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This article serves as the supplementary material to the central part of our paper. Appendix A includes1

some further discussions. Complete proofs of the theorems and propositions in Sections 4 and 5 can2

be found in Appendix B. A multi-class analysis of the manifold attack model is given in Appendix C.3

A Further Discussions4

A.1 What makes a good explanatory model?5

As its title suggests, our paper’s primary effort is to explain the properties of TBAs by the manifold6

attack model. During the writing of this paper, the following question is discussed repeatedly:7

What makes a good explanatory model and how to evaluate an explanatory model?8

This subsection provides our answer to this question. First of all, we believe that a good explanatory9

model should be:10

• (Criterion 1) consistent with existing empirical results,11

• (Criterion 2) based on reasonable assumptions, and12

• (Criterion 3) theoretically tractable.13

Throughout this paper, we make many efforts to validate our model. Specifically, we try to check14

whether our model fulfills criteria 1-3. Clearly, our model is theoretically tractable. We theoretically15

analyze TBAs and provide many explanatory results in Sections 4 and 5.16

In the rest of this subsection, we briefly discuss criteria 1 and 2. For the first criterion, we discuss the17

intriguing properties of TBAs (i.e., the empirical results observed by previous works) in Sections18

1 and 2. Two of the most widely-known properties of TBAs are: 1) TBAs can craft transferable19

adversarial examples even when the source model is inaccurate [1], and 2) the success rates of20

TBAs are constantly lower than other methods of black-box adversarial attacks [2–4]. Section 421

demonstrates that our model is consistent with the existing empirical results and provides reasonable22

explanations for these properties.23

As for criterion 2, our model assumes that the natural data lies on a low-dimensional manifold. This24

assumption is commonly seen in previous works [5–8]. We also assume that the classifiers (i.e.,25

the source and target models in TBAs) can be decomposed into the product of a semantic classifier26

fb (Definition 4.1) and a concentration multiplier ϕ (Definition 4.2). This assumption is based on27

the empirical observation that ML models can capture semantic and geometrical information of the28

natural data [9, 10]. Here, our concerns are two folds: 1) what are the semantic and geometrical29

information, and 2) how does an ML model capture such information?30
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Semantic information We first focus on semantic information. The following remark explains31

what is the semantic information of a dataset by an example.32

Remark A.1 (The semantic information of CIFAR-10). Generally speaking, "semantic" refers to33

the relationship between natural data and their true label, which should be consistent with human34

recognition. For example, the semantic information contained in the CIFAR-10 dataset is the true35

labels (e.g., airplane, automobile, and bird) and their corresponding natural images (e.g., images of36

airliners, SUVs, and chickens). In this example, an image cannot simultaneously include an airplane37

and an automobile since "the classes are completely mutually exclusive" in the CIFAR-10 dataset,38

cf. the official website of CIFAR-10. That is, the semantic information provided by CIFAR-10 is39

separated. ▲40

In our paper, we formalize the semantic information of natural data by separated sets A1, A2, · · · , Ak ⊂41

M (for a k-class classification task), see Section 3.2 for the definitions. As is discussed in Remark A.1,42

these sets reflect the relationship between true labels and their corresponding natural data, and more43

importantly, these sets should be separated. In this paper, we define separated sets in Definition 3.244

and assume that A1, A2, · · · , Ak ⊂ M are separated. It is worth noting that the definition of “semantic45

information” in our paper is motivated by that of the “concept” in classical learning theory [11, 12].46

In these works, learning a concept is equivalent to approximating the decision boundary of ML47

models to the concept sets (i.e., subsets in the sample space).48

Our model captures the semantic information in a similar way as [11]. We let A1
f , A

2
f , · · · , A

k
f ⊂ M be49

the semantic information learned by f . Note that we do not assume these sets to be regions or to have50

any compactness or connectedness restriction. Instead, we only assume that these sets are separated51

(as the semantic information of natural data). The “similarity” between Ai
f and Ai (1 ≤ i ≤ k) reflects52

how well the ML model f has learned the semantic information of the training data.53

Geometrical information As for the geometrical information, we are motivated by the methods in54

OOD detection [13–16]. In these works, the scores of the OOD samples are lower than in-distribution55

samples. In our setting, by the low-dimensional manifold assumption, we know that the off-manifold56

data are also outside of the data distribution. Thus, by approximating the shape of the manifold, the57

concentration multiplier ϕ should assign lower scores to those off-manifold samples, see Definition58

4.2 for a formal definition. In summary, our paper assumes that natural data is drawn from a59

low-dimensional manifold and the source and target models capture the semantic and geometrical60

information in the way we have discussed above. Our assumption is intuitive, reasonable, and milder61

than previous works that theoretically analyze TBAs. Our model fulfills criterion 2.62

Last but not least, the following remark explains why our paper does not present any experiments.63

Remark A.2 (Experiments are unnecessary for validating our model). As mentioned in Section 2.1,64

most of the recent studies on TBAs focus on empirically improving the success rates of TBAs [3, 17].65

However, to the best of our knowledge, existing theoretical analyses of TBAs [18–20] are either based66

on simple models (e.g., linear classifiers) or strong assumptions (e.g., natural data are drawn from the67

spherical Gaussian distribution). The theoretical studies of TBAs are falling behind the engineering68

practice, which motivates us to propose an explanatory model that analyzes and explains the existing69

empirical results. As is discussed in Appendix A.1, we argue that conducting experiments (on either70

real-world or synthetic datasets) is unnecessary for evaluating an explanatory model. Therefore, we71

do not include experiments in our paper. ▲72

A.2 Visualization of the Non-Adversarial Region73

We provide a visualization of Example 4.10 in Figure A.1.74

B Complete Proofs75

Proposition 4.3 (semantic classifier, binary case). Given 2λ-separated sets A f , B f ⊂ M. Define:76

fb(x) = fb(x; A f , B f ) :=
dp(x, B f ) − dp(x, A f )
dp(x, B f ) + dp(x, A f )

. (B.1)

Then, fb is a semantic classifier. In particular, we can obtain from Equation (B.1) that fb(x) > 0 if x77

is closer (w.r.t. dp) to A f than B f and fb(x) < 0 otherwise.78
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Figure A.1: A visualization of Example 4.10. The data manifoldM is represented by the grid surface.
Let the surface in light blue (or dark blue) be the contour surface that ϕ1 = 0 (or ϕ2 = 0). The distance
between x0 and the dark blue surface is r3, which is greater than δ and r2.

Proof of Proposition 4.3. It is easy to check that fb(x) = 1 when x ∈ A f and fb(x) = −1 when x ∈ B f .79

By definition, we know that fb is a semantic classifier. □80

Proposition 4.4. Take A f = A and B f = B in Equation (B.1) and denote the corresponding classifier81

by f ∗b . Then, for any given λ ≥ δ > 0, we have Rstd( f ∗b ) = Radv( f ∗b , δ) = 0.82

Proof of Proposition 4.4. By Equation (B.1), we have83

f ∗b (x) =
dp(x, B) − dp(x, A)
dp(x, B) + dp(x, A)

, ∀x ∈ Rd. (B.2)

Clearly, we have f ∗b (x) = 1 when x ∈ A and f ∗b (x) = −1 when x ∈ B. Then, the standard risk of f ∗b84

w.r.t. D(x) is85

Rstd( f ∗b ) = PD

[
f ∗b (x)y < 0 | x ∈ A

]
+ PD

[
f ∗b (x)y < 0 | x ∈ B

]
= 0 (B.3)

Recall that A and B are 2λ-separated (cf. Definition 3.2). For ∀x ∈ A and x′ ∈ B(x, δ), we have86

dp(x, B) > δ, which implies that dp(x′, B) − dp(x′, A) > 0, and thus f ∗b (x′) f ∗b (x) = f ∗b (x′) > 0. For87

∀x ∈ B, a similar deduction shows that f ∗b (x′) f ∗b (x) > 0 holds for ∀x′ ∈ B(x, δ). Together, we have88

Radv( f ∗b , δ) :=P
[
∃x′ ∈ B(x; δ) s.t. f ∗b (x′) f ∗b (x) < 0 | x ∈ A

]
+ P

[
∃x′ ∈ B(x; δ) s.t. f ∗b (x′) f ∗b (x) < 0 | x ∈ B

]
= 0,

(B.4)

which completes the proof. □89

Remark B.1. The construction of Equation (B.2) can be found in previous works [6, 21]. In particular,90

Li et al. [6] uses the ReLU-approximation of f ∗b to study the robust generalization of deep NNs.91
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Proposition 4.5 (Concentration multiplier, binary case). For any given r > 0 and G ⊂ Rd, denote92

ϕ(x) = ϕ(x; r,G) :=
r − dp(x,G)
r + dp(x,G)

, ∀x ∈ Rd. (B.5)

Then ϕ(x) is a concentration multiplier around G.93

Proof of Proposition 4.5. For ∀x ∈ G, we have dp(x,G) = 0. That is, ϕ(x) = 1 for ∀x ∈ G. For94

∀x1, x2 s.t. dp(x1,G) > dp(x2,G), it is easy to check that ϕ(x1) < ϕ(x2). □95

Proposition 4.6. Let f = fb · ϕ and A f , B f be the semantic information of fb. We can obtain that96

1. if Radv( f ; δ) , 0, then f suffers from off-manifold adversarial examples.97

2. if Radv( f ; δ) , 0 and dp(A ∪ B, (A f ∪ B f )c) > δ, then all the adversarial examples of f are98

off the manifold.199

Proof of Proposition 4.6. We first prove the first result. By definition, there are r > 0 and G ⊂ Rd100

such that101

f (x) =
dp(x, B f ) − dp(x, A f )
dp(x, B f ) + dp(x, A f )

·
r − dp(x,G)
r + dp(x,G)

(B.6)

Given Radv( f ; δ) , 0, then ∃x ∈ A ∪ B and x0 ∈ B(x, δ) such that f (x) f (x0) < 0. If x0 ∈ M
c, there is102

nothing to prove.103

Otherwise, we have x0 ∈ M. Without loss of generality (WLOG), we assume that such x ∈ A104

and f (x0) < 0, which implies that either fb(x0) < 0 or ϕ(x0) < 0. We first consider the case when105

fb(x0) < 0. Then, we have dp(x, B f ) − dp(x, A f ) < 0 and r − dp(x, S ) > 0. Denote106

r0 :=
1
3

min{|dp(x0, A f ) − dp(x0, B f )|, |r − dp(x0, S )|, δ}. (B.7)

Consider the non-empty set
B(x, δ) ∩ B(x0, r0) ∩Mc.

For ∀x′0 ∈ B(x0, r0), there is107

dp(x′0, A f ) ≥ dp(x0, A f ) − dp(x0, x′0), (B.8)

and108

dp(x′0, B f ) ≤ dp(x0, B f ) + dp(x0, x′0), (B.9)

which implies that109

dp(x′0, A f ) − dp(x′0, B f ) ≥ dp(x0, A f ) − dp(x0, B f ) − 2dp(x0, x′0) ≥ r0 > 0. (B.10)

Similarly, we can obtain r − dp(x′0, S ) > 0. Together, these two inequalities lead us to f (x′0) =110

f (x′0) f (x) < 0, i.e., x′0 is an off-manifold adversarial example of x0. Some tedious manipulation111

yields the same result when ϕ(x0) < 0, which is omitted here.112

As for the second result, since Radv( f ; δ) , 0, we can obtain from the first result that off-manifold113

adversarial examples exist. It remains to show that f has no on-manifold adversarial examples.114

Since dp(A ∪ B, (A f ∪ B f )c) > δ and by assumption A f ∪ B f ⊂ G, we have115

r − dp(x,G)
r + dp(x,G)

= 1 (B.11)

and116
r − dp(x′,G)
r + dp(x′,G)

= 1 (B.12)

for ∀x ∈ A ∪ B and x′ ∈ B(x, δ) ∩M. We can easily obtain that fb(x) = fb(x′), which implies that f117

has no on-manifold adversarial examples. □118

1Notice: In the main part of the paper, we made a typo in this result. Here, we provide the corrected version.
The other results in the main paper are based on the corrected version of this result.

4



Proposition 4.7. Consider TBAs with perturbation radius δ ∈ (0, λ], target model ft = f ∗b · ϕoff and119

source model fs = fb · ϕoff , fb ∈ Fb. Denote the semantic information of fb by A f and B f . Then, for120

∀x ∈ A ∪ B, all adversarial examples (if exist) of fs at x are transferable if x ∈ A f ∪ B f .121

Proof of Proposition 4.7. Consider x ∈ A f WLOG. By Equation (6), denote122

fs(x) = fb(x) · ϕoff(x) =
dp(x, B f ) − dp(x, A f )
dp(x, B f ) + dp(x, A f )

·
αδ − dp(x,M)
αδ + dp(x,M)

. (B.13)

If fs is robust against adversarial examples at x ∈ B(x, δ) ∩M ⊂ A f , then there is nothing to prove. If123

not, denote the adversarial example of fs at x by xa, and we have fs(xa) < 0. It is not hard to verify124

that dp(xa, B f ) − dp(xa, A f ) > 0 since δ < λ, which implies that fb(xa) > 0. To obtain fs(xa) < 0,125

there must be ϕoff(xa) < 0. We thus have αδ < dp(xa,M), which implies that xa is off the manifold126

and the distance between xa andM is greater than αδ. In particular, we have127

ϕoff(x)ϕoff(xa) < 0, (B.14)
which is independent of the choice of fb. Now consider ft(x) and ft(xa), where128

ft(x) = f ∗b (x) · ϕoff(x) =
dp(x, B) − dp(x, A)
dp(x, B) + dp(x, A)

·
αδ − dp(x,M)
αδ + dp(x,M)

. (B.15)

No matter x ∈ A or x ∈ B, we have for ∀x′ ∈ B(x, δ), there is f ∗b (x) = f ∗b (x′) (by the 2λ-separated129

property of A and B). By Equation (B.14), we have130

ft(x) ft(xa) = f ∗b (x) f ∗b (xa) · ϕoff(x)ϕoff(xa) < 0, (B.16)
i.e., xa transfers to ft, which completes the proof. □131

Proposition 4.8. Consider TBA with perturbation radius δ ∈ (0, λ], target model ft = f ∗b · ϕon(·, f ∗b )132

and source model fs = fb · ϕon(·, fb), fb ∈ Fb. Denote133

S crt := (A ∩ A f ) ∪ (B ∩ B f ), S wrg := (A ∩ B f ) ∪ (B ∩ A f ). (B.17)
Then, for ∀x ∈ A ∪ B, we have134

1. if B(x, δ) ∩M ⊂ S crt ∪ S wrg, then ft and fs are both robust against adversarial examples;135

2. if B(x, δ) ∩M ⊂ A ∪ B and x ∈ A f ∪ B f , then the adversarial examples of fs at x (if exists)136

cannot transfer to ft.137

Proof of Proposition 4.8. The proof of the first result is also straightforward, which is omitted here.138

For ∀x ∈ A ∪ B such that (B(x, δ) ∩M) ⊂ S crt, it is easy to check that ϕon(x) = 1 and ϕon(xa) = 1 for139

∀xa ∈ B(x, δ), which implies that f is robust against adversarial examples. It remains to prove the140

second result. By Equation (7), denote141

fs(x) = fb(x) · ϕon(x; fb) =
d2(x, B f ) − d2(x, A f )
d2(x, B f ) + d2(x, A f )

·
αδ − d2(x,Nδ(A f ∪ B f ))
αδ + d2(x,Nδ(A f ∪ B f ))

. (B.18)

For ∀x ∈ A ∪ B such that B(x, δ) ∩M ⊂ A ∪ B and x ∈ A f ∪ B f , denote the unspecific adversarial142

example (if exist) of fs at x by xa. Assume that x ∈ A ∩ B f WLOG. By definition, we have143

fb(x) < 0. (B.19)
By the 2λ-separated assumption of A f and B f , we have and144

fb(xa) < 0. (B.20)
From fs(x) fs(xa) < 0, we can obtain that ϕon(x; fb)ϕon(xa; fb) < 0. Since x ∈ B f , we have145

d2(x,Nδ(A f ∪ B f )) = 0, (B.21)
i.e., ϕon(x; fb) = 1. Combine this with ϕon(x; fb)ϕon(xa; fb) < 0, we have ϕon(xa; fb) < 0, i.e.,146

αδ < d2(xa,Nδ(A f ∪ B f )) < d2(xa, x) ≤ δ. (B.22)
Since ft(x) = 1 and xa is unspecific, it remains to show that ft(xa) > 0. By Equation (7), denote147

ft(x) = f ∗b (x) · ϕon(x; f ∗b ) =
d2(x, B) − d2(x, A)
d2(x, B) + d2(x, A)

·
αδ − d2(x,Nδ(A ∪ B))
αδ + d2(x,Nδ(A ∪ B))

. (B.23)

By x ∈ A and the 2λ-separated assumption of A and B, we have f ∗b (xa) > 0. By B(x, δ) ∩M ⊂ A,148

we have xa ∈ Nδ(A ∪ B)), i.e., ϕon(xa; f ∗b ) > 0. Together, we have ft(xa) = f ∗b (xa) · ϕon(xa; f ∗b ) > 0,149

which completes the proof. □150
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Proposition 4.12. Given perturbation radius δ ∈ (0, λ] and target model ft = f ∗b · ϕoff(·; r,M). Let ∆151

be the constant specified in Lemma 4.11. Then, for ∀x ∈ A ∪ B, the off-manifold adversarial example152

of ft at x exists if r < ∆.153

Proof of Proposition 4.12. For ∀x ∈ A∪ B, let u ∈ Nx(M) be the normal direction at x with ∥u∥2 = 1.154

Since r < ∆, we can find r0 > r such that r0 < ∆ and r0 < δ. Denote155

xa := x + r0u. (B.24)
Clearly, we have xa ∈ B(x, δ). Since N∆(M) is a tubular neighborhood ofM, we have156

d2(xa,M) = r0 > r, (B.25)
which implies that xa is an off-manifold adversarial example of ft at x. □157

Corollary 5.3. Let fb be a semantic classifier with semantic information A f and B f that satisfy a158

2λ-separated property. Given ϵ > 0, there is a ReLU network f̃ with O((1/λϵ)d) · O(d2 + d log(1/ϵ))159

parameters such that ∥ f − f̃ ∥∞ ≤ ϵ.160

Proof of Corollary 5.3. According to Lemma 5.2, our goal is to upper bound the Lipschitz constant l161

of fb. By definition, it suffices to upper bound the supremum of162

s :=
| fb(x1; A f , B f ) − fb(x2; A f , B f )|

dp(x1, x2)

=
1

dp(x1, x2)
·

∣∣∣∣∣∣ dp(x1, A f )
dp(x1, A f ) + dp(x1, B f )

−
dp(x2, A f )

dp(x2, A f ) + dp(x2, B f )

∣∣∣∣∣∣.
(B.26)

We only need to consider three cases:163

1. both of x1, x2 ∈ A f ∪ B f , or164

2. both of x1, x2 ∈ (A f ∪ B f )c, and165

3. either x1 or x2 is in A f ∪ B f .166

When x1, x2 ∈ A f ∪ B f , a trivial verification shows that s ≤ 1
λ
. We now turn to the second case. By167

symmetry, let168

dp(x1, A f )
dp(x1, A f ) + dp(x1, B f )

−
dp(x2, A f )

dp(x2, A f ) + dp(x2, B f )
> 0. (B.27)

By simplifying Equation (B.26), we can obtain that169

| fb(x1; A f , B f ) − fb(x2; A f , B f )|
dp(x1, x2)

=
1

dp(x1, x2)
·

(
dp(x1, A f )

dp(x1, A f ) + dp(x1, B f )
−

dp(x2, A f )
dp(x2, A f ) + dp(x2, B f )

)
≤

1
2λ
·

(
dp(x1, A f ) − dp(x2, A f )

dp(x1, x2)
·

dp(x2, B f )
dp(x2, A f ) + dp(x2, B f )

+
dp(x1, B f ) − dp(x2, B f )

dp(x1, x2)
·

dp(x2, A f )
dp(x2, A f ) + dp(x2, B f )

)
≤

1
2λ
· (1 · 1 + 1 · 1) =

1
λ
,

(B.28)

which implies that s ≤ 1
λ

in this case. Finally, we consider the third case. We assume WLOG that170

x1 ∈ A f and x2 ∈ (A f ∪ B f )c. Substitute into Equation (B.26), we have171

s =
1

dp(x1, x2)
·

∣∣∣∣∣∣ dp(x1, A f )
dp(x1, A f ) + dp(x1, B f )

−
dp(x2, A f )

dp(x2, A f ) + dp(x2, B f )

∣∣∣∣∣∣
=

1
dp(x1, x2)

·
dp(x2, A f )

dp(x2, A f ) + dp(x2, B f )
≤

1
2λ

(B.29)

To sum up above, we have supx1,x2
s = 1

λ
, which implies that fb is 1

λ
-Lipschitz continuous, as is172

required. □173
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Corollary 5.4. Given ϵ > 0, r > 0 and S ⊂ [0, 1]d, there is a ReLU network ϕ̃ with O((1/rϵ)d) ·174

O(d2 + d log(1/ϵ)) parameters that can approximate ϕ(·; r, S ) to precision ϵ.175

Proof of Corollary 5.4. We prove this corollary in a similar manner as Corollary 5.3, i.e., we upper176

bound the supremum of177

s :=
|ϕ(x1; r, S ) − ϕ(x2; r, S )|

dp(x1, x2)
=

1
dp(x1, x2)

·

∣∣∣∣∣∣ dp(x1, S )
r + dp(x1, S )

−
dp(x2, S )

r + dp(x2, S )

∣∣∣∣∣∣
=

r
dp(x1, x2)

·

∣∣∣∣∣∣ 1
r + dp(x1, S )

−
1

r + dp(x2, S )

∣∣∣∣∣∣.
(B.30)

We also consider three cases in this proof:178

1. both of x1, x2 ∈ S , or179

2. both of x1, x2 ∈ S c, and180

3. either x1 or x2 is in S .181

In case 1, we see at once that s = 0. When both of x1, x2 ∈ S c, we assume WLOG that dp(x1, S ) >182

dp(x2, S ). By Equation (B.30), we have183

s =
dp(x1, S ) − dp(x2, S )

dp(x1, x2)
·

r
(r + dp(x1, S ))(r + dp(x2, S ))

≤
1
r
. (B.31)

Analysis similar to Equation (B.31) shows that184

s =
r

dp(x1, x2)
·

(
1
r
−

1
r + dp(x2, S )

)
≤

1
r
. (B.32)

To sum up above, we have supx1,x2
s = 1

λ
, which implies that ϕ is 1

r -Lipschitz continuous, as is185

required. □186

Proposition 5.6. Given ϵ, λ, δ, r > 0, for any f ∈ FM, there is a ReLU network f̃ with187

O(max{
1
λϵ
,

2
rϵ
}d) · O(d2 + d log(

1
ϵ

)) + O(log2(
1
ϵ

)) (B.33)

parameters that satisfies ∥ f − f̃ ∥∞ ≤ ϵ.188

Proof of Proposition 5.6. This proposition can be derived directly from Lemma 5.5, Corollary 5.3,189

and Corollary 5.4. □190

Theorem 5.7. Consider TBAs with perturbation radius δ ∈ (0, λ/2], target model ft = f ∗b · ϕoff and191

source model fs = fb · ϕoff , fb ∈ Fb. Denote the semantic information of fb by A f and B f . Given192

ϵ ≤ 0.1, let f̃t and f̃s be ReLU networks that satisfy193

∥ f̃t − ft∥∞ ≤ ϵ, ∥ f̃s − fs∥∞ ≤ ϵ (B.34)

Then, for ∀x ∈ (A ∪ B) ∩ (A f ∪ B f ), the adversarial examples xa (if exist) of f̃s satisfies194

f̃t(x) · f̃t(xa) ≤ 2ϵ(1 + ϵ)2 + 2ϵ2. (B.35)

Proof of Theorem 5.7. Consider x ∈ A f WLOG. If fs is robust against adversarial examples at195

x ∈ B(x, δ) ∩M ⊂ A f , then there is nothing to prove. If not, denote the adversarial example of fs at x196

by xa. Since x ∈ A f ⊂ M, there is197

f̃s(x) ≥ f̃b(x) · ϕ̃off(x) − ϵ ≥ (1 − ϵ)2 − ϵ > 0 (B.36)

and we thus have f̃s(xa) < 0. By xa ∈ B(x; δ) and the assumption δ < λ2 , we have198

f̃b(xa) = 1 −
2dp(xa, A f )

dp(xa, B f ) + dp(xa, A f )
≥ 1 −

2δ
2λ
≥

1
2
. (B.37)
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To obtain ×̃( f̃b, ϕ̃off)(xa) < 0, there must be f̃b(xa) · ϕ̃off(xa) < ϵ, which implies that199

ϕ̃off(xa) < 2ϵ. (B.38)
Now consider f̃t(x) and f̃t(xa). By definition, we have f̃ ∗b (x) ∈ [1 − ϵ, 1 + ϵ], ϕ̃off(x) ∈ [1 − ϵ, 1 + ϵ],200

and thus201

f̃t(x) = ×̃( f̃ ∗b , ϕ̃off)(x) ≤ (1 + ϵ)2 + ϵ. (B.39)
Similar to Equation (B.37), there is202

f̃ ∗b (xa) = 1 −
2dp(xa, A)

dp(xa, B) + dp(xa, A)
≤ 1 (B.40)

Combining Equations (B.38) to (B.40) together, we have203

f̃t(x) · f̃t(xa) ≤ 2ϵ(1 + ϵ)2 + 2ϵ2. (B.41)
as is required. □204

Theorem 5.8. Consider TBAs with perturbation radius δ ∈ (0, λ/2], target model ft = f ∗b · ϕoff and205

source model fs = fb · ϕoff , fb ∈ Fb. Denote the semantic information of fb by A f and B f . Given206

ϵ ≤ 0.1, let f̃t and f̃s be ReLU networks that satisfy Equation (13). Then, for ∀x ∈ A ∪ B, we have207

1. if B(x, δ) ∩M ⊂ S crt ∪ S wrg, then f̃t and f̃s are both robust against adversarial examples;208

2. if B(x, δ) ∩M ⊂ A ∪ B and x ∈ A f ∪ B f , then the adversarial examples of f̃s at x (if exists)209

cannot transfer to f̃t.210

Proof of Theorem 5.8. The proof of the first result is also straightforward, which is omitted here. It211

remains to prove the second result. By Equation (7), denote212

fs(x) = fb(x) · ϕon(x; fb) =
d2(x, B f ) − d2(x, A f )
d2(x, B f ) + d2(x, A f )

·
αδ − d2(x,Nδ(A f ∪ B f ))
αδ + d2(x,Nδ(A f ∪ B f ))

. (B.42)

For ∀x ∈ A ∪ B such that B(x, δ) ∩M ⊂ A ∪ B and x ∈ A f ∪ B f , denote the unspecific adversarial213

example (if exist) of fs at x by xa. Assume that x ∈ A ∩ A f WLOG. By definition, we have214

f̃b(x) ∈ [1 − ϵ, 1 + ϵ]. (B.43)

By the 2λ-separated assumption of A f and B f , we have and215

f̃b(xa) ∈ [1 − ϵ, 1 + ϵ]. (B.44)
Since x ∈ A f ∪ B f , we have x ∈ Nδ(A f ∪ B f ) and216

ϕ̃on(x; fb) ∈ [1 − ϵ, 1 + ϵ], (B.45)

which implies that217

f̃s(x) = ×̃( f̃b, ϕ̃on(·; fb))(x) ≥ (1 − ϵ)2 − ϵ > 0. (B.46)
From f̃s(x) f̃s(xa) < 0, we can obtain that f̃s(xa) < 0, which implies that218

ϕ̃on(xa; fb) · f̃b(x) < ϵ, (B.47)
which implies that219

ϕ̃on(xa; fb) <
ϵ

1 − ϵ
< 2ϵ. (B.48)

By definition, we have220

f̃t(x) = ×̃( f̃ ∗b , ϕ̃on(·; f ∗b ))(x) ≥ (1 − ϵ)2 − ϵ > 0. (B.49)
By x ∈ A and the 2λ-separated assumption of A and B, we have221

f̃ ∗b (xa) = 1 −
2dp(xa, A)

dp(xa, B) + dp(xa, A)
≥ 1 −

2δ
2λ
≥

1
2
. (B.50)

By B(x, δ) ∩M ⊂ A, we have xa ∈ Nδ(A ∪ B)), i.e.,222

ϕon(xa; f ∗b ) ∈ [1 − ϵ, 1 + ϵ] (B.51)
Together, we have223

f̃t(xa) = ×̃( f̃ ∗b , ϕ̃on(·; f ∗b ))(xa) ≥
1 − ϵ

2
> 0, (B.52)

which completes the proof. □224
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Proposition 5.9. For any classifier f ∗ with Rstd( f ∗) = 0 and perturbation radius δ ∈ (rδ( f ∗), λ), there225

is f ∈ FM such that226

1. Rstd( f ) = Rstd( f ∗), and227

2. for ∀x ∈ A ∪ B, if xa is an adversarial example of f ∗ at x, then exists x′a ∈ B(xa, rδ( f ∗)/4)228

such that x′a is an adversarial example of f .229

Proof of Proposition 5.9. Define the following set230

S a := {x ∈ [0, 1]d ∩ (A ∪ B)c : ∃x′ ∈ A ∪ B s.t. x′ ∈ B(x; δ), f ∗(x) f ∗(x′) < 0}, (B.53)

and let231

G =

⋃
x∈S a

B(x, rδ( f ∗)/2)

c

. (B.54)

By definition, A ∪ B ∈ G. Consider232

f (x) = f ∗b (x) · ϕ(x; rδ( f ∗)/4,G). (B.55)

Since A ∪ B ∈ G, we have Rstd( f ) = Rstd( f ∗b ) = 0 = Rstd( f )∗. For ∀x ∈ A ∪ B, if xa is an adversarial233

example of f ∗ at x, then234

rδ( f ∗)
4
≤ dp(xa,G) ≤

rδ( f ∗)
2
, (B.56)

which implies that exists x′a ∈ B(xa, rδ( f ∗)/4) such that x′a is an adversarial example of f . □235

C Analyses in Multi-Class Classification Problems236

This section some of the results in Sections 4 and 5 to k-class classification problems. We first extend237

Propositions 4.3 and 4.5 to multi-class classification.238

Proposition C.1 (Semantic classifier, multi-class case). Given 2λ-separated sets A1
f , A

2
f , · · · , A

k
f ⊂ M.239

Consider fb(x) = ( f (1)
b (x), f (2)

b (x), · · · , f (k)
b (x))T and define:240

f (i)
b (x) :=

(∑
j,i dp(x, A j

f )
)
− dp(x, Ai

f )(∑
j,i dp(x, A j

f )
)
+ dp(x, Ai

f )
(C.57)

for ∀1 ≤ i ≤ k. Then, fb is a semantic classifier.241

Proof of Proposition C.1. By Equation (C.57), we have242

f (i)
b (x) =

(∑k
j=1 dp(x, A j

f )
)
− dp(x, Ai

f )∑k
j=1 dp(x, A j

f )
(C.58)

for ∀1 ≤ i ≤ k. Then, there is243

y( fb, x) = arg max
1≤i≤k

f (i)
b (x) = arg max

1≤i≤k

(
−dp(x, Ai

f )
)
= arg min

1≤i≤k
dp(x, Ai

f ). (C.59)

Given that A1
f , A

2
f , · · · , A

k
f are 2λ-separated, we have244

0 = dp(x, Ai
f ) < dp(x, A j

f ) (C.60)

for ∀ j , i if x ∈ A j
f , which completes the proof. □245

Next, we specify a family of concentration multipliers for multi-class TBAs.246

Proposition C.2 (Concentration multiplier, multi-class case). For any given r > 0 and G ⊂ Rd,247

denote248

ϕ(x) = ϕ(x; r,G) :=
r − dp(x,G)
r + dp(x,G)

, ∀x ∈ Rd. (C.61)

Then ϕ(x) is a concentration multiplier around G.249
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Note that Equation (C.61) is identical to Equation (5). The proof of Proposition C.2 is therefore250

omitted. The following proposition extends Proposition 4.4 to the multi-class case.251

Proposition C.3. Take Ai
f = Ai in Equation (C.57) for ∀1 ≤ i ≤ k. Denote the corresponding252

classifier by f ∗b . Then, for any given λ ≥ δ > 0, we have Rstd( f ∗b ) = Radv( f ∗b , δ) = 0.253

Proof of Proposition C.3. By Equation (C.57), we have254

f ∗b (x) =

(∑
j,i dp(x, A j)

)
− dp(x, Ai)(∑

j,i dp(x, A j)
)
+ dp(x, Ai)

(C.62)

Apparently, we have y( f ∗b , x) = i when x ∈ Ai for ∀1 ≤ i ≤ k. The standard risk of f ∗b w.r.t. D is255

Rstd( f ∗b ) =
k∑

i=1

(
PD

[
y( f ∗b , x) , y(x) | x ∈ Ai

])
= 0. (C.63)

For ∀i , j, recall that A and B are 2λ-separated (cf. Definition 3.2). For ∀x ∈ Ai and x′ ∈ B(x, δ), we256

have dp(x′, A j) > δ, which implies that dp(x′, A j) > dp(x′, Ai) and257  k∑
l=1

dp(x′, Al)

 − dp(x′, Ai) >

 k∑
l=1

dp(x′, Al)

 − dp(x′, A j). (C.64)

Since j is arbitrarily chosen, and according to Equation (C.58), we have258

f (i)
b (x

′

) > f ( j)
b (x′) (C.65)

holds for ∀ j , i, i.e., y( f ∗b , x) = y( f ∗b , x
′) for ∀x′ ∈ B(x, δ). Then, the adversarial risk of f ∗b is259

Radv( f ∗b , δ) =
k∑

i=1

(
PD

[
∃xa ∈ B(x; δ) s.t. y( f , x) , y( f , xa) | x ∈ Ai

])
= 0, (C.66)

which completes the proof. □260

Next, we go straight for the two explanatory results. We first note that the non-existence of off-261

manifold adversarial examples is due to the “sharp curvature” of the data manifold. The analyses in262

Example 4.10 are regardless of whether the task is binary or multi-class. Here, we extend Proposition263

4.12 to multi-class cases. Consider TBAs with perturbation radius δ ∈ (0, λ] For any unspecified264

α ∈ (0, 1), let265

ϕoff(x) := ϕ(x;αδ,M) =
αδ − dp(x,M)
αδ + dp(x,M)

. (C.67)

Recall that Proposition 4.12 is restricted to p = 2. The following proposition provides a sufficient266

condition for the existence of off-manifold adversarial examples in multi-class classification tasks.267

Proposition C.4. Given perturbation radius δ ∈ (0, λ] and target model ft = f ∗b · ϕoff . Let ∆ be the268

constant specified in Lemma 4.11. Then, for ∀x ∈ ∪k
i=1Ai, the off-manifold adversarial example of ft269

at x exists if αδ < ∆.270

Proof of Proposition C.4. For ∀x ∈ ∪k
i=1Ai, let u ∈ Nx(M) be the normal direction at x with ∥u∥2 = 1.271

Since αδ < ∆, we can find r0 > αδ such that r0 < ∆ and r0 < δ. Denote272

xa := x + r0u. (C.68)
Clearly, we have xa ∈ B(x, δ). Since N∆(M) is a tubular neighborhood ofM, we have273

d2(xa,M) = r0 > αδ. (C.69)
For ∀i ∈ {1, 2, · · · , k}, by definition, we have274

f (l)
t (xa) = f ∗,(l)b (xa) · ϕoff(xa) =

(∑
l,i d2(xa, Al)

)
− d2(xa, Ai)(∑

l,i d2(xa, Al)
)
+ d2(xa, Ai)

·
αδ − d2(x,M)
αδ + d2(x,M)

. (C.70)

Since A1
f , A

2
f , · · · , A

k
f are 2λ-separated, we can easily obtain that275

y( f ∗b , xa) = y( f ∗b , x). (C.71)
Combining Equations (C.69) to (C.71) together, we can obtain that xa is an off-manifold adversarial276

example of ft at x, since ϕoff is negative and thus turn the arg max of f ∗b to the arg min. □277
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Let Fb and Φ be the function class defined in Proposition C.1 and Proposition C.2, respectively. The278

following proposition extends Proposition 4.7 to multi-class classification tasks based on the results279

in Proposition C.4.280

Proposition C.5. Denote the target model by ft = f ∗b ·ϕoff and the source model fs = fb ·ϕoff , fb ∈ Fb.281

With some abuse of notation, let the semantic information of fb be A1
f , A

2
f , · · · , A

k
f . Let ∆ be the282

constant specified in Lemma 4.11. Assume that αδ < ∆. Then, for ∀x ∈ ∪k
i=1Ai, exists adversarial283

example of fs at x that is transferable if x ∈ ∪k
i=1Ai

f .284

In the main part of our paper, Proposition 4.7 proves that adversarial examples are transferable even285

if the source model is accurate, which is consistent with the empirical results in Papernot et al. [1].286

Proposition C.5 also explains this phenomenon, even though it is weaker than Proposition 4.7.287

Proof of Proposition C.5. For ∀i ∈ {1, 2, · · · , k}, we first consider those x ∈ Ai. By definition, we288

have289

f (l)
s (x) = f (l)

b (x) · ϕoff(x) =

(∑
l,i dp(x, Al

f )
)
− dp(x, Ai

f )(∑
l,i dp(x, Al

f )
)
+ dp(x, Ai

f )
·
αδ − dp(x,M)
αδ + dp(x,M)

. (C.72)

According to Proposition C.4, we know that off-manifold adversarial examples exist. In fact, for290

∀x ∈ ∪k
i=1Ai

f , let xa be as defined in Equation (C.68). Similar to the proof of Proposition C.4, we have291

ϕoff(xa) < 0 and292

y( f ∗b , xa) = y( f ∗b , x), y( fb, xa) = y( fb, x). (C.73)
which implies that xa is a transferable adversarial example. □293
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