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A Preliminaries340

A.1 Hypergeometric Distribution341

This part is largely based on Sutter et al. [2023].342

Suppose we have an urn with marbles in different colors. Let K ∈ N be the number of different classes343

or groups (e.g. marble colors in the urn), m = [m1, . . . ,mK ] ∈ NK describe the number of elements344

per class (e.g. marbles per color), N =
∑K

k=1 mK be the total number of elements (e.g. all marbles in345

the urn) and n ∈ {0, . . . , N} be the number of elements (e.g. marbles) to draw. Then, the multivariate346

hypergeometric distribution describes the probability of drawing n = [n1, . . . , nK ] ∈ NK marbles347

by sampling without replacement such that
∑K

k=1 nk = n, where nk is the number of drawn marbles348

of class k.349

In the literature, two different versions of the noncentral hypergeometric distribution exist, Fisher’s350

[Fisher, 1935] and Wallenius’ [Wallenius, 1963, Chesson, 1976] distribution. Sutter et al. [2023]351

restrict themselves to Fisher’s noncentral hypergeometric distribution due to limitations of the latter352

[Fog, 2008]. Hence, we will also talk solely about Fisher’s noncentral hypergeometric distribution.353

Definition A.1 (Multivariate Fisher’s Noncentral Hypergeometric Distribution [Fisher, 1935]). A354

random vector X follows Fisher’s noncentral multivariate distribution, if its joint probability mass355

function is given by356

P (N = n;ω) = p(n;ω) =
1

P0

K∏
k=1

(
mk

nk

)
ωnk

k (12)

where P0 =
∑

(η1,...,ηK)∈S

K∏
k=1

(
mk

ηk

)
ωηk

k (13)

The support S of the PMF is given by S = {n ∈ NK : ∀k nk ≤ mk,
∑K

k=1 nk = n} and357 (
n
k

)
= n!

k!(n−k)! .358

The class importance ω is a crucial modeling parameter in applying the noncentral hypergeometric359

distribution (see [Chesson, 1976]).360

A.1.1 Differentiable MVHG361

Their reparameterizable sampling for the differentiable MVHG consists of three parts:362

1. Reformulate the multivariate distribution as a sequence of interdependent and conditional363

univariate hypergeometric distributions.364

2. Calculate the probability mass function of the respective univariate distributions.365

3. Sample from the conditional distributions utilizing the Gumbel-Softmax trick.366

Following the chain rule of probability, the MVHG distribution allows for sequential sampling over367

classes k. Every step includes a merging operation, which leads to biased samples compared to368

groundtruth non-differentiable sampling with equal class weights ω. Given that we intend to use369

the differentiable MVHG in settings where we want to learn the unknown class weights, we do not370

expect a negative effect from this sampling procedure. For details on how to merge the MVHG into a371

sequence of unimodal distributions, we refer to Sutter et al. [2023].372

The probability mass function calculation is based on unnormalized log-weights, which are interpreted373

as unnormalized log-weights of a categorical distribution. The interpretation of the class-conditional374

unimodal hypergeometric distributions as categorical distributions allows applying the Gumbel-375

Softmax trick [Jang et al., 2016, Maddison et al., 2017]. Following the use of the Gumbel-Softmax376

trick, the class-conditional version of the hypergeometric distribution is differentiable and reparame-377

terizable. Hence, the MVHG has been made differentiable and reparameterizable as well. Again, for378

details we refer to the original paper [Sutter et al., 2023].379
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A.2 Distribution over Random Orderings380

Yellott [1977] show that the distribution over permutation matrices p(π; s) follows a Plackett-381

Luce (PL) distribution [Plackett, 1975, Luce, 1959], if and only of the perturbed scores s̃ are382

sampled independently from Gumbel distributions with identical scales. For each item i, sample383

gi ∼ Gumbel(0, β) independently with zero mean and and fixed scale β. Let s̃ be the vector of384

Gumbel perturbed log-weights such that s̃i = β log si + gi. Hence,385

q(s̃1 ≥ · · · ≥ s̃n) =
s1
Z
· s2
Z − s1

· · · · · sn

Z −
∑n−1

i=1 si
(14)

We refer to Yellott [1977] or Grover et al. [2019] for the proof. However, Grover et al. [2019] provide386

only an adapted proof sketch from Yellott [1977]. The probability of sampling element i first is given387

by its score si divided by the sum of all weights in the set388

q(s̃i) =
si
Z

(15)

For zi = log si, the right hand side of Equation (15) is equal to the softmax distribution softmax(zi) =389

exp(zi)/
∑

j exp(zj) as already described in [Xie and Ermon, 2019]. Hence, Equation (15) directly390

leads to the Gumbel-Softmax trick [Jang et al., 2016, Maddison et al., 2017].391

A.2.1 Differentiable Sorting392

In the main text of the paper we rely on a differentiable function fπ(s̃), which sorts the resampled393

version of the scores s394

π = fπ(s̃) = sort(s̃) (16)

Here, we summarise the findings from Grover et al. [2019] on how to construct such a differentiable395

sorting operator. As already mentioned in Section 2, there are multiple works on the topic [Prillo and396

Eisenschlos, 2020, Petersen et al., 2021, Mena et al., 2018], but we restrict ourselves to the work of397

Grover et al. [2019] as we see the differentiable generation of permutation matrices as a tool in our398

pipeline.399

Corollary A.2 (Permutation Matrix [Grover et al., 2019]). Let s = [s1, . . . , sn]
T be a real-valued400

vector of length n. Let As denote the matrix of absolute pairwise differences of the elements of s401

such that As[i, j] = |si − sj |. The permutation matrix π corresponding to sort(s) is given by:402

π =

{
1 if j = argmax[(n+ 1− 2i)s−As1]

0 otherwise
(17)

where 1 denotes the column vector of all ones.403

As we know, the argmax operator is non-differentiable which prohibits the direct use of Corollary A.2404

for gradient computation. Hence, Grover et al. [2019] propose to replace the argmax operator with405

softmax to obtain a continuous relaxation π(τ) similar to the GS trick [Jang et al., 2016, Maddison406

et al., 2017]. In particular, the ith row of π(τ) is given by:407

π(τ)[i, :] = softmax[(n+ 1− 2i)s−As1/τ ] (18)

where τ > 0 is a temperature parameter. We adapted this section from Grover et al. [2019] and408

we also refer to their original work for more details on how to generate differentiable permutation409

matrices.410

In this, work we remove the temperature parameter τ to reduce clutter in the notation. Hence, we411

only write π instead of π(τ), although it is still needed for the generation of the matrix π. For details412

on how we select the temperature parameter τ in our experiments, we refer to Appendix C.413

B Detailed Derivation of the Differentiable Two-Stage Random Partition414

Model415

B.1 Two-Stage Partition Model416

We want to partition n elements [n] = {1, . . . , n} into K subsets {S1, . . . ,SK} where K is a priori417

unknown.418
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Definition B.1 (Partition). A partition ρ of a set of elements [n] = {1, . . . , n} is a collection of419

subsets (S1, . . . ,SK) such that420

S1 ∪ · · · ∪ SK = [n] and ∀i ̸= j : Si ∩ Sj = ∅ (19)

Put differently, every element i has to be assigned to precisely one subset Sk. We denote the size421

of the k-th subset Sk as nk = |Sk|. Alternatively, we describe a partition ρ as an assignment matrix422

Y = [y1, . . . ,yK ]T ∈ {0, 1}K×n. Every row yk ∈ {0, 1}1×n is a multi-hot vector, where yki = 1423

assigns element i to subset Sk.424

In this work, we propose a new two-stage procedure to learn partitions. The proposed formulation425

separately infers the number of elements per subset nk and the assignment of elements to subsets Sk426

by inducing an order on the n elements and filling S1, ...,SK sequentially in this order. See Figure 1427

for an example.428

Definition B.2 (Two-stage partition model). Let n = [n1, . . . , nK ] ∈ NK
0 be the subset sizes in429

ρ, with N0 the set of natural numbers including 0 and
∑K

k=1 nk = n, where n is the total number430

of elements. Let π ∈ {0, 1}n×n be a permutation matrix that defines an order over the n elements.431

We define the two-stage partition model of n elements into K subsets as an assignment matrix432

Y = [y1, . . . ,yK ]T ∈ {0, 1}K×n with433

yk =

νk+nk∑
i=νk+1

πi, where νk =

k−1∑
ι=1

nι (20)

such that Y = [{yk | nk > 0}Kk=1]
T .434

Note that in contrast to previous work on partition models [Mansour and Schork, 2016], we allow Sk435

to be the empty set ∅. Hence, K defines the maximum number of possible subsets, not the effective436

number of non-empty subsets.437

To model the order of the elements, we use a permutation matrix π = [π1, . . . ,πn]
T ∈ {0, 1}n×n438

which is a square matrix where every row and column sums to 1. This doubly-stochastic property of439

all permutation matrices π [Marcus, 1960] thus ensures that the columns of Y remain one-hot vectors.440

At the same time, its rows correspond to nk-hot vectors yk in Definition B.2 and therefore serve as441

subset assignment vectors.442

Corollary B.3. A two-stage partition model Y , which follows Definition B.2, is a valid partition443

satisfying Definition B.1.444

Proof. By definition, every row πi and column πj of π is a one-hot vector, hence every
∑νk+nk

i=νk+1 πi445

results in different, non-overlapping nk-hot encodings, ensuring Si ∩ Sj = ∅ ∀ i, j and i ̸= j.446

Further, since nk-hot encodings have exactly nk entries with 1, we have
∑νk+nk

i=νk+1

∑n
j=1 πij = nk.447

Hence, since
∑K

k=1 nk = n, every element i is assigned to a yk, ensuring S1 ∪ · · · ∪ SK = [n].448

B.2 Two-Stage Random Partition Models449

An RPM p(Y ) defines a probability distribution over partitions Y . In this section, we derive how to450

extend the two-stage procedure from Definition B.2 to the probabilistic setting to create a two-stage451

RPM. To derive the two-stage RPM’s probability distribution p(Y ), we need to model distributions452

over n and π. We choose the MVHG distribution p(n;ω) and the PL distribution p(π; s) (see453

Section 3).454

We calculate the probability p(Y ;ω, s) sequentially over the probabilities of subsets pyk
:= p(yk |455

y<k;ω, s). pyk
itself depends on the probability over subset permutations pπ̄k

:= p(π̄ | nk,y<k; s),456

where a subset permutation matrix π̄ represents an ordering over nk out of n elements.457

Definition B.4 (Subset permutation matrix π̄). A subset permutation matrix π̄ ∈ {0, 1}nk×n, where458

nk ≤ n, must fulfill459

∀i ≤ nk :

n∑
j=1

π̄ij = 1 and ∀j ≤ n :

nk∑
i=1

π̄ij ≤ 1.
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We describe the probability distribution over subset permutation matrices pπ̄k
using Definition B.4460

and Equation (3).461

Lemma B.5 (Probability over subset permutations pπ̄k
). The probability pπ̄k

of any subset permuta-462

tion matrix π̄ = [π̄1, . . . , π̄nk
]T ∈ {0, 1}nk×n is given by463

pπ̄k
:= p(π̄ | nk,y<k; s) =

nk∏
i=1

(π̄s)i

Zk −
∑i−1

j=1(π̄s)j
(21)

where y<k = {y1, ...,yk−1}, Zk = Z −
∑

j∈S<k
sj and S<k =

⋃k−1
j=1 Sj .464

Proof. We provide the proof for pπ̄1
, but it is equivalent for all other subsets. Without loss of465

generality, we assume that there are n1 elements in S1. Following Equation (3), the probability of a466

permutation matrix p(π; s) is given by467

p(π; s) =
(πs)1
Z

(πs)2
Z − (πs)1

· · · (πs)n

Z −
∑n−1

j=1 (πs)j
(22)

At the moment, we are only interested in the ordering of the first n1 elements. The probability of the468

first n1 is given by marginalizing over the remaining n− n1 elements:469

p(π̄ | n1;ω) =
∑
π∈Π1

p(π | s) (23)

where Π1 is the set of permutation matrices such that the top n1 rows select the elements in a specific470

ordering π̄ ∈ {0, 1}n1×n, i.e. Π1 = {π : [π1, . . . ,πn1 ]
T = π̄}. It follows471

p(π̄ | n1;ω) =
∑
π∈Π1

p(π | s) (24)

=
∑
π∈Π1

n∏
i=1

(πs)i

Z −
∑i−1

j=1(πs)j
(25)

=

n1∏
i=1

(π̄s)i

Z −
∑i−1

j=1(π̄s)j

∑
π∈Π1

n−n1∏
i=1

(πs)n1+i

Z −
∑n1

j=1(π̄s)j −
∑i−1

j=1(π̄s)j
(26)

=

n1∏
i=1

(π̄s)i

Z −
∑i−1

j=1(π̄s)j

∑
π∈Π1

n−n1∏
i=1

(πs)n1+i

Z1 −
∑i−1

j=1(π̄s)j
(27)

where Z1 = Z −
∑n1

j=1(π̄s)j . It follows472

p(π̄ | n1;ω) =

n1∏
i=1

(π̄s)i

Z −
∑i−1

j=1(π̄s)j
(28)

473

Lemma B.5 describes the probability of drawing the elements i ∈ Sk in the order described by the474

subset permutation matrix π̄ given that the elements in S<k are already determined. Note that in a475

slight abuse of notation, we use p(π̄ | nk,y<k;ω, s) as the probability of a subset permutation π̄476

given that there are nk elements in Sk and thus π̄ ∈ {0, 1}nk×n. Additionally, we condition on the477

subsets y<k and nk, the size of subset Sk. In contrast to the distribution over permutations matrices478

p(π; s) in Equation (3), we take the product over nk terms and have a different normalization constant479

Zk. Although we induce an ordering over all elements i in Definition B.2, the probability pyk
is480

invariant to intra-subset orderings of elements i ∈ Sk.481

Lemma B.6 (Probability distribution pyk
). The probability distribution over subset assignments pyk

482

is given by483

pyk
:= p(yk | y<k;ω, s) = p(nk | n<k;ω)

∑
π̄∈Πyk

p(π̄ | nk,y<k; s)

where Πyk
= {π̄ ∈ {0, 1}nk×n : yk =

∑nk

i=1 π̄i} and p(π̄ | nk,y<k; s) as in Lemma B.5.484
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Proof. We can proof the statement of Lemma B.6 as follows:485

pyk
= p(yk | y<k;ω, s)

=
∑
n′
k

p(yk, n
′
k | y<k;ω, s) (29)

=
∑
n′
k

p(n′
k | y<k;ω, s)p(yk | n′

k,y<k;ω, s) (30)

=
∑
n′
k

p(n′
k | n<k;ω, s)p(yk | n′

k,y<k; s) (31)

= p(nk | n<k;ω, s)p(yk | nk,y<k; s) (32)

= p(nk | n<k;ω)
∑

π̄∈Πyk

p(π̄ | nk,y<k; s) (33)

Equation (29) holds by marginalization, where n′
k denotes the random variable that stands for the486

size of subset Sk. By Bayes’ rule, we can then derive Equation (30). The next derivations stem487

from the fact that we can compute n<k if y<k is given, as the assignments y<k hold information488

on the size of subsets S<k. More explicitly, ni =
∑n

j=1 yij . Further, yk is independent of ω if the489

size n′
k of subset Sk is given, leading to Equation (31). We further observe that p(yk | n′

k,y<k; s)490

is only non-zero, if n′
k =

∑n
i=1 yki = nk. Dropping all zero terms from the sum in Equation (31)491

thus results in Equation (32). Finally, by Definition B.2, we know that yk =
∑νk+nk

i=νk+1 πi, where492

νk =
∑k−1

ι=1 nι and π ∈ {0, 1}n×n a permutation matrix. Hence, in order to get yk given y<k, we493

need to marginalize over all permutations of the elements of yk given that the elements in y<k are494

already ordered, which corresponds exactly to marginalizing over all subset permutation matrices π̄495

such that yk =
∑nk

i=1 π̄i, resulting in Equation (33).496

In Lemma B.6, we describe the set of all subset permutations π̄ of elements i ∈ Sk by Πyk
. Put497

differently, we make p(yk | y<k;ω, s) invariant to the ordering of elements i ∈ Sk by marginalizing498

over the probabilities of subset permutations pπ̄k
[Xie and Ermon, 2019].499

Using Lemmas B.5 and B.6, we propose the two-stage random partition p(Y ;ω, s). Since500

Y = [y1, . . . ,yK ]T , we calculate p(Y ;ω, s), the PMF of the two-stage RPM, sequentially us-501

ing Lemmas B.5 and B.6, where we leverage the PL distribution for permutation matrices p(π; s) to502

describe the probability distribution over subsets p(yk | y<k;ω, s).503

Proposition 4.1 (Two-Stage Random Partition Model). Given a probability distribution over504

subset sizes p(n;ω) with n ∈ NK
0 and distribution parameters ω ∈ RK

+ and a PL probability505

distribution over random orderings p(π; s) with π ∈ {0, 1}n×n and distribution parameters s ∈ Rn
+,506

the probability mass function p(Y ;ω, s) of the two-stage RPM is given by507

p(Y ;ω, s) = p(y1, . . . ,yK ;ω, s) = p(n;ω)
∑

π∈ΠY

p(π; s) (34)

where ΠY = {π : yk =
∑νk+nk

i=νk+1 πi, k = 1, . . . ,K}, and yk and νk as in Definition B.2.508
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Proof. Using Lemmas B.5 and B.6, we write509

p(Y ) =p(y1, . . . ,yK ;ω, s) = p(y1;ω, s) · · · p(yK | {yj}j<K ;ω, s)

=

p(n1;ω)
∑

π̄1∈Πy1

p(π̄1 | n1; s)


· · ·

p(nK | {nj}j<K ;ω)
∑

π̄K∈ΠyK

p(π̄K | {nj}j≤K ; s)

 (35)

=p(n1;ω) · · · p(nK | {nK}j<K ;ω)

·

 ∑
π̄1∈Πy1

p(π̄1 | n1; s) · · ·
∑

πK∈ΠyK

p(π̄K | {nj}j≤K ; s)

 (36)

=p(n;ω)

 ∑
π̄1∈Πy1

· · ·
∑

πK∈ΠyK

p(π̄1 | n1; s) · · · p(π̄K | {nj}j≤K ; s)

 (37)

=p(n;ω)
∑

π∈ΠY

p(π | n; s) (38)

=p(n;ω)
∑

π∈ΠY

p(π; s) (39)

510

B.3 Approximating the Probability Mass Function511

Lemma 4.2. p(Y ;ω, s) can be upper and lower bounded as follows512

∀π ∈ ΠY : p(n;ω)p(π; s) ≤ p(Y ;ω, s) ≤ |ΠY |p(n;ω)max
π̃

p(π̃; s) (40)

Proof. Since p(π; s) is a probability we know that ∀π ∈ {0, 1}n×n p(π; s) ≥ 0. Thus, it follows513

directly that:514

∀π ∈ ΠY : p(Y ;ω, s) = p(n;ω)
∑

π′∈ΠY

p(π′; s) ≥ p(n;ω)p(π; s),

proving the lower bound of Lemma 4.2.515

On the other hand, can prove the upper bound in Lemma 4.2 by:516

p(Y ;ω, s) = p(n;ω)
∑

π′∈ΠY

p(π′; s)

≤p(n;ω)
∑

π′∈ΠY

max
π∈ΠY

p(π; s)

=p(n;ω) max
π∈ΠY

p(π; s)
∑

π′∈ΠY

1

=|ΠY | · p(n;ω) max
π∈ΠY

p(π; s)

≤|ΠY | · p(n;ω)max
π

p(π; s)

We can compute the maximum probability maxπ p(π; s) with the probability of the permutation517

matrix fπ(s), which sorts the unperturbed scores in decreasing order.518

B.4 The Differentiable Random Partition Model519

We propose the DRPM p(Y ;ω, s), a differentiable and reparameterizable two-stage RPM.520
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Lemma 4.3 (DRPM). A two-stage RPM is differentiable and reparameterizable if the distribu-521

tion over subset sizes p(n;ω) and the distribution over orderings p(π; s) are differentiable and522

reparameterizable.523

Proof. To prove that our two-stage RPM is differentiable we need to prove that we can compute524

gradients for the bounds in Lemma 4.2 and to provide a reparameterization scheme for the two-stage525

approach in Definition B.2.526

Gradients for the bounds: Since we assume that p(n;ω) and p(π; s) are differentiable and repa-527

rameterizable, we only need to show that we can compute |ΠY | and maxπ̃ p(π̃; s) in a differentiable528

manner to prove that the bounds in Lemma 4.2 are differentiable. By definition (see Section 4.1),529

|ΠY | =
K∏

k=1

|Πyk
| =

K∏
k=1

nk!.

Hence, |ΠY | can be computed given a reparametrized version nk, which is provided by the530

reparametrization trick for the MVHG p(n;ω). Further, from Equation (14) we immediately see that531

the most probable permutation is given by the order induced by sorting the original, unperturbed532

scores s from highest to lowest. This implies that maxπ̃ p(π̃; s) = p(πs; s), which we can compute533

due to p(πs; s) being differentiable according to our assumptions.534

Reparametrization of the two-stage approach: Given reparametrized versions of n and π, we535

compute a partition as follows:536

yk =

νk+nk∑
i=νk+1

πi, where νk =

k−1∑
ι=1

nι (41)

The challenge here is that we need to be able to backpropagate through nk, which appears as an index537

in the sum. Let αk = {0, 1}n, such that538

(αk)i =

{
1 if νk < i ≤ νk+1

0 otherwise

Given such αk, we can rewrite Equation (41) with539

yk =

n∑
i=1

(αk)iπi. (42)

While this solves the problem of propagating through sum indices, it is not clear how to compute540

αk in a differentiable manner. Similar to other works on continuous relaxations [Jang et al., 2016,541

Maddison et al., 2017], we can compute a relaxation of αk by introducing a temperature τ . Let us542

introduce auxiliary function f : N→ [0, 1]n, that maps an integer x to a vector with entries543

fi(x; τ) = σ

(
x− i+ ϵ

τ

)
,

such that fi(x; τ) ≈ 0 if x−i
τ < 0 and fi(x; τ) ≈ 1 if x−i

τ ≥ 0. Note that σ(·) is the standard544

sigmoid function and ϵ << 1 is a small positive constant to break the tie at σ(0). We then compute545

an approximation of αk with546

α̃k(τ) = f(νk; τ)− f(νk−1; τ),

α̃k(τ) ∈ [0, 1]n. Then, for τ → 0 we have α̃k(τ) → αk. In practice, we cannot set τ = 0 since547

this would amount to a division by 0. Instead, we can apply the straight-through estimator [Bengio548

et al., 2013] to the auxiliary function f(x; τ) in order to get α̃k ∈ {0, 1}n and use it to compute549

Equation (42).550

Note that in our experiments, we use the MVHG relaxation of Sutter et al. [2023] and can thus551

leverage that they return one-hot encodings for nk. This allows a different path for computing αk552

which circumvents introducing yet another temperature parameter altogether. We refer to our code in553

the supplement for more details.554
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Table 3: Total GPU hours per experiment. We report the cumulative training and testing hours to
generate the results shown in the main part of this manuscript. We relied on our internal cluster
infrastructure equipped with RTX2080Ti GPUs. Hence, we report the number of compute hours for
this GPU-type.

Experiment Computation Time (h)

Clustering (Section 5.1) 100
Partitioning of Generative Factors (Section 5.2) 480
MTL (Section 5.3) 100

C Experiments555

In the following, we describe each of our experiments in more detail and provide additional ablations.556

All our experiments were run on RTX2080Ti GPUs. Each run took 6h-8h (Variational Clustering),557

4h-6h (Generative Factor Partitioning), or ∼ 1h (Multitask Learning) respectively. We report the558

training and test time per model. Please note that we can only report the numbers to generate the final559

results but not the development time.560

C.1 Variational Clustering with Random Partition Models561

Figure 5: Generative model of the DRPM clustering model. Generative paths are marked with thin
arrows, whereas inference is in bold.

C.1.1 Loss Function562

As mentioned in Section 5.1, for a given dataset X with N samples, let Z and Y contain the563

respective latent vectors and cluster assignments for each sample in X . The generative process564

can then be summarized as follows: First, we sample the cluster assignments Y from an RPM,565

i.e., Y ∼ P (Y ;ω, s). Given Y , we can sample the latent variables Z, where for each y we have566

z ∼ N (µy,σ
T
y Il), z ∈ Rl. Finally, we sample X by passing each z through a decoder like in567

vanilla VAEs. Using Bayes rule and Jensen’s inequality, we can then derive the following evidence568
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lower bound (ELBO):569

log(p(X)) = log

(∫ ∑
Y

p(X,Y, Z)dZ

)

≥ Eq(Z,Y |X)

[
log

(
p(X|Z)p(Z|Y )p(Y )

q(Z, Y |X)

)]
:= LELBO(X)

We then assume that we can factorize the approximate posterior as follows:570

q(Z, Y |X) = q(Y |X)
∏
x∈X

q(z|x)

Note that while we do assume conditional independence between z given its corresponding x,571

we model q(Y |X) with the DRPM and do not have to assume conditional independence between572

different cluster assignments. This allows us to leverage dependencies between samples from the573

dataset. Hence, we can rewrite the ELBO as follows:574

LELBO(X) =Eq(Z|X) [log(p(X|Z))]

− Eq(Y |X) [KL[q(Z|X)||p(Z|Y )]]

−KL[q(Y |X)||p(Y )]

=
∑
x∈X

Eq(z|x) [log p(x|z)]

−
∑
x∈X

Eq(Y |X) [KL[q(z|x)||p(z|Y )]]

−KL[q(Y |X)||p(Y )]

See Figure 5 for an illustration of the generative process and the assumed inference model. Since575

computing P (Y ) and q(Y |X) is intractable, we further apply Lemma 4.2 to approximate the KL-576

Divergence term in LELBO, leading to the following lower bound:577

LELBO ≥
∑
x∈X

Eq(z|x) [log p(x|z)] (43)

−
∑
x∈X

Eq(Y |X) [KL[q(z|x)||p(z|Y )]] (44)

− Eq(Y |X)

[
log
|ΠY | · q(n;ω(X))

p(n;ω)p(πY ; s)

]
(45)

− log
(
max
π̃

q(π̃; s(X))
)
, (46)

where πY is the permutation that lead to Y during the two-stage resampling process. Further, we578

want to control the regularization strength of the KL divergences similar to the β-VAE [Higgins579

et al., 2016]. Since the different terms have different regularizing effects, we rewrite Equations (45)580

and (46) and weight the individual terms as follows, leading to our final loss:581

L :=−
∑
x∈X

Eq(z|x) [log p(x|z)] (47)

+ β ·
∑
x∈X

Eq(Y |X) [KL[q(z|x)||p(z|Y )]] (48)

+ γ · Eq(Y |X)

[
log

(
|ΠY | · q(n;ω(X))

p(n;ω)

)]
(49)

+ δ · Eq(Y |X)

[
log

(
maxπ̃ q(π̃; s(X))

p(πY ; s)

)]
(50)

C.1.2 Architecture582

The model for our clustering experiments is a relatively simple, fully-connected autoencoder with a583

structure as seen in Figure 6. We have a fully connected encoder E with three layers mapping the input584
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Figure 6: Autoencoder architecture of the DRPM-VC model.

to 500, 500, and 2000 neurons, respectively. We then compute each parameter by passing the encoder585

output through a linear layer and mapping to the respective parameter dimension in the last layer.586

In our experiments, we use a latent dimension size of l = 10 for MNIST and l = 20 for FMNIST,587

such that µ(x),σ(x) ∈ Rl. To understand the architecture choice for the DRPM parameters, let us588

first take a closer look at Equation (48). For each sample x, this term minimizes the expected KL589

divergence between its approximate posterior q(z|x) = N (µ(x),diag(σ(x))) and the prior at index590

y given by the partition Y sampled from the DRPM q(Y |X; s,ω), i.e., N (µy,diag(σy)). Ideally,591

the most likely partition should assign the approximate posterior to the prior that minimizes this KL592

divergence. We can compute such s(X) and ω(X) given the parameters of the approximate posterior593

and priors as follows:594

∀xi ∈ X : si(xi) = u · (K − argmin
k

(KL[N (µ(xi),diag(σ(xi))||N (µk,diag(σk))]))

ω(X) =
1

|X|

N∑
x∈X

{
N (x|µk,diag(σk))∑K

k′=1N (x|µk′ ,diag(σk′))

}K

k=1

,

where u is a scaling constant that controls the probability of sampling the most likely partition. Note595

that ω and s minimize Equation (48) if defined this way when given the distribution parameters of the596

approximate posterior and the priors. The only thing that is left unclear is how much u should scale597

the scores s. Ultimately, we leave u as a learnable parameter but detach the rest of the computation of598

s and ω from the computational graph to improve stability during training. Finally, once we resample599

z ∼ N (µ(x), σ(x)), we pass it through a fully connected decoder D with four layers mapping z to600

2000, 500, and 500 neurons in the first three layers and then finally back to the input dimension in601

the last layer to end up with the reconstructed sample x̂.602

C.1.3 Training603

As in vanilla VAEs, we can estimate the reconstruction term in Equation (47) with MCMC by604

applying the reparametrization trick [Kingma and Welling, 2014] to q(z|x) to sample M samples605

z(i) ∼ q(z|x) and compute their reconstruction error to estimate Equation (47). Similarly, we can606
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sample from q(Y |X) L times to estimate the terms in Equations (48) to (50), such that we minimize607

L̃ :=−
∑
x∈X

1

M

M∑
i=1

log p(x|z(i))

+
β

L
·
∑
x∈X

L∑
i=1

KL[q(z|x)||p(z|Y (i))]

+
γ

L
·

L∑
i=1

log

(
|ΠY (i) | · q(n(i);ω(X))

p(n(i);ω)

)

+
δ

L
·

L∑
i=1

log

(
maxπ̃ q(π̃; s(X))

p(πY (i) ; s)

)
In our experiments, we set M = 1 and L = 100 since the MVHG and PL distributions are not608

concentrated around their mean very well, and more Monte Carlo samples thus lead to better609

approximations of the expectation terms. We further set β = 1 for MNIST and β = 0.1 for FMNIST,610

and otherwise γ = 1, and δ = 0.01 for all experiments.611

To resample n and π we need to apply temperature annealing [Grover et al., 2019, Sutter et al.,612

2023]. To do this, we applied the exponential schedule that was originally proposed together with the613

Gumbel-Softmax trick [Jang et al., 2016, Maddison et al., 2017], i.e., τ = max(τfinal, exp(−rt)),614

where t is the current training step and r is the annealing rate. For our experiments, we choose615

r =
log(τfinal)−log(τinit)

100000 in order to annealing over 100000 training step. Like Jang et al. [2016], we616

set τinit = 1 and τfinal = 0.5.617

Similar to Jiang et al. [2016], we quickly realized that proper initialization of the cluster parameters618

and network weights is crucial for variational clustering. In our experiments, we pretrained the619

autoencoder structure by adapting the contrastive loss of [Li et al., 2022], as they demonstrated that620

their representations manage to retain clusters in low-dimensional space. Further, we also added621

a reconstruction loss to initialize the decoder properly. To initialize the prior parameters, we fit a622

GMM to the pretrained embeddings of the training set and took the resulting Gaussian parameters to623

initialize our priors. Note that we used the same initialization across all baselines. See Appendix C.1.4624

for an ablation where we pretrain with only a reconstruction loss similar to what was proposed with625

the VADE baseline.626

To optimize the DRPM-VC in our experiments, we used the AdamW [Loshchilov and Hutter, 2019]627

optimizer with a learning rate of 0.0001 with a batch size of 256 for 1024 epochs. During initial628

experiments with the DRPM-VC, we realized that the pretrained weights of the encoder would often629

lose the learned structure in the first couple of training epochs. We suspect this to be an artifact of630

instabilities induced by temperature annealing. To deal with these problems, we decided to freeze631

the first three layers of the encoder when training the DRPM-VC, giving us much better results. See632

Appendix C.1.5 for an ablation where we applied the same optimization procedure to VADE.633

Finally, when training the VADE baseline and the DRPM-VC on FMNIST, we often observe a local634

optimum where the prior distributions collapse and become identical. We can solve this problem635

by refitting the GMM in the latent space every 10 epochs and by using the resulting parameters to636

reinitialize the prior distributions.637

C.1.4 Reconstruction Pretraining638

While the results of our variational clustering method depend a lot on the specific pretraining, we639

want to demonstrate that improvements over the baselines do not depend on the chosen pretraining640

method. To that end, we repeat our experiments but initialize the weights of our model with an641

autoencoder that has been trained to minimize the mean squared error between the input and the642

reconstruction. This initialization procedure was originally proposed in [Jiang et al., 2016]. We643

present the results of this ablation in Table 4. Simply minimizing the reconstruction error does not644

necessarily retain cluster structures in the latent space. Thus, it does not come as a surprise that overall645

results get about 10% to 20% worse across most metrics, especially for MNIST, while results on646

FMNIST only slightly decrease. However, we still beat the baselines across most metrics, suggesting647
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Table 4: We compare the clustering performance of the DRPM-VC on test sets of MNIST and
FMNIST between GMM in latent space (Latent GMM) and Variational Deep Embedding (VADE)
initializing weights using an autoencoder trained on a reconstruction objective. We measure per-
formance in terms of the Normalized Mutual Information (NMI), Adjusted Rand Index (ARI), and
cluster accuracy (ACC) over five seeds and put the best model in bold.

MNIST FMNIST

NMI ARI ACC NMI ARI ACC

LATENT GMM 0.75±0.00 0.66±0.01 0.75±0.01 0.56±0.02 0.41±0.03 0.57±0.02

VADE 0.77±0.02 0.62±0.04 0.69±0.04 0.53±0.07 0.35±0.08 0.47±0.09

DRPM-VC 0.74±0.00 0.67±0.01 0.75±0.02 0.59±0.01 0.47±0.02 0.62±0.01

Table 5: We compare the clustering performance of the DRPM-VC on test sets of MNIST and
FMNIST between GMM in latent space (Latent GMM), and Variational Deep Embedding (VADE)
when freezing the encoder. We measure performance in terms of the Normalized Mutual Information
(NMI), Adjusted Rand Index (ARI), and cluster accuracy (ACC) over five seeds and put the best
model in bold.

MNIST FMNIST

NMI ARI ACC NMI ARI ACC

LATENT GMM 0.86±0.02 0.83±0.06 0.88±0.07 0.60±0.00 0.47±0.01 0.62±0.01

VADE 0.90±0.02 0.88±0.06 0.92±0.06 0.64±0.01 0.47±0.01 0.59±0.03

DRPM-VC 0.89±0.01 0.88±0.03 0.94±0.02 0.64±0.00 0.51±0.01 0.65±0.00

that modeling the implicit dependencies between cluster assignments helps to improve variational648

clustering performance.649

C.1.5 Baselines with fixed Encoder650

For the experiments in the main text, we wanted to implement the VADE baseline similar to the651

original method proposed in Jiang et al. [2016]. This means, in contrast to our method, we used652

their optimization procedure, i.e., Adam with a learning rate of 0.002 with a decay of 0.95 every653

10 steps, and did not freeze the encoder as we do for the DRPM-VC. To ensure our results do not654

stem from this minor discrepancy, we perform an ablation experiment on VADE using the same655

optimizer and learning rate as with the DRPM-VC and freeze the encoder backbone. The results of656

this additional experiment can be found in Appendix C.1.5. As can be seen, VADE results do improve657

when adjusting the optimization procedure in this way. However, we still match or improve upon the658

results of VADE in most metrics, especially in ARI and ACC, suggesting purer clusters compared659

to VADE. We suspect this is because we assign samples to fixed clusters when sampling from the660

DRPM, whereas VADE performs soft assignments by marginalizing over a categorical distribution.661

C.1.6 Additional Partition Samples662

In Section 5.1, we have seen a sample of a partition of the DRPM-VC trained on FMNIST. We663

provide additional samples for both MNIST and FMNIST at the end of the appendix in Figures 12664

and 13. We can see that for both datasets, the DRPM-VC learns coherent representations of each665

cluster that easily allow us to generate new samples from each class.666

C.1.7 Samples per cluster667

In addition to sampling partitions and then generating samples according to the sampled cluster668

assignments, we can also directly sample from each of the learned priors. We show some examples669

of this for both MNIST and FMNIST at the end of the appendix in Figures 14 and 15. We can again670

see that the DRPM-VC learns accurate cluster representations since each of the samples seems to671
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Figure 7: Motivation for the Partitioning of Generative Factors under weak supervision. The
knowledge about the data collection process provides a weak supervision signal. We have access
to a dataset of pairs of images of the same robot arm with a subset of shared generative factors (in
red). We want to learn the shared and independent generative factors in addition to learning from
the data. The images of the robot arms are taken from Locatello et al. [2020] but originate from
the mpi3d toy dataset (see https://github.com/rr-learning/disentanglement_dataset).
The image is from Sutter et al. [2023] and their ICLR 2023 presentation video (see https://iclr.
cc/virtual/2023/poster/10707).

correspond to one of the classes in the datasets. Further, the clusters also seem to capture the diversity672

in each cluster, as we see a lot of variety across the generated samples.673

C.2 Variational Partitioning of Generative Factors674

We assume that we have access to multiple instances or views of the same event, where only a675

subset of generative factors changes between views. The knowledge about the data collection process676

provides a form of weak supervision. For example, we have two images of a robot arm as depicted677

here on the left side (see [Gondal et al., 2019]), which we would describe using high-level concepts678

such as color, position or rotation degree. From the data collection process, we know that a subset679

of these generative factors is shared between the two views We do not know how many generative680

factors there are in total nor how many of them are shared. More precisely, looking at the robot arm,681

we do not know that the views share two latent factors, depicted in red, out of a total of four factors.682

Please note that we chose four generative in Figure 7 only for illustrative reason as there are seven683

generative factors in the mpi3d toy dataset. Hence, the goal of learning under weak supervision is not684

only to infer good representations, but also inferring the number of shared and independent generative685

factors. Learning what is shared and what is independent lets us reason about the group structure686

without requiring explicit knowledge in the form of expensive labeling. Additionally, leveraging weak687

supervision and, hence, the underlying group structure holds promise for learning more generalizable688

and disentangled representations (see [e.g., Locatello et al., 2020]).689

C.2.1 Generative Model690

We assume the following generative model for DRPM-VAE691

p(X) =

∫
z

p(X, z)dz (51)

=

∫
z

p(X | z)p(z)dz (52)

where z = {zs, z1, z2}. The two frames share an unknown number ns of generative latent factors692

zs, and an unknown number, n1 and n2, of independent factors z1 and z2. The RPM infers nk and693
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Figure 8: Graphical Models for DRPM-VAE models in the weakly-supervised experiment.

zk using Y . Hence, the generative model extends to694

p(X) =

∫
z

p(X | z)
∑
Y

p(z | Y )p(Y )dz

=

∫
z

p(x1,x2 | zs, z1, z2)
∑
Y

p(z | Y )p(Y )dz

=

∫
zs,z1,z2

p(x1 | zs, z1)p(x2 | zs, z2)
∑
Y

p(zs, z1, z2 | Y )p(Y )dzsdz1dz2 (53)

Figure 8 shows the generative and inference models assumptions in a graphical model.695

C.2.2 DRPM ELBO696

We derive the following ELBO using the posterior approximation q(z, Y |X)697

LELBO(X) = Eq(z,Y |X)

[
log p(X | z, Y )− log

q(z, Y |X)

p(z, Y )

]
(54)

= Eq(z,Y |X)

[
log p(X | z)− log

q(z | Y,X)q(Y |X)

p(z)p(Y )

]
(55)

= Eq(z,Y |X)

[
log p(x1,x2 | z)− log

q(z | Y,X)

p(z)
− log

q(Y |X)

p(Y )

]
(56)

= Eq(z,Y |X) [log p(x1 | zs, z1)]− Eq(z,Y |X) [log p(x2 | zs, z2)]

− Eq(z,Y |X)

[
log

q(zs, z1, z2 | Y,X)

p(zs, z1, z2)

]
− Eq(z,Y |X)

[
log

q(Y |X)

p(Y )

]
(57)

Following Lemma 4.2, we are able to optimize DRPM-VAE using the following ELBO LELBO(X):698

LELBO ≥ Eq(z,Y |X) [log p(x1 | zs, z1)]− Eq(z,Y |X) [log p(x2 | zs, z2)] (58)

− Eq(z,Y |X)

[
log

q(zs, z1, z2 | Y,X)

p(zs, z1, z2)

]
(59)

− Eq(Y |X)

[
log

(
|ΠY | · q(n |X;ω)

p(n;ωp)p(πY ; sp)

)]
(60)

− log
(
max
π̃

q(π̃ |X; s)
)
, (61)

where πY is the permutation that lead to Y during the two-stage resampling process. Further, we699

want to control the regularization strength of the KL divergences similar to the β-VAE [Higgins et al.,700
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Figure 9: Setup for the weakly-supervised experiment. The three methods differ only in the View
Aggregation module.

2016]. The ELBO L(X) to be optimized can be written as701

LELBO = Eq(z,Y |X) [log p(x1 | zs, z1)] + Eq(z,Y |X) [log p(x2 | zs, z2)] (62)

− β · Eq(z,Y |X)

[
log

q(zs, z1, z2 | Y,X)

p(zs, z1, z2)

]
(63)

− γ · Eq(Y |X)

[
log

(
|ΠY | · q(n;ω(X))

p(n;ωp)

)]
(64)

− δ · Eq(Y |X)

[
log

(
maxπ̃ q(π̃; s(X))

p(πY ; sp)

)]
(65)

where s(X) and ω(X) denote distribution parameters, which are inferred from X (similar to the702

Gaussian parameters in the vanilla VAE).703

As in vanilla VAEs, we can estimate the reconstruction term in Equation (58) with MCMC by704

applying the reparametrization trick [Kingma and Welling, 2014] to q(z | Y,X) to sample L samples705

z(l) ∼ q(z | Y,X) and compute their reconstruction error to estimate Equation (58). Similarly, we706

can sample from q(Y |X) L times. We use L = 1 to estimate all expectations in LELBO.707

C.2.3 Implementation and Hyperparameters708

In this experiment, we use the disentanglement_lib from Locatello et al. [2020]. We use the same709

architectures proposed in the original paper for all methods we compare to. The baseline algorithms,710

LabelVAE [Bouchacourt et al., 2018, Hosoya, 2018] and AdaVAE [Locatello et al., 2020] are already711

implemented in disentanglement_lib. For details on the implementation of these methods we712

refer to the original paper from Locatello et al. [2020]. HGVAE is implemented in Sutter et al. [2023].713

We did not change any hyperparameters or network details. All experiments were performed using714

β = 1 as this is the best performing β (according to Locatello et al. [2020]. For DRPMVAE we chose715

γ = 0.25 for all runs. All models are trained on 5 different random seeds and the reported results are716

averaged over the 5 seeds. We report mean performance with standard deviations.717

We adapted Figure 9 from Sutter et al. [2023]. It shows the baseline architecture, which is used for718

all methods. As already stated in the main part of the paper, the methods only differ in the View719

Aggregation module, which determines the shared and independent latent factors. Given a subset720

S of shared latent factors, we have721

qϕ(zi | xj) = avg(qϕ(zi | x1), qϕ(zi | x2)) ∀ i ∈ S (66)
qϕ(zi | xj) = qϕ(zi | xj) else (67)

where avg is the averaging function of choice [Locatello et al., 2020, Sutter et al., 2023] and722

j ∈ {1, 2}. The methods used (i. e. Label-VAE, Ada-VAE, HG-VAE, DRPM-VAE) differ in how to723

select the subset S.724

For DRPM-VAE, we infer ω from the pairwise KL-divergences KLpw between the latent vectors of725

the two views.726

KLpw(x1,x2) =
1

2
KL[q(z1 | x1)||q(z2 | x2)] +

1

2
KL[q(z2 | x2)||q(z1 | x1)] (68)

where q(zj | xj) are the encoder outputs of the respective images. We do not average or sum across727

dimensions in the computation of KLpw(·) such that the KLpw(·) is d-dimensional, where d is the728

latent space size. The encoder E in Figure 9 maps to µ(xj) and σ(xj) of a Gaussian distribution.729

Hence, we can compute the KL divergences above in closed form. Afterwards, we feed the pairwise730

KL divergence KLpw to a single fully-connected layer, which maps from d to K values731

logω = FC(KLpw(x1,x2)) (69)
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Figure 10: Samples from the noisyMultiMNIST dataset with increasing noise ratio in the right task.

where d = 10 and K = 2 in this experiment. d is the total number of latent dimensions and K is the732

number of groups in the latent space. To infer the scores s(X) we again rely on the pairwise KL733

divergence KLpw. Instead of using another fully-connected layer, we directly use the log-values of734

the pairwise KL divergence735

log s = logKLpw(x1,x2) (70)

Similar to the original works, we also anneal the temperature parameter for p(n;ω) and p(π; s)736

[Grover et al., 2019, Sutter et al., 2023]. We use the same annealing function as in the clustering737

experiment (see Appendix C.1). We anneal the temperature τ from 1.0 to 0.5 over the complete738

training time.739

C.3 Multitask Learning740

C.3.1 MultiMNIST Dataset741

The different tasks in multitask learning often vary in difficulty. To measure the effect of discrepancies742

in task difficulties on DRPM-MTL, we introduce the noisyMultiMNIST dataset.743

The noisyMultiMNIST dataset modifies the MultiMNIST dataset [Sabour et al., 2017] as follows.744

In the right image, we set each pixel value to zero with probability α ∈ [0, 1]. This is done before745

merging the left and right image in order to only affect the difficulty of the right task. Note that for746

α = 0 noisyMultiMNIST is equivalent to MultiMNIST and for α = 1 the right task can no longer be747

solved. This allows us to control the difficulty of the right task, without changing the difficulty of the748

left. A few examples are shown in Figure 10.749

C.3.2 Implementation & Architecture750

The multitask loss function for the MultiMNIST dataset is751

L = wLLL + wRLR (71)

where wL and wL are the loss weights, and LL and LR are the individual loss terms for the respective752

tasks L and R. In our experiments, we set the task weights to be equal for all dataset versions, i.e.753

wL = wR = 0.5. We use these loss weights for the DRPM-MTL and ULS method. For the ULS754

method, it is by definition and to see the influence of a mismatch in loss weights. The DRPM-MTL755

method on the other hand does not need additional weighting of loss terms. The task losses are756

defined as cross-entropy losses757

Lt = −
Ct∑
c=1

gtc log pc = −gtT log p (72)

where CL = CR = 10 for MultiMNIST, gt is a one-hot encoded label vector and p is a categorical758

vector of estimated class assignments probabilities, i.e.
∑

c pc = 1.759

The predictions for the individual tasks pt are given as760

pt = hθt(z), where (73)
z = encθ(x) (74)

for a sample x ∈X (see also Figure 11). We use an adaptation of the LeNet-5 architecture LeCun761

et al. [1998] to the multitask learning problem [Sener and Koltun, 2018]. Both DRPM-MTL and ULS762

use the same network encθ(·) with shared architecture up to some layer for both tasks, after which763

the network branches into two task-specific sub-networks that perform the classifications. Different764
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Figure 11: Overview of the multitask learning pipeline of the DRPM-MTL method.

to the ULS method, the task-specific networks in the DRPM-MTL pipeline predict the digit using765

only a subset of z. DRPM-MTL uses the following prediction scheme766

pt = hθt(zt), where (75)
zt = z ⊙ yt (76)
yt = DRPM(ω, s)t = DRPM(encφ(x))t (77)

The DRPM-MTL encoder first predicts a latent representation z← encθ(x), where x is the input767

image. Using the same encoder architecture but different parameters φ , we predict a partitioning768

encoding z′ ← encφ(x). With a single linear layer per DRPM log-parameter logω and log s are769

computed. Next we infer the partition masks yL,yR ∼ p(yL,yR;ω, s). We then feed the masked770

latent representations zL ← z ⊙ yL and zR ← z ⊙ yR into the task specific classification networks771

hθL(zL) and hθR(zR) respectively to obtain the task specific predictions. Since the two tasks in the772

MultiMNIST dataset are of similar nature, the task-specifc networks hθL and hθR share the same773

architecture, but have different parameters.774

C.3.3 Training775

For both the ULS and the DRPM-MTL model, we use the Adam optimizer with learning rate 0.0005776

and train them for 200 epochs with a batch size of 256. We again choose an exponential schedule for777

the temperature τ and anneal it over the training time, as is explained in Appendix C.1.3.778

In our ablation we use α ∈ {0, 0.1, 0.2, . . . , 0.9} and train each model with five different seeds.779

The reported accuracies and partition sizes are then means over the five seeds with the error bands780

indicating the variance and standard deviation respectively. We evaluate each model after the epoch781

with the best average test accuracy.782

C.3.4 CelebA for MTL783

In addition to the experiment shown in Section 5.3, we show additional results for DRPM-MTL on784

the CelebA dataset [Liu et al., 2015]. In MTL, each of the 40 attributes of the CelebA dataset serves785

as an individual task. Hence, using CelebA for MTL results is a 40 task learning problem making the786

scaling of different task losses more difficult compared to MultiMNIST (see Section 5.3) where we787

only need to scale two different tasks.788

We again use the newly introduced DRPM-MTL method and compare it to the ULS model. We use789

the same pipeline as for MultiMNIST dataset but with different encoders and hyperparameters (see790

Appendices C.3.2 and C.3.3). We use the pipeline of Sener and Koltun [2018] with a ResNet-based en-791

coder to map an image to a representation of d = 64 dimensions. For architectural details, we refer to792

Sener and Koltun [2018] and https://github.com/isl-org/MultiObjectiveOptimization.793

Again, ULS inputs all d = 64 dimensions to the task-specific sub-networks whereas DRPM-MTL794

partitions the intermediate representations into nT different subsets, which are then fed to the795

respective task networks. nT is the number of tasks.796

Compared to the MultiMNIST experiment (see Appendix C.3.2), we introduce an additional regular-797

ization for the DRPM-MTL method. The additional regularization is based on the upper bound in798
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Table 6: Results for the MTL experiment on the CelebA dataset. We compare the DRPM-MTL
again to the ULS method. We assess the performance of both methods on two sub-experiment of the
CelebA experiment. In Table 6a, we form a MTL experiment with 10 different tasks. In Table 6b,
we form a MTL experiment with 20 different tasks where the first 10 tasks are the same as in the 10
tasks experiment. We train both methods for 50 methods using a learning rate of 0.0001 and a batch
size of 128. The temperature annealing schedule remains the same as in the MultiMNIST experiment.
We report the per task classification accuracy in percentages (%) as well as the average task accuracy
in the bottow row of both subtables.

(a) 10 Tasks

ULS DRPM

T0 92.0±0.5 92.4±0.5

T1 83.8±0.4 83.7±0.2

T2 80.2±0.5 80.2±0.4

T3 81.9±0.8 82.2±0.6

T4 98.5±0.2 98.5±0.1

T5 95.2±0.2 95.3±0.2

T6 80.0±1.4 82.4±0.4

T7 82.0±0.3 82.2±0.2

T8 89.7±0.7 90.7±0.2

T9 94.6±0.5 95.0±0.2

avg(Tasks) 87.8±0.3 88.3±0.1

(b) 20 Tasks

ULS DRPM

T0 92.4±0.7 93.0±0.2

T1 83.7±0.6 83.9±0.7

T2 79.9±0.6 80.1±0.4

T3 82.4±0.5 83.0±0.7

T4 98.6±0.1 98.6±0.1

T5 95.2±0.1 95.5±0.0

T6 82.0±1.3 84.4±0.4

T7 82.5±0.1 82.8±0.2

T8 90.1±0.9 91.0±0.4

T9 94.7±0.2 95.1±0.1

T10 95.9±0.1 95.9±0.1

T11 84.9±0.1 84.6±0.3

T12 91.0±0.4 91.6±0.2

T13 94.7±0.1 94.9±0.1

T14 95.4±0.3 96.0±0.1

T15 99.2±0.0 99.2±0.1

T16 95.8±0.3 96.0±0.1

T17 97.3±0.3 97.5±0.2

T18 91.2±0.3 91.2±0.1

T19 87.0±0.3 87.3±0.2

avg(Tasks) 90.7±0.2 91.1±0.1

Lemma 4.2 and is penalizing size of |ΠY | for a given n. Hence, the loss function changes to799

L =
1

nT

nT∑
t=1

Lt + λ · Lreg (78)

where Lreg = log

(
nT∏
t=1

nt!

)
=

nT∑
t=1

log Γ(nt + 1) (79)

For both versions of the experiment (i.e. nT = 10 and nT = 20), we set λ = 0.015 ≈ 1
64 , which is800

the number of elements we want to partition. The task losses Lt are simple BCE losses similar to the801

MultiMNIST experiments but with two classes per task only.802

We perform two different experiments based on the CelebA experiment. First, we use form a MTL803

experiments using the first 10 attributes out of the 40 attributes. Second, we increase the number of804

different tasks to 20. Because we sort the attributes alphabetically in both cases, the first 10 tasks are805

shared between the two experiment versions.806

Table 6 shows the results of both methods, ULS and DRPM-MTL. We see that the DRPM-MTL807

scales better to a larger number of tasks compared to the ULS method, highlighting the importance of808

finding new ways of automatic scaling between tasks. Interestingly, the DRPM-MTL outperforms809

the ULS method on most tasks for the 20-tasks experiment even though it has only access to810

d/nT = 64/20 = 3.2 dimensions on average. On the other hand, the ULS method can access the811

full set of 64 dimensions for every single task.812
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Figure 12: Additional partition samples from the DRPM-VC trained on MNIST. The different sets of
each partition match each of the digits very well, even after repeatedly sampling from the model.
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Figure 13: Additional partition samples from the DRPM-VC trained on FMNIST. Most clusters
accurately represent one of the clothing categories and generate new samples very well. The only
problem is with the handbag class, where the DRPM-VC learns two different clusters for different
kinds of handbags (cluster 5 and 6).
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Figure 14: Various samples from each of the generative priors. Each prior learns to represent one
of the digits. Further, we see a lot of variation between the different samples, suggesting that the
clusters of the DRPM-VC manage to capture some of the diversity present in the dataset.
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Figure 15: Various samples from each of the generative priors. Each prior learns to represent one
of the digits. The DRPM-VC learns nice representations that provide coherent generations of most
classes. For high-heels (cluster 4), generating new samples seems difficult due to the heterogeneity
within that class.
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