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Supplementary materials
A VISUALIZATION OF THE SSDM

This section gives a visualization of the SSDM. See Figure 1. Recall that the d-th sparse hyperplane
(SHP), denoted by ΠM

d , is defined by ΠM
d := {p ∈M | ⟨ed, logo (p)⟩o = 0}. This means that

ΠM
d = expo (span {e1, e2, . . . , ed−1, ed+1, ed+2, . . . , eD}). For example, ΠM

1 = Π1 in Figure 1
is the image under the exponential map expo of a linear subspace spanned by e2 and e3. The d-th
element δMd (p) = δd(p) of SSDM measures the signed distance from the d-th SHP to the point p.
For example, δ1(p) is the signed distance from Π1 to p in Figure 1.

Figure 1: The SSDM’s visualization for a 3-dimensional CHMOO case. The hyperplane ΠM
d = Πd

is the d-th sparse hyperplane (SHP). The d-th element δMd (p) = δd(p) of SSDM measures the signed
distance from the d-th SHP to the point p.

B DETAILED EXPLANATION OF EXAMPLE 7

The function f(p) = |p| is differentiable at p ̸= 0 and the derivative is given by d
dpf(p) = sgn(p).

Suppose that the learning rate is α > 0 and the initial point is p(0) ̸= 0. By the symmetry about the
origin, we can assume that p(0) > 0 without loss of generality. Then the gradient descent generates
the series p(0), p(1), . . . of points according to the following recursion:

p(t+1) ← p(t) − α
d

dp
f(p(t)) =

{
p(t) − α if p(t) > 0,
p(t) + α if p(t) < 0.

(6)

Here, we usually set p(t+1) ← p(t) if p(t) = 0, which we can justify as a subgradient method. We can
see from (6) that the algorithm ends up oscillating between p(0)−αn and p(0)−α(n+1) unless p(0)

is an integral multiple of α, where n =
[
p(0)

α

]
is the maximum integer that is no greater than p(0)

α .

C PROOF OF THEOREM 2

Proof. We prove for the SSDM δ(D
D,GP

·). It suffices to prove that the absolute values are correct
since the logarithmic map at the origin of the Poincarè model does not change the sign of each
element. Let h ∈ D2 be the foot of the geodesic pass through p on Πd. Note that h is unique
according to Gauss-Bonnet theorem. We have that h = argminq ∆(DD,GP

· )
(p, q) from hyperbolic

Pythagorean theorem. In the following, we regard the ball of the Poincarè model as a unit ball in
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Euclidean space and discuss using elementary geometry. A geodesic in hyperbolic space is now
an arc orthogonal to the unit ball and Πd and passing through p. Define p′ = p

p⊤p
and h′ = h

h⊤h
.

Also denote by m the midpoint of p and p′ and by j the midpoint of h and h′. Note that j is the
center of the arc drawn by the geodesic. Since the arc is orthogonal to the unit ball, it also passes
through p′ and h′ according to the power of a point theorem. The subplane including the arc also
contains p, h, and p′. Hence, the following discussion is on the subplane. We regard the axis in
the subplane on the intersection of the subplane and Πd as x-axis, and the other axis orthogonal
to Πd to y-axis. We indicate the coordinate of the p in the subplane by [x y]

⊤ and that of h by
[h 0]

⊤. The coordinates of p′ and h′ are 1
x2+y2 [x y]

⊤ and [1/h 0]
⊤, respectively. See also

Figure 2. We have that |m| = 1
2

(√
x2 + y2 + 1√

x2+y2

)
and |j| = 1

2

(
h+ 1

h

)
. By similarity of two

Figure 2: Hyperbolic subdisk.

right triangles, we have that
√

x2+y2

x = |j|
|m| . Hence, |j| = x2+y2+1

2x . Noting that h < 1 < 1
h , we

have that h =
x2+y2−

√
(x2+y2)2−4x2

2x . We get the expected result by substituting this to the distance

formula of the Poincarè model: ∆(D2,GP
· )
(p, q) = acosh

(
1 + 2|p−q|2

(1−|p|2)(1−|q|2)

)
. Specifically,

∆(D2,GP
· )
([x y], [h 0])

= acosh

1 +
2
(
(x− h)

2
+ y2

)
(1− (x2 + y2))(1− h2)


= acosh

(√
1 +

4y2

(1− (x2 + y2))
2

)

= asinh

(
2y

(1− (x2 + y2))
2

)
.

(7)
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We complete the proof by recalling that y = pd and (x2 + y2) = p⊤p.

D EXPLICIT PSEUDOCODE OF THE HISTA

Algorithm 2 shows the explicit form of HISTA on the Poincaré model. Here, sinhc is defined by

sinhc (x) :=

{
1 if x = 0,
sinh x

x if x ̸= 0.
(8)

Algorithm 2 HISTA (Explicit form)

Require: pinit ∈ DD: initial point,
α ∈ R>0: learning rate,
T ∈ Z≥0: # iterations.

Ensure: poutput ∈ DD

p(0) ← pinit
for t← 1, 2, . . . , T do
γ(t) ← ∂|p(t−1)J

ρ(t) ← 4(
1−|p(t−1)|2

)2

g(t) ←
(
ρ(t)
)2
γ(t)

q(t−1) ← ρ(t) ·
[
cosh(|−αg(t)|)−ρ(t)α(g(t))

⊤
(p(t−1))

]
p(t−1)+sinhc (|αg(t)|)g(t)

1+(ρ(t)−1) cosh(|−αg(t)|)−(ρ(t))
2
α(g(t))

⊤
(p(t−1)) sinhc (|αg(t)|)

σ(t) ← asinh
(

2p
1−p⊤p

)
− αλ1D

p(t) ← sinh (σ(t))√
1+(sinhσ(t))

⊤
(sinhσ(t))+1

end for
poutput ← p(T )

E FORMULAE FOR A PRODUCT MANIFOLD.

We discuss the formulae of our sparse representation learning scheme for product manifolds. We
do not give detailed proofs, but they can easily be proved using a specific coordinate space. Let
M[1],M[2], . . . ,M[M ] are Riemannian manifolds. The Riemannian product manifoldM =M[1]×
M[2]×· · ·×M[M ] is given as the topological product manifold ofM[1],M[2], . . . ,M[M ] equipped
with the metric tensor defined as follows. For p =

(
p[1], p[2], . . . p[M ]

)
∈M, the metric tensor and

a direct some decomposition of the tangent space TpM is given as follows. For tangent vectors
v, v′ ∈ TpM, let c : I →M and c′ : I ′ →M be C∞ curves onM tangent to v and v′ respectively,
where I, I ′ ⊂ R is open intervals such that 0 ∈ I ∩ I ′. Here, c being tangent to u means that
c(0) = p and v = ċ

∣∣
0
, where ċ

∣∣
t
: C∞(M) → R for t ∈ I is defined by ċ

∣∣
t′
f := d

dt (c(t))
∣∣
t′

.
There exist C∞ curves c[m] : I → M and c′[m] : I ′ → M for m = 1, 2, . . . ,M such that
c[m](t) = c′[m](t) = p[m] for m = 1, 2, . . . ,M and c(t) =

(
c[1](t), c[2](t), . . . , c[M ](t)

)
and

c′(t) =
(
c′[1](t), c′[2](t), . . . , c′[M ](t)

)
. Then we can define ṽ[m] := c

∣∣
0
∈ TpM and ṽ′[m] :=

c′
∣∣
0
∈ TpM for m = 1, 2, . . . ,M . We can prove that it does not depend on the choice of c. In

the following, we denote the linear operation to obtain ṽ[m] ∈ Tp[m]M[m] from v ∈ TpM by

π
[m]
p : TpM→ Tp[m]M[m]. We define the metric tensor on TpM by

⟨v, v′⟩Mp :=

M∑
m=1

⟨ṽ[m], ṽ′[m]⟩Mp . (9)

We can prove that the above metric is symmetric and positive-definite.
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A tangent vector ṽ[m] ∈ Tp[m]M[m] can be identified with v[m] ∈ TpM that satisfies{
π
[m′]
p

(
v[m]

)
= ṽ[m] if m′ = m,

π
[m′]
p

(
v[m]

)
= 0 if m′ ̸= m.

(10)

We can prove that the above v[m] is uniquely defined. By the above identification, we can identify each

Tp[m]M[m] with T
[m]
p M :=

(
π
[m]
p

)−1(
Tp[m]M[m]

)
⊂ TpM, which is a linear subspace of TpM

with the same dimension as Tp[m]M[m]. Also, we can prove that Tp[m]M[m] =
⊕M

m=1 T
[m]
p M is

the orthogonal direct sum decomposition. Since the restriction π
[m]
p

∣∣∣
T

[m]
p M

is one-to-one, we can

define its inverse map
(
π
[m]
p

∣∣∣
T

[m]
p M

)−1

: Tp[m]M[m] → T
[m]
p M.

Based on the identification, if we have multiple CHMOOs(
M[m], o[m],

(
ẽ
[m]
1 , ẽ

[m]
2 , . . . , ẽ

[m]

D[m]

))M
m=1

, we can see that(
e
[1]
1 , e

[1]
2 , . . . , e

[1]

D[1] , e
[2]
1 , e

[2]
2 , . . . , e

[2]

D[2] , . . . , e
[M ]
1 , e

[M ]
2 , . . . , e

[M ]

D[M]

)
is an ONB in TpM,

where e
[m]
d =

(
π
[m]
o

∣∣∣
T

[m]
o M

)−1(
ẽ
[m]
d

)
for m = 1, 2, . . . ,M and d = 1, 2, . . . , D[m],

M =M[1] ×M[2] × . . . ,×M[M ], and o =
(
o[1], o[2], . . . , o[M ]

)
∈M. Hence, we can define the

product CHMOO
(
M, o,

(
e
[1]
1 , e

[1]
2 , . . . , e

[1]

D[1] , e
[2]
1 , e

[2]
2 , . . . , e

[2]

D[2] , . . . , e
[M ]
1 , e

[M ]
2 , . . . , e

[M ]

D[M]

))
.

We are interested in the SHP, Riemannian 0-norm, SSDM, its inverse, CH 1-norm, and CHSTO of the
product CHMOO. In the following, we derive the formula for the SSDM, which enable us to calculate
the others. To achieve that, we review the basic property of the product Riemannian manifold.

Suppose that p =
(
p[1], p[2], . . . , p[M ]

)
∈M and v ∈ TpM and we consider the unique decomposi-

tion v =
∑M

m v[m], where v[m] ∈ T
[m]
p M for m = 1, 2, . . . ,M . Define ṽ[m] = π

[m]
p

∣∣∣
T

[m]
p M

(
v[m]

)
for m = 1, 2, . . . ,M . We can see that if we can define expp[m]

(
ṽ[m]

)
∈M[m] for m = 1, 2, . . . ,M ,

it follows that expp (v) =
(
expp[1]

(
ṽ[1]
)
, expp[2]

(
ṽ[2]
)
, . . . , expp[M]

(
ṽ[M ]

))
. We can calculate the

logarithmic map similarly.

The distance between two points p =
(
p[1], p[2], . . . , p[M ]

)
and q =

(
q[1], q[2], . . . , q[M ]

)
is given by

∆M(p, q) =

√√√√ M∑
m=1

[
∆Mm

(
p[m], q[m]

)]2
. (11)

From the above property, we can confirm that the SHP ΠM
[m],d of the product CHMOO corresponding

to e
[m]
d ∈ T

[m]
o M⊂ ToM is given by

ΠM
[m],d =

{(
p[1], p[2], . . . , p[M ]

)∣∣∣∣∣p[m′] ∈ ΠM[m]

d if m′ = m, p[m
′] ∈M[m] if m′ ̸= m,

}
.

(12)
Hence, we immediately get the SSDM formula.

δM(p) =


δM

[1](
p[1]
)

δM
[2](

p[2]
)

· · ·
δM

[M](
p[M ]

)
. (13)

The above formula enables us to calculate the SHP, Riemannian 0-norm, SSDM, its inverse, CH
1-norm, and CHSTO for the product CHMOO if we can calculate them for each component CHMOO.
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For example, we can calculate them for the product of the EVCHMOO and hyperbolic CHMOOs.
Note that the product of EVCHMOOs is again a higher dimensional EVCHMOO, while the product
of hyperbolic CHMOOs is not a hyperbolic CHMOO since the product of hyperbolic space is not a
hyperbolic space.

F NUMERICAL EXPERIMENTS: HISTA AVOIDS THE OSCILLATION

Remark 9 states that our motivation in this paper has almost been achieved. The last thing we need to
do is to confirm by numerical experiments that our HISTA avoids the oscillation issue. Hence, we
compare the HISTA and RGD for sparse solution and non-sparse solution cases.

We consider minimizing the square distance with the hyperbolic 1-norm regularization: L(z) =[
∆(D2,GP

· )
(z, z′)

]2
+ λ∥z∥1,(D2,GP

· )
. Here, we set z′ = [0.0 0.0]

⊤
, [0.0 0.8]

⊤
, [0.4 0.8]

⊤. We
expect that the true solution is sparse for the first two cases and non-sparse for the last case, though
we do not know the analytic solution for the latter two. We set λ = 1.0 and α = 0.1 for all cases.

Figure 3 shows that the HISTA outperforms the RGD for z′ = [0.0 0.0]
⊤
, [0.0 0.4]

⊤ in terms of
the objective function’s value as well as obtaining a sparse solution. For z′ = [0.4 0.8]

⊤, the RGD
can outperform the HISTA. We also observe a “bounce back” effect by the HISTA, which could be a
drawback. Still, the HISTA is stable for all the cases, while the oscillation of the RGD is significant
for z′ = [0.0 0.0]

⊤. See also Figure 4. Our results confirm that the superiority of the HISTA over
the RGD in the function value for sparse solution cases. Still, detecting the cause of the bounce back
effect by the HISTA would be interesting future work.
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Figure 3: The optimization performances of HISTA and RGD in minimizing the square distance
from a fixed point z′ with the hyperbolic 1-norm, where z′ = [0.0, 0.0]

⊤ (Left), z′ = [0.0, 0.8]
⊤

(Center), and z′ = [0.4, 0.8]
⊤ (Right). Note that in (Left), the blue dashed line indicating HISTA

goes infinitely downward because the objective function value reaches 0. See Figure 4 for details.
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Figure 4: The optimization performances of HISTA and RGD in minimizing the square distance from
a fixed point z′ with the hyperbolic 1-norm, where z′ = [0.0, 0.0]

⊤. Here we focus on the first 100
iterations to see the oscillation issue of the RGD.
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G NUMERICAL EXPERIMENTS ON GRAPH EMBEDDING SETTING

This section gives numerical-experimental results. Note that the objective is not to achieve state-of-
the-art representations, but to show how our sparse learning scheme influences HSBRL.

We denote a graph by G = (V, E), where V is the vertex set and E is the edge set. Since edges are the
most fundamental form of information about entity relations, graph embedding has wide applications.
Hence, we choose graph embedding as the problem on which we evaluate the performance of our
sparse learning scheme. Our objective here is NOT to maximize the quality of representations, but to
compare our sparse learning scheme with possible alternatives. Hence, we use the following simplest
graph embedding setting. Let C(V, 2) be the set of subsets of V , whose size is two. That is, C(V, 2)
is the set of unordered vertex pairs. Define the label of a vertex pair yu,v ∈ {−1,+1} and the sample
weight wu,v ∈ R>0 for u, v ∈ V such that u /∈ v by

yu,v :=

{
+1 if {u, v} ∈ E ,
−1 if {u, v} /∈ E ,

wu,v := 2 · |{{u
′, v′} ∈ C(V, 2) | yu′,v′ = yu,v}|

|C(V, 2)|
.

(14)

Also, define the 0-1 loss function l0-1 : R× {−1,+1} → {0,+1} by

l0-1(ŷ, y) :=

{
0 if sgn (ŷ) = y,
+1 otherwise.

(15)

The objective of our experimental setting is to minimize the following balanced 0-1 loss:

L0-1
(
(zv)v∈V ;G

)
:=

∑
{u,v}∈C(V,2)

wu,vl0,1

([
∆(DD,GP

· )
(zu, zv)

]2 − θ, yu,v

)
, (16)

where the hyperparameter θ ∈ R>0 determines the threshold in labeling the pair to be positive or
negative.

The above function L0-1 is not easy to optimize since it is not continuous. Hence, in the optimization
step, we replace l0-1 by the hinge loss function lhinge : R×{−1,+1} → R≤0 defined by lhinge(ŷ, y) =
max−ŷy + 1, 0, widely used in machine learning area, e.g., support vector machines (Cortes &
Vapnik, 1995). That is, the loss function in the optimization step is

L
(
(zv)v∈V ;G

)
:=

∑
{u,v}∈C(V,2)

wu,vl
([

∆(DD,GP
· )
(zu, zv)

]2 − θ, yu,v

)
. (17)

Also, we add the regularization term λ
∑

v∈V r(zv) to the objective function, where the regularization
function r : DD → R≥0 is the object of the comparison in the experiments and varies for each
method. Note that λR≥0 determines the regularization strength. To wrap up, we optimize the function
J
(
(zv)v∈V ;G

)
:= L

(
(zv)v∈V ;G

)
+ λ

∑
v∈V r(zv).

As a regularization function r, we compare the following three:

r(z) =


∥z∥1,(DD,GP

· )
hyperbolic 1-norm (H 1-norm),

∥z∥1 linear 1-norm,
0 no regularization.

(18)

We use the HISTA for the hyperbolic 1-norm. For the linear-norm, we apply Riemannian gradient
descent and traditional shrinkage-thresholding operator. Note that this is also what we propose for
a baseline. For the no regularization case, these two are the same. Strictly speaking, we need to
regard the problem as the optimization of a function of the product of |V| hyperbolic spaces since we
consider |V| points in hyperbolic space. The rigorous discussion for the product manifold is given in
Appendix E. Still, it shows that what we need to do is to calculate a partial derivative for each point,
convert it into a Riemannian gradient, and apply the HISTA or RGD for each point, like existing
papers do.

We evaluate the balanced accuracy 1 − L0-1
(
(zv)v∈V ;G

)
and the sum

∑
v∈V ∥zv∥0,(DD,GP

· )
=∑

v∈V ∥zv∥0 of the 0-norms of the representations. The higher accuracy and lower 0-norm, the
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Figure 5: The datasets’ structure. Left: TRLC, right: TRC.

better, but there is a trade-off between the accuracy and the 0-norm. Specifically, the stronger the
regularization is, the lower accuracy and lower 0-norm it gets, and vice versa. Hence, we vary
the regularization weight λ and observe how the accuracy and the 0-norm changes. For the no
regularization method, we vary D instead of λ. In this case, the lower D is, the lower accuracy and
lower 0-norm it gets, and vice versa.

As a graph, we consider tree-like structures that are not completely tree, which are our main focus.
To see the difference between the CH 1-norm regularization and Linear 1-norm regularization, we
experiment on synthetic datasets defined below.

• TREE-ROOTLEAFCUBES (TRLC) consisting of two complete n-ary trees with height h and five
m-dimensional cubes. One cube is in between the roots of the two trees, where each vertex of a
hyperbody diagonal pair (a most distant pair) in the cube has an edge to the root of a tree. The
other four cubes are connected to a leaf of a tree. Two cubes are connected to one tree and the other
two cubes are connected to the other tree. Here, each of the former two cubes have one edge to a
leaf of the tree, where the two leaves connected to a cube are most distant to each other. The same
holds true for the other tree and the latter two cubes.

• TREE-ROOTCUBES (TRC) is similar to TRLC but without the cube connected to the leaves.

Uniform regularization is needed for TRLC since it has cubes both at the root and around the leaves.
Conversely, strong regularization around the boundary and weak regularization could work well
for TRC since it has a cube only at the root. Hence, our natural expectation is that CH 1-norm
regularization works better for TRLC than Linear 1-norm regularization, but the tendency is not clear
for TRC. Figure 5 visualizes these graph structures.

To show our sparse learning scheme’s behavior in real applications, we conduct the same experiment
on the following real datasets.

• ENRON-EMAIL is an email network reflecting the hierarchical tree structure of the company. At
the same time, it also contains edges corresponding to cross-departmental communications, which
might be an omen of Enron’s bankruptcy in 2001. Since it is a mixture of a tree-like structure
and a non-tree-like structure, we expect that our sparse learning scheme works better than the no
regularization method in the ENRON-EMAIL.

• CORA is a citation network, which shows a highly tree-like structure. Since it is highly tree-like,
we expect it to be more effective to apply a (non-sparse) hyperbolic embedding method in low-
dimensional space than to apply our sparse learning scheme in high-dimensional space. Hence, we
do NOT expect that our sparse learning scheme works so effectively in CORA as in ENRON-EMAIL.

Other experimental settings are as follows. We set n = 2, h = 3, and m = 3. The dimension
D = 6 is fixed for the two regularization methods, while D = 2, 3, 4, 5, 6 for the no regularization
method. The regularization strength varies among λ = {1.0, 2.0, 5.0} × 10{−3,−2,−1} for the
two regularization methods. The learning rate that achieved the best accuracy is selected from
λ = {1.0, 2.0, 5.0} × 10{1,2,3}. The threshold hyperparameter θ is set to 1.0. The number of
iterations is set to T = 10000.

Figure 6 shows how the accuracy and the 0-norm changes by varying λ or D. The closer to the
left upper corner, the better. Here, we show the range where the sum of the 0-norms is no smaller
than 2|V|; otherwise the mean 0-norm would be lower than two, which would be meaningless as
representations. We have also plotted the results of the H 1-norm regularization optimized by RGD,
which shows that RGD fails to get sparse representations, while shrinkage-thresholding operators
succeeded. As we have expected, the H 1-norm regularization outperforms the others in TRLC. It
shows that our H 1-norm regularization can select the dimension of each representations efficiently.
In TRC, the linear 1-norm regularization outperforms others around where the sum of the 0-norm is
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Figure 6: The trade-off between the representation quality (balanced accuracy) and the space
complexity (the 0-norm). From left to right: TRLC, TRC, EMAIL-ENRON, Cora. The closer to the
left upper corner are the graphs, the better.

75, as we have expected. Interestingly, our H 1-norm regularization outperforms the linear 1-norm
regularizations where the sum of the 0-norm is larger. One possible reason is that the linear 1-norm
regularizations tend to be unstable since the STO changes the representations dramatically around
the ball boundary. Although comparing the optimization process is not trivial since they optimize
different functions, clarifying the reason for the low performance of the linear regularization would
be interesting future work. In ENRON-EMAIL, our H 1-norm outperformed other methods both in
the balanced accuracy and the sum of 0-norm, when the sum of 0-norm is around 400. While our
method’s advantage is clear where the sum of 0-norm is small, no method outperforms the remaining
in both balanced accuracy and the sum of 0-norm where the sum of 0-norm is large. The investigation
of this phenomenon is interesting future work. In CORA, no regularization method outperformed
both the regularization methods. The reason is that CORA is highly tree-like, so it is most suitable for
low-dimensional hyperbolic space. Hence, the result is consistent with our expectations.

H ACRONYM TABLE

To increase readability, we provide the table of acronyms used in this paper in Table 1

RL representation learning
HSBRL hyperbolic-space-based representation learning

RGD Riemannian gradient descent
HISTA hyperbolic iterative shrinkage-thresholding algorithm
RCS real coordinate space
CHM Cartan-Hadamard manifold

CHMOO CHM with an origin and orthonormal bases
ONB orthonormal basis

EVCHMOO Euclidean vector CHMOO
SHP sparse hyperplane

SSDM signed SHP distance map
CH Cartan-Hadamard
H hyperbolic

ISTA iterative shrinkage-thresholding algorithm
STO soft-thresholding operator

CHSTO Cartan-Hadamard STO
CHISTA Cartan-Hadamard ISTA

Table 1: Acronyms
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