϕ

(
h
)
, Jij ∼ N (0, N), (5)

ηAdam = η0 γ0. (6)

M Theoretical relationship between parameterizations177

We compare two RNN formalisms used in different parts of the main manuscript: a standard178

discrete-time RNN trained with fixed learning rate and conventional initialization, and a µP-style179

RNN trained with leaky integrator dynamics and width-aware scaling.180

In the standard discrete-time RNN, the hidden activations are updated as181

h(t+ 1) = ϕ
(
Whh(t) +Wxx(t)

)
,

In µP RNNs, the hidden activations are updated as182

h(t+ 1)− h(t) = τ
(
−h(t) +

1

N
Jϕ(h(t)) + Ux(t)

)
When τ = 1,183

h(t+ 1)− h(t) = −h(t) +
1

N
Jϕ(h(t)) + Ux(t)

184

h(t+ 1) =
1

N
Jϕ(h(t)) + Ux(t)

Aside from the overall scaling factor, the difference between the two parameterizations lies in the185

placement of the non-linearity:186

• Standard RNN: ϕ is applied post-activation, i.e. after the recurrent and input terms are187

linearly combined,188

• µP RNN: ϕ is applied pre-activation; i.e. before the recurrent weight matrix, so the hidden189

state is first non-linearized and then linearly combined190

Miller and Fumarola [Miller and Fumarola, 2012] demonstrated that two classes of continuous-time191

firing-rate models which differ in their placement of the non-linearity are mathematically equivalent192

under a change of variables:193

v-model τ
dv

dt
= −v + Ĩ(t) +Wf(v)

r-model: τ
dr

dt
= −r + f(Wr + I(t))

13

with equivalence holding under the transformation v(t) = Wr(t) + I(t) and Ĩ(t) = I(t) + τ dI
dt ,194

assuming matched initial conditions.195

Briefly, they show that Wr + I evolves according to the v-equation as follows:196

v(t) = Wr(t) + I(t)

dv

dt
=

d

dt

(
Wr(t) + I(t)

)
= W

dr

dt
+

dI

dt

= W

(
1

τ
(−r + f(Wr + I))

)
+

dI

dt

τ
dv

dt
= −Wr +Wf(Wr + I) + τ

dI

dt

= −(v − I) +Wf(v) + τ
dI

dt

= −v + I + τ
dI

dt
+Wf(v)

τ
dv

dt
= −v + Ĩ(t) +Wf(v)

This mapping applies directly to RNNs viewed as continuous-time dynamical systems and helps197

relate v-type µP-style RNNs to standard discrete-time RNNs. It suggests that the µP RNN (in v-198

type form) and the standard RNN (in r-type form) can be treated as different parameterizations of199

the same underlying dynamical system when:200

• Initialization scales are matched201

• The learning rate is scaled appropriately with γ202

• Output weight norms are adjusted according to width203

In summary, while a theoretical equivalence exists, it is contingent on consistent scaling across all204

components of the model. In this manuscript, we use the standard discrete-time RNNs due to its205

practical relevance for task-driven modeling community, while switching to µP to isolate the effect206

of feature learning and network size. Additionally, we confirm that the feature learning and network207

size effects on degeneracy hold qualitatively the same in standard discrete-time RNNs, unless where208

altering network width induces unstable and lazier learning in larger networks (Figure Q and R).209

14

N Verifying larger γ reliably induces stronger feature learning in µP210

In µP parameterization, the parameter γ interpolates between lazy training and rich, feature-learning211

dynamics, without itself being the absolute magnitude of feature learning. Here, we assess feature-212

learning strength in RNNs under varying γ using two complementary metrics:213

Weight-change norm which measures the magnitude of weight change throughout training. A214

larger weight change norm indicates that the network undergoes richer learning or more feature215

learning.216

∥WT −W0∥F
N

,

where N is the number of parameters in the weight matrices being compared.217

Kernel alignment (KA), which measures the directional change of the neural tangent kernel (NTK)218

before and after training. A lower KA score corresponds to a larger NTK rotation and thus stronger219

feature learning.220

KA
(
K(f),K(0)

)
=

Tr
(
K(f)K(0)

)∥∥K(f)
∥∥
F

∥∥K(0)
∥∥
F

, K = ∇W ŷ⊤∇W ŷ.

We demonstrate that higher γ indeed amplifies feature learning inside the network.221

N.1 N-BFF222

Figure 13: Weight change norm and kernel alignment for networks trained on the 3-Bits Flip Flop
task as we vary γ. On the left panels, we show the per-seed metrics where connected dots of the
same color are networks of identical initialization trained with different γ. On the right panels, we
show the mean and standard error of the metrics across 50 networks. For larger γ, the weights move
further from their initializations as shown by the larger weight change norm, and their NTK evolves
more distinct from the network’s NTK at initialization as shown by the reduced KA. Both indicate
stronger feature learning for networks trained under larger γ.

15

N.2 Delayed Discrimination223

Figure 14: Stronger feature learning for networks trained under larger γ on the Delayed Discrimi-
nation task.

N.3 Sine Wave Generation224

Figure 15: Stronger feature learning for networks trained under larger γ on the Sine Wave Genera-
tion task.

16

N.4 Path Integration225

Figure 16: Stronger feature learning for networks trained under larger γ on the Path Integration task.

O Verifying µP reliably controls for feature learning across network width226

Here, we only use Kernel Alignment to assess the feature learning strength in the networks since227

the unnormalized weight-change norm ∥WT −W0∥F scales directly with matrix size (therefore228

network size) and there exists no obvious way to normalize across different dimensions. In our ear-229

lier analysis where we compared weight-change norms at varying γ, network size remained fixed,230

so those Frobenius-norm measures were directly comparable. We found that, for all tasks except231

Delayed Discrimination, the change in mean KA across different network sizes remains extremely232

small (less than 0.1), which demonstrates that µP parameterization with the same γ has effec-233

tively controlled for feature learning strength across network sizes. On Delayed Discrimination, the234

networks undergo slightly lazier learning for larger network sizes. Nevertheless, we still include235

Delayed Discrimination in our analyses of solution degeneracy to ensure our conclusions remain236

robust even when µP can’t perfectly equalize feature-learning strength across widths. As shown237

in the main paper, lazier learning regime generally increases dynamical degeneracy; yet, larger net-238

works which exhibit lazier learning in the N-BFF task actually display lower dynamical degeneracy.239

This reversed trend confirms that the changes in solution degeneracy arise from network size itself,240

not from residual variation in feature learning strength.241

O.1 N-BFF242

Figure 17: Kernel alignment (KA) for different network width on the 3 Bits Flip-Flop task. (Lower
KA implies more feature learning.)

17

O.2 Delayed Discrimination243

Figure 18: Kernel alignment for different network width on the Delayed Discrimination task.

O.3 Sine Wave Generation244

Figure 19: Kernel alignment for different network width on the Sine Wave Generation task.

O.4 Path Integration245

Figure 20: Kernel alignment for different network width on the Path Integration task.

18

P Regularization’s effect on degeneracy for all tasks246

In addition to showing regularization’s effect on degeneracy in Delayed Discrimination task in the247

main paper, here we show that heavier low-rank regularization and sparsity regularization also re-248

liably reduce solution degeneracy across neural dynamics, weights, and OOD behavior in the other249

three tasks.250

P.1 Low-rank regularization251

Figure 21: Low-rank regularization reduces degeneracy across neural dynamics, weight, and OOD
behavior on the N-BFF, Sinewave Generation, and Path Integration task.

P.2 Sparsity regularization252

Figure 22: Sparsity regularization reduces degeneracy across neural dynamics, weight, and OOD
behavior on the N-BFF, Sinewave Generation, and Path Integration task.

19

Q Test feature learning effect on degeneracy in standard parameterization253

While µP lets us systematically vary feature-learning strength to study its impact on solution degen-254

eracy, we confirm that the same qualitative pattern appears in standard discrete-time RNNs: stronger255

feature learning lowers dynamical degeneracy and raises weight degeneracy (Figure 23).256

To manipulate feature-learning strength in these ordinary RNNs we applied the γ-trick—scaling the257

network’s outputs by γ—and multiplied the learning rate by the same factor. With width fixed, these258

two operations replicate the effective changes induced by µP . Figure 24 shows that this combination259

reliably tunes feature-learning strength. Besides weight-change norm and kernel alignment, we260

also report representation alignment (RA), giving a more fine-grained view of how much the261

learned features deviate from their initialization [Liu et al., 2023]. Representation alignment is the262

directional change of the network’s represenational dissimilarity matrix before and after training,263

and is defined by264

RA
(
R(T), R(0)

)
:=

Tr
(
R(T)R(0)

)
∥R(T)∥ ∥R(0)∥

, R := H⊤H,

A lower RA means more change in the network’s representation of inputs before and after training,265

and indicates stronger feature learning.266

Figure 23: Stronger feature learning reliably decreases dynamical degeneracy while increasing
weight degeneracy in standard discrete-time RNNs.

20

Figure 24: Larger γ reliably induces stronger feature learning in standard discrete-time RNNs.

21

R Test network size effect on degeneracy in standard parameterization267

When we vary network width, both the standard parameterization andµP parameterization display268

the same overall pattern: larger networks exhibit lower dynamical and weight degeneracy. An269

exception arises in the 3BFF task, where feature learning becomes unstable and collapses in the270

wider models. In that setting we instead see higher dynamical degeneracy, which we suspect because271

the feature learning effect (lazier learning leads to higher dynamical degeneracy) dominates the272

network size effect.273

Figure 25: Larger network sizes lead to lower dynamical and weight degeneracy, except in the case
where feature learning is unstable across width (in N-BFF).

Figure 26: When changing network width in standard discrete-time RNNs, feature learning strength
remains stable across width except in N-BFF, where notably lazier learning happens in the widest
network.

22

S Disclosure of compute resources274

In this study, we conducted 50 independent training runs on each of four tasks, systematically sweep-275

ing four factors that modulate solution degeneracy—task complexity (15 experiments), learning276

regime (15 experiments), network size (12 experiments), and regularization strength (26 experi-277

ments), resulting in a total of 3400 networks. Each experiment was allocated 5 NVIDIA V100/A100278

GPUs, 32 CPU cores, 256 GB of RAM, and a 4-hour wall-clock limit, for a total compute cost of279

approximately 68 000 GPU-hours.280

23

References281

Blake Bordelon and Cengiz Pehlevan. Self-Consistent Dynamical Field Theory of Kernel Evolu-282

tion in Wide Neural Networks, October 2022. URL http://arxiv.org/abs/2205.09653.283

arXiv:2205.09653 [stat].284

Léon Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.285

Advances in Neural Information Processing Systems, 32:2938–2950, 2019.286

Chris Ding, Tao Li, and Michael I. Jordan. Nonnegative matrix factorization for combinatorial287

optimization: Spectral clustering, graph matching, and clique finding. In Proceedings of the288

Eighth IEEE International Conference on Data Mining (ICDM ’08), pages 183–192. IEEE, 2008.289

doi: 10.1109/ICDM.2008.130.290

Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling feature and lazy291

training in deep neural networks. Journal of Statistical Mechanics: Theory and Experiment, 2020292

(11):113301, 2020. doi: 10.1088/1742-5468/abc4de.293

Thomas George, Guillaume Lajoie, and Aristide Baratin. Lazy vs hasty: Linearization in deep net-294

works impacts learning schedule based on example difficulty. arXiv preprint arXiv:2209.09658,295

2022. URL https://arxiv.org/abs/2209.09658.296

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gener-297

alization in neural networks. In Advances in Neural Information Processing Systems, volume 31,298

2018.299

Jaehoon Lee, Yuval Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pennington, and Jascha300

Sohl-Dickstein. Wide neural networks of any depth evolve as linear models under gradient de-301

scent. In Advances in Neural Information Processing Systems, volume 32, pages 8572–8583,302

2019.303

Yuhan Helena Liu, Aristide Baratin, Jonathan Cornford, Stefan Mihalas, Eric Shea-Brown, and304

Guillaume Lajoie. How connectivity structure shapes rich and lazy learning in neural cir-305

cuits. arXiv preprint arXiv:2310.08513, 2023. doi: 10.48550/arXiv.2310.08513. URL https:306

//arxiv.org/abs/2310.08513.307

Fanwang Meng, Michael G. Richer, Alireza Tehrani, Jonathan La, Taewon David Kim, P. W. Ayers,308

and Farnaz Heidar-Zadeh. Procrustes: A python library to find transformations that maximize309

the similarity between matrices. Computer Physics Communications, 276:108334, 2022. doi:310

10.1016/j.cpc.2022.108334. URL https://www.sciencedirect.com/science/article/311

pii/S0010465522000522.312

Kenneth D Miller and Francesco Fumarola. Mathematical equivalence of two common forms of313

firing rate models of neural networks. Neural computation, 24(1):25–31, 2012.314

Peter J Schmid. Dynamic mode decomposition and its variants. Annual Review of Fluid Mechanics,315

54(1):225–254, 2022.316

Peter H. Schönemann. A generalized solution of the orthogonal procrustes problem. Psychometrika,317

31(1):1–10, Mar 1966. doi: 10.1007/BF02289451.318

Bryan Woodworth, Suriya Gunasekar, Jason D. Lee, Nathan Srebro, Srinadh Bhojanapalli, Rina319

Khanna, Aaron Chatterji, and Martin Jaggi. Kernel and rich regimes in deep learning. Journal of320

Machine Learning Research, 21(243):1–48, 2020.321

Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ry-322

der, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large neural323

networks via zero-shot hyperparameter transfer. arXiv preprint arXiv:2203.03466, 2022. doi:324

10.48550/arXiv.2203.03466. Accepted at NeurIPS 2021.325

Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. Tensor programs vi: Feature learning in326

infinite-depth neural networks. arXiv preprint arXiv:2310.02244, 2023. doi: 10.48550/arXiv.327

2310.02244. Accepted at ICLR 2024.328

24

http://arxiv.org/abs/2205.09653
https://arxiv.org/abs/2209.09658
https://arxiv.org/abs/2310.08513
https://arxiv.org/abs/2310.08513
https://arxiv.org/abs/2310.08513
https://www.sciencedirect.com/science/article/pii/S0010465522000522
https://www.sciencedirect.com/science/article/pii/S0010465522000522
https://www.sciencedirect.com/science/article/pii/S0010465522000522

	Task descriptions
	Additional axes of task complexity
	Higher task complexity induces more feature learning
	Feature learning effect for all tasks
	Network size effect for all tasks
	Task details
	Training details
	Memory demand of each task
	More details on the degeneracy metrics
	Representational degeneracy
	Detailed characterization of OOD generalization performance
	A short introduction to Maximal Update Parameterization (P)
	Theoretical relationship between parameterizations
	Verifying larger reliably induces stronger feature learning in P
	Verifying P reliably controls for feature learning across network width
	Regularization's effect on degeneracy for all tasks
	Test feature learning effect on degeneracy in standard parameterization
	Test network size effect on degeneracy in standard parameterization
	Disclosure of compute resources

