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ABSTRACT

Story visualization aims to generate realistic and coherent images
based on multi-sentence stories. However, current methods face
challenges in achieving high-quality image generation while main-
taining lightweight models and a fast generation speed. The main
issue lies in the two existing frameworks. The independent frame-
work prioritizes speed but sacrifices image quality with the non-
collaborative image generation process and basic GAN-based learn-
ing. The autoregressive framework modifies the large pretrained
text-to-image model in an auto-regressive manner with additional
history modules, leading to large model size, resource-intensive re-
quirements, and slow generation speed. To address these issues, we
propose a lightweight and effective framework, namely Coln. Specif-
ically, we introduce a Context-aware Story Generator to predict
shared context semantics for each image generator. Additionally,
we propose an Intra-Story Interchange module that allows each
image generator to exchange visual information with other image
generators. Furthermore, we incorporate DINOv2 into the story
and image discriminators to assess the story image quality more
accurately. Extensive experiments show that our Coln keeps the
model size and generation speed of the independent framework,
while achieving promising story image quality.

CCS CONCEPTS

« Computing methodologies — Computer vision.

KEYWORDS

Generative Models, Story Visualization, Story Continuation

1 INTRODUCTION

Story visualization is a challenging task that aims to generate co-
herent and visually appealing story images based on a sequence
of story descriptions. The task requires the model to capture the
essence of the story and the relationships between different story
descriptions in the story and then translate them into realistic im-
ages that tell the story in a coherent manner. Some recent works
extend the task to story continuation which provides an initial
frame of the story image and generates subsequent frames based
on the remaining story descriptions. Due to the practical applica-
tion, story visualization and continuation have recently become an
active research area [16, 18, 20, 22, 26].

Unpublished working draft. Not for distribution.
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Figure 1: (a) Existing story visualization models [16-18] al-
ways employ an independent generator design. (b) Recent
models [22, 26] employ large pretrained generative models
and synthesize story images frame-by-frame. (c) Our Coln
proposes a novel contextualize and interchange story gener-
ator to share the global context visual semantics and inter-
change local visual features during the synthesis process.

Existing story visualization models [2, 18, 20, 21, 26, 29, 38] have
significantly advanced in generating story images. However, they
still face difficulties in achieving both high-quality image gener-
ation and maintaining lightweight models with a fast generation
speed. The existing frameworks for story visualization exhibit in-
herent limitations that hinder their effectiveness and efficiency.
The independent framework [16, 18, 20, 21, 38], which prioritizes
generation speed, compromises image quality due to its reliance
on independent generators and basic Generative Adversarial Net-
works (GANs). As depicted in Figure 1(a), in the independent frame-
work, the fusion of textual information for each frame occurs only
before it is passed to the image generator. The image generator
operates independently during the image generation process with-
out any information exchange, thereby increasing the difficulty of
synthesizing coherent story images. Conversely, the autoregres-
sive framework [22, 26, 29] utilizes large pretrained text-to-image
models [31, 32, 34], transforming them into an auto-regressive ap-
proach for generating story images (see Figure 1(b)). It incorporates
an additional history module to retain and encode the generated
historical frames. However, as shown in Figure 2, this approach re-
sults in significantly larger model sizes, high resource requirements
for training and inference, and the frame-by-frame design further
slows the generation speed. Moreover, both independent and au-
toregressive frameworks do not distinguish between local story
and global context information. Consequently, the image generator
needs to implicitly decode the entangled local story and global
context features and synthesize the corresponding visual features
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Figure 2: Comparing with the state-of-the-art models on
Pororo-SV [14]. Our Coln achieves comparable image quality
metrics, such as FID and FSD, to the large pretrained text-to-
image model-based autoregressive framework (StoryDALL-
E[22], AR-LDM[26]), while preserving the fast speed, small
model parameters, and low resource requirements of the in-
dependent framework (WL-SV [16]).

simultaneously. This diminishes the model’s learning efficiency and
compromises the quality and consistency of the generated images.

To achieve high-fidelity and coherent story image generation
while maintaining reasonable computational requirements and gen-
eration speed, we propose the Coln (Contextualize and Interchange)
for story visualization and Continuation. As shown in Figure 2, com-
pared to WL-SV[16] which is based on the independent framework,
our Coln boosts the image quality significantly while keeping the
generation speed and parameters of the story generator. Compared
with StoryDALL-E[22] and AR-LDM[26] which adopt pretrained
text-to-image model-based autoregressive framework, our Coln
achieves competitive results with ~1000x and ~360xfaster synthe-
sis speed and 5.0% and 4.6% generator parameters.

With careful consideration of the characteristics of story visual-
ization and continuation tasks, we develop the novel Coln frame-
work tailored to meet their specific requirements. Unlike previous
models, our Coln distinguishes between local story and global con-
text to ensure the overall coherence of generated story images. As
depicted in Figure 1(c), we propose the Context-aware Story Gener-
ator which consists of Contextual Story-Visual Fusion, local story
image generators, and a shared story context generator. The Con-
textual Story-Visual Fusion fuses the text and source image features
for each image generator and extracts the global context informa-
tion for the context generator. Explicit extraction of global context
and specialized context generator alleviate the difficulty for the
Context-aware Story Generator in handling both the global context
and the local story information simultaneously. Additionally, our
Coln supports information exchange between different frames of
the same story during the generation process to ensure a consistent
visual appearance. We propose an Intra-story Interchange module,
which allows different image generators of the same story to ex-
change visual features, promoting visual consistency across the

Anonymous Authors

generated images. Lastly, we introduce DINO-based discriminators,
which incorporate the pretrained DINOv2 [25] visual backbone into
the story and image discriminators to assess the quality of story
images more accurately.

Overall, our contributions can be summarized as follows:

e We introduce a fast, lightweight, and effective framework
for story visualization and continuation to synthesize high-
quality and coherent story images.

e We propose a Context-aware Story Generator that explicitly
extracts global context information and shares context fea-
tures with all image generators during the synthesis process.

e We propose the Intra-story Interchange module, which en-
ables the exchange of visual features between intra-story
image generators to enhance visual consistency.

e We propose the DINO-based story and image discriminators,
which assess the quality of story images more accurately.

o Extensive qualitative and quantitative experiments demon-
strate that the proposed Coln achieves promising results
with fast generation speed and a much smaller model size.

2 RELATED WORK

Text-to-Image Synthesis. Recent advancements in text-to-image
synthesis have primarily focused on three main frameworks: Gen-
erative Adversarial Networks (GANs) [8], autoregressive models
[4, 5, 31], and diffusion models [24, 30, 32, 47]. GANSs, such as Stack-
GAN [45, 46], AttnGAN [42], DM-GAN [48], DF-GAN [40], GALIP
[39], and StyleGAN-T [36] employ adversarial training strategies
between generators and discriminators to generate high-quality im-
ages from text descriptions. Large pretrained autoregressive models,
including DALL-E [31], Make-A-Scene [6], Parti [43], and VAR[41],
have demonstrated scalability and proficiency in synthesizing im-
ages. These models generate images by sequentially autoregres-
sively predicting pixel tokens based on previously generated to-
kens. Diffusion models [3, 12, 13, 23, 37], such as VQ-Diffusion [9],
GLIDE [24], DALL-E2 [30], Latent Diffusion Models [32], Imagen
[35], eDift-I [1], and SDXL [27], have gained significant interest.
These diffusion models address some of the challenges faced by
GANS, such as mode collapse and training instability, resulting in
the generation of diverse sets of images. These text-to-image gen-
erative models have a significant impact on story synthesis models
and are often utilized as the generative backbone for generating
story images based on story descriptions.

Story Visualization and Continuation. StoryGAN [18] was the
pioneering work that introduced the task of story visualization and
proposed a GAN-based sequence generation model. It consisted of
a deep RNN-based context encoder and two discriminators for im-
ages and stories. Subsequent works have built upon and refined this
network. For example, CP-CSV [38] introduced a new foreground
segmentation module to optimize the consistency between charac-
ters and backgrounds in the story. DUCO [21] and VLC [20] [17]
enhanced semantic consistency through dual learning, with DUCO
considering inter-image sequence consistency via copy-transform
and VLC focusing on textual information by incorporating external
common-sense knowledge. WL-SV [16] and Clustering GAN [17]
simplified the two-stage GAN network of StoryGAN and further im-
proved story quality through fine-grained word-level features and
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Figure 3: The architecture of the proposed Coln for Story Visualization and Continuation. Our Coln proposes a novel contextu-
alize and interchange framework to share the global context visual semantics and interchange local visual features.

clustering learning, respectively. These GAN-based models adopt
the independent framework. Conversely, recent approaches such
as pre-trained DALL-E-based StoryDALL-E [22], and pre-trained
stable diffusion-based AR-LDM [26] have been developed for story
visualization. They utilize large pre-trained text-to-image models
and synthesize story images in an autoregressive manner. Notably,
StoryDALL-E [22] also introduced a new task called story continu-
ation, which involves generating unseen plots and characters based
on a given source frame. AR-LDM [26] and Make-A-Story [29] can
handle both the story visualization and story continuation tasks.
Recently, there are some works focusing on open-ended story visu-
alization. TaleCrafter [7] pioneered an interactive approach with
sketch and layout controls for story visualization. CogCartoon [49]
introduced a character-plugin generation to minimize data and
storage requirements. Intelligent Grimm [19] curated a diverse
open-ended story dataset from YouTube and e-books.

The proposed Coln differs greatly from the previous story visual-
ization and continuation models. The CoIn shows a novel contextu-
alize and interchange framework that is different from independent
and autoregressive frameworks. It decomposes local image gener-
ation and context generation, which enables the story generator
to synthesize more coherent story images. Furthermore, it adopts
an Intra-Story Interchange module to exchange visual information
between intra-story generators. Compared to previous models, our
Coln is a more effective and efficient framework for synthesizing
high-quality and coherent story images.

3 THE PROPOSED METHOD

In this work, we propose a novel framework for story visualization
and continuation named Coln. To synthesize high-quality story
images while maintaining reasonable computational requirements
and generation speed, we propose: (i) a Context-aware Story Gen-
erator (Context-aware SG) that explicitly captures and leverages

global context information by sharing contextual features with all
image generators throughout the synthesis process. (ii) an Intra-
story Interchange module (Intra-SI) that facilitates the exchange
of visual features among image generators within the story to im-
prove visual consistency. (iii) a pair of DINO-based story and image
Discriminators (DINO-baed D) that enhance the accuracy in as-
sessing the quality of story images. In the following section, we
first present the overall structure of our Coln. Then, we introduce
Context-aware SG, Intra-SI, and DINO-baed D in detail.

3.1 Model Overview

As illustrated in Figure 3, Coln consists of CLIP Text and Image
Encoders [28], a Context-aware SG with a Contextual Story-Visual
Fusion module (Contextual SVF), an Intra-SI module, a pair of DINO-
based story and image discriminators. The CLIP Text-Image En-
coder encodes text descriptions and source story images into text
and image vectors. The Contextual SVF takes text and image vec-
tors, Gaussian noise, and a learnable context vector as input and
outputs the fused story embedding and extracted context embed-
ding. Afterward, the Context-aware SG utilizes the noise, fused
story embedding, and extracted context embedding to synthesize
story images. The story generator comprises two classes of sub-
generators: image generator and context generator. The image gen-
erator employs fused story embedding, while the context generator
utilizes extracted context embedding. In the image generator, the
noise is passed through a Fully Connected (FC) layer and reshaped
to (4,4,256). Then, a series of upsampling blocks upsamples the
image features and incorporates fused story embedding into the
generation process. The Intra-SI collects synthesized image fea-
tures from different image generators within the same story and
performs cross-frame visual feature exchange. The contextual vi-
sual features synthesized by the context generator are added to
the output features in the upsampling block. Finally, a convolution
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Figure 4: Illustration of the Intra-Story Interchange module which exchanges visual features among image generators.

layer converts the image features into RGB images. DINO-based
Story Discriminator and Image Discriminator take the generated
and real story images as input and extract their visual features
through the frozen DINOv2 visual backbone [25]. Then, they assess
the quality of story images based on the extracted visual features
along with text and image vectors. By distinguishing synthesized
story images from real ones, the discriminators promote the story
generator to synthesize higher-quality story images.

3.2 Context-aware Story Generator

In this section, we detail the proposed Context-aware SG. The
Context-aware SG differs from the previous independent and au-
toregressive generators. It shows a novel story generator that explic-
itly captures and leverages global context information by sharing
contextual features with all image generators during the synthesis
process. The Context-aware SG comprises three key components:
a Contextual Story-Visual Fusion module, a Shared Context Gener-
ator, and Story Image Generators.

Contextual Story-Visual Fusion. The Contextual SVF aims to
fuse the given text and image features and extract the context in-
formation from given conditions. However, the inputs of the story
visualization and continuation are different. For story visualization,
the input is a sequence of encoded text features of story descrip-
tions, where each description describes the visual content of the
corresponding frame in the story. For story continuation, the in-
put consists of two parts: the encoded visual features of source
story images and the encoded text features of story descriptions
corresponding to the last frames. As shown in Figure 3, the Contex-
tual SVF takes the pre-trained CLIP model [28] to encode source
story images and story descriptions. Due to the large pre-training
of image-text contrastive learning, CLIP connects the image and
text spaces. The encoded text and image vectors are effectively
aligned in the shared semantic space, enabling our Contextual SVF
to simultaneously process the image and text features extracted
by CLIP. Benefiting from this, our Coln unifies the story visual-
ization and continuation tasks in one model. Then, the encoded
text and image vectors are concatenated with a Gaussian noise
vector and combined with the time embedding. This integration
allows for image variance in the synthesized story images, while the
time embedding incorporates temporal information. Additionally,
a learnable context vector is appended to the inputs. This vector

is specifically designed to extract context information from both
source story images and descriptions.

Unlike previous models that implicitly fuse context information
into the story embedding, our Contextual SVF explicitly extracts
context information. This explicit extraction enables Contextual
SVF to separate the global context information from the local story
features. The Contextual SVF consists of six stacked transformer
blocks, each containing eight attention heads. This transformer-
based architecture facilitates parallel processing and ensures scala-
bility for story lengths of varying sizes. With contextual story-visual
fusion and explicit context extraction in place, the Context-aware
Story Generator obtains fused story embeddings and extracted
context embeddings. These embeddings are utilized by the image
generators and the context generator, enabling them to generate
story images that are coherent and contextually grounded.

Story Image Generator. The structure of the Story Image Gener-
ator is shown in Figure 3, as highlighted by the blue dashed box.
The Gaussian noise vector is fed into the FC layer and reshaped to
(4, 4,256) as an initial image feature. Then we apply a sequence of
Story Fusion blocks (SF-BLKs) to upsample the image feature to
the target image size and fuse story and context information into
synthesized story images. The SF-BLK is composed of one upsam-
ple layer, two convolution layers (Conv), and two deep text-image
fusion blocks (DFBlock) [40]. As shown in recent text-to-image
works [40], DFBlock can fuse text and image features effectively
through deep affine transformations. Thus, we employ it to fuse
story features and intermediate visual features. After the fusion
of the story and visual features, the SF-BLK sends the fused visual
features to the Intra-SI and receives the exchanged visual features
from it. The exchanged visual features are added to the fused visual
features. Lastly, the SF-BLK combines the context visual features
generated by the Context Generator and the original features from
the shortcut before fusion. Through SF-BLK, the output visual fea-
tures contain local story information, global context information,
and cross-frame visual information. There are M SF-BLKs stacked
in the Image Generator, and one convolution layer converts the
fused image features into RGB images.

Shared Context Generator. The structure of the Shared Context
Generator is also shown in Figure 3, as highlighted by the pink
dashed box. To ensure the generation of story images with consis-
tent overall context, the Context Generator and Image Generator
are designed with a similar structure, facilitating the effective fusion
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Figure 5: Illustration of the proposed DINO-based Story Discriminator for story visualization and continuation tasks.

of context information. However, unlike Image Generator, Context
Generator only takes the context embedding as input. There are N
Context Fusion blocks (CF-BLKs) stacked in the Context Generator.
As SF-BLKs, we adopt the DFBlock[40] to fuse the extracted con-
text embedding at each CF-BLK. Then, the context visual features
generated by the Context Generator are shared with all Image Gen-
erators. The Image Generator and Context Generator do not share
parameters, allowing for a more thorough learning of image and
context generation. To strike a balance between sharing story con-
text and preserving different visual details in each story image, the
context visual features are only introduced in the first 3 SF-BLKs.
Compared to previous methods, the Context Generator enhances
the global context information and alleviates the difficulty of the
story generator in synthesizing coherent story images.

3.3 Intra-Story Interchange

To enable feature interchange during the intra-story image gen-
eration process, we propose the Intra-SI module. As illustrated in
Figure 3 and Figure 4, the Intra-SI takes the fused story embeddings
from the Contextual SVF and collects the image visual features from
intra-story image generators. First, Intra-SI concatenates the story
embeddings and visual features, respectively. The concatenated
story embeddings are then fed into two FC layers to predict the vec-
tor @ € RC and B € R, where C is the channel size of the concate-
nated visual features. Afterward, the vectors o and f are reshaped
to (C,1) and (1, C). We perform matrix multiplication between the
reshaped o and B to obtain the predicted 1 X 1 convolutional ker-
nel weights. Finally, we conduct the 1 X 1 convolution process on
concatenated visual features based on the predicted kernel weights.
As part of the Shared Context Generator, the Intra-SI modules are
applied only in the first four SF-BLKSs to strike a balance between
visual appearance consistency and variance. The proposed Intra-SI
module in our Coln framework facilitates interaction among image
generators throughout the story generation process. By incorporat-
ing the Intra-SI module, the image generators have the opportunity
to exchange visual features among themselves. This exchange of
visual features enhances the generated story images, resulting in
improved visual appearance consistency.

The proposed Intra-SI enables our Coln to interact across the im-
age generators during the story generation process. As the Shared
Context Generator, the Intra-SI modules are only applied in the first

4 SF-BLKs to balance visual appearance consistency and variance.
The Intra-SI provides the chance for the image generator to ex-
change visual features among them and improves generated story
images with better visual appearance consistency.

3.4 DINO-based Discriminators

To improve the efficiency of adversarial learning and the accuracy
of story image quality assessment, we propose the DINO-based Dis-
criminator. We first introduce the DINO-based Story Discriminator.
As shown in Figure 5, the story image sequence is first encoded
by the frozen DINOv2-Small Image Encoder. The visual features
from the Z"d, 7”’, gth layers in DINOv2-Small are extracted and
further analyzed through two residual blocks. Then we concatenate
the output visual features and encode them into a more compact
visual feature. We also concatenate the text and image vectors and
encode them into a more compact vector. Afterward, we replicate
the encoded text-image vector and concatenate it with compact
visual features. A story adversarial loss is predicted by two con-
volution layers to evaluate the story quality. Based on the visual
understanding ability of pre-trained DINOv2 [25], the DINO-based
Story Discriminator can assess the story quality more accurately.
The DINO-based Image Discriminator shares a similar structure
but differs in how it processes the input features. Rather than con-
catenating the visual features of the same story as the whole story
visual feature, it concatenates the visual features of each image with
their corresponding textual features. This allows the discriminator
to assess the quality of each image.

The DINO-based Discriminator is partly inspired by GALIP [39]
which employs the pretrained CLIP-ViT [28] to extract visual fea-
tures in the image discriminator. In this work, we extend it and
propose the DINO-based Story and Image Discriminator to assess
the story quality. Compared with CLIP-ViT which only utilizes high-
level contrastive pretraining, DINOv2 incorporates an additional
mask to reconstruct masked parts. It enables DINOv2 to extract
richer and more detailed visual features. However, we observed
that directly using the DINOv2 model resulted in the generation of
patch-like patterns in the synthesized images, as shown in Figure
8(a). These patch-like patterns were consistent with the size of the
DINOv2 input (16, 16). When we replaced DINOv2 with CLIP-ViT-
B/16, the patch-like patterns disappeared. We suspect that this issue
may be related to the masked pretraining employed by DINOv2,
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which might not provide sufficient supervision for smooth transi-
tions between adjacent image patches. Consequently, the generator
may have learned to generate adversarial features. To address this
issue, we propose the Slight Shift trick. Before feeding the images
into DINOv2, we slightly enlarge them and randomly crop an image
corresponding to the resolution of DINOv2’s input. This process
helps prevent the generator from accurately identifying the patch
intervals, thereby avoiding the generation of patch-like patterns.

3.5 Objective Function
We follow previous text-to-image models [39, 40] and employ the
hinge loss [44] and MA-GP [39, 40] to stabilize the adversarial
training process. Finally, the whole formulation of our Coln is
shown as follows:
Lp, = —E[min(0, -1+ Dr(x,e))]
= (1/2)E[min(0, -1 - D;(G(z,e),e))]
— (1/2)E[min(0,—1 — Dy (x, €))]
+KE[(IVe,Dr(ci, )|l + IVeDr(ci, e) D],
Lps = —E[min(0, -1+ Dg(x,e))]
— (1/2)E[min(0,—1 — Ds(G(z,e), e))]
= (1/2)E[min(0,—1 - Ds(x, é))]
+KE[(||Ve,Ds(cs, )]l + [ VeDs (cs, ) NP1,

LD = ALDI + )/LDS,

Lg = —AE[D(G(z,¢),e)] = YE[Ds(G(z e), e)],
where z is the Gaussian noise vector; e is the encoded text and
image vectors by the CLIP; é is the mismatch text and image vec-
tors; x is ground truth story images; G is the Context-aware Story
Generator; Dy and Dg are the DINO-baed Image Discriminator and
Story Discriminator; ¢; and cg are two extracted visual features by
the frozen DINOv2-Small in Image and Story discriminators; k and
p are two hyper-parameters of Matching-Aware Gradient Penalty

[40]; A and y are two hyper-parameters of image adversarial loss
and story adversarial loss.

)

4 EXPERIMENTS
4.1 Datasets

We evaluate our approach on two challenging datasets: Pororo-SV
[14] and Flintstones-SV [10]. The Pororo-SV dataset consists of
10191 training samples, 2334 validation samples, and 2208 testing
samples. The Flintstones-SV dataset consists of 20132 training sam-
ples, 2071 validation samples, and 2309 testing samples. Each story
in these datasets consists of five consecutive frames, and each im-
age corresponds to a story description. The partition of datasets
into training, validation, and testing subsets follows established
practices from previous studies [16, 22, 26, 29].

4.2 Training and Evaluation Details

Our method is developed using PyTorch. The resolution of the
output images on Pororo-SV and Flintstones-SV is 256 X 256. The
network is trained 200 epochs and 150 epochs on Pororo-SV and
Flintstones-SV. We use the Adam optimizer [15] with $1=0.0 and
P2=0.9 to train our model. We set the learning rate 0.0001 for the
generator and 0.0004 for the discriminator. The hyper-parameters

Anonymous Authors

Table 1: The comparison results of story visualization on the
test set of Pororo-SV and Flintstones-SV.

Method Params  Speed Pororo-SV Flintstones-SV
FID| FSD| FID| FSD]
StoryGAN[18] - - 78.64 9453  90.55 122.71
CP-CSV [38] - - 67.76  71.51 - -
VLC [20] - - 9430 122.07 - -
WL-SV [16] 0.07B  0.04s  56.08 5250 7237 91.30
Make-A-Story[29]  1.40B  14.00s 27.33 51.20 36.55 53.10
AR-LDM [26] 1.50B  14.50s 16.59 3533  23.59  39.70
Coln (Ours) 0.07B  0.04s 16.93 3341 2452 36.15

Table 2: The comparison results of story continuation on the
test set of Pororo-SV and Flintstones-SV.

Method Params  Speed Pororo-SV  Flintstones-SV
FID| FSD| FID| FSD|
StoryDALL-E [22] 1.30B 44.15s 2590 45.70 26.49 54.30
MEGAStoryDALL-E [22] 2.80B 87.40s 23.48 - 23.58 -
Make-A-Story[29] 1.40B  12.15s 22.66 44.22 23.74 52.08
AR-LDM [26] 1.50B 12.90s 17.40 37.52 19.28  43.32
Coln (Ours) 0.07B  0.04s 18.63 3473 1995 39.17

of the generator M and N are set to 6 and 3. The hyper-parameters
of the objective function k, p, A, y, are set to 2, 6, 0.5, and 0.5. All
models were trained on 8 X A6000 GPUs. Following the previous
story visualization works [16, 22, 26], we adopt the Fréchet Incep-
tion Distance (FID) [11] to evaluate the image quality of synthesized
story images, and adopt the Fréchet Story Distance (FSD) [16, 38]
to evaluate the consistency of the story image sequence. To com-
pare the efficiency of different models, we measure the generation
speed and the number of parameters in the story generator. The
generation speed is evaluated on a single A6000 GPU.

4.3 Quantitative Evaluation

To evaluate the performance of our proposed Coln, we compare it
with several state-of-the-art story visualization and continuation
methods [16, 20, 22, 26, 38] in Table 1 and Table 2. From Table 1
and Table 2, we can observe that our Coln achieves promising FID
and FSD with fast generation speed and a small number of param-
eters. Compared with WL-SV [16] which is the best model based
on the independent framework, our Coln significantly improves
the FID and FSD of Pororo-SV and Flintstones-SV. Compared with
StoryDALL-E [22], which utilizes large pre-trained DALL-E mod-
els and synthesizes story images in an autoregressive manner, our
Coln framework achieves superior results despite having signif-
icantly smaller generator parameters and faster synthesis speed.
This demonstrates the effectiveness and efficiency of our approach
in generating high-quality story images. Compared with AR-LDM
[26] which is an autoregressive model based on the powerful sta-
ble diffusion [33], our Coln has a significantly smaller number of
generator parameters but still achieves a competitive performance.

4.4 Qualitative Evaluation

Figures 6 and 7 show examples of visual comparisons between
our Coln and state-of-the-art story visualization and continuation
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1. eddy is wearing an equipment with a flashlight and two robot arms on his head . eddy 's robot hand
is holding a huge lollipop .

2. pororo is on a sleigh being surprised looking at a huge lollipop .

3. pororo is on a sleigh being sarcastic looking at a huge lollipop .

4. pororo is on a sleigh. eddy is wearing an equipment with a flashlight and two robot arms on his head .
5. pororo is on a sleigh and he looks at the front part of the sleigh . eddy is wearing an equipment with a
flashlight and two robot arms on his head .

WL-SV

AR-LDM
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1. barney nods and speaks to fred , who looks angry , while standing in the living room .

2. fred shouts angrily in the living room

3. fred is in a room and is angrily talking to someone off camera left .

4, fred and wilma are sitting in a room . fred moves his hand out with an angry expression on his face .
wilma looks at fred then turns her head back and starts talking .

5. fred in standing in the living room , talking to someone off screen left .

AR-LDM
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1. eddy is explaining to his friends that eddy was playing ball . eddy is showing the ball to his friends .
2. eddy is smiling and explaining that eddy was playing ball to his friends .

3. pororo and crong are excited to hear something from eddy .

4. pororo and crong are excited to hear something . pororo and crong are eager to do it themselves .
5. pororo and crong are very excited at an idea .

WL-SV

AR-LDM

Coln(ours)

1. wilma and betty are sitting on the couch in the living room . betty is talking to wilma .

2. wilma is sitting in a room speaking to someone .

3. wilma is in a room talking while nodding her head .

4. wilma and betty are sitting on a couch in the living room . while wilma is speaking , she points
her finger at betty .

5. wilma and betty are sitting on the couch in the living room . betty is talking and wilma is listening .

AR-LDM

__Coln(ours)

Figure 6: Comparison of story visualization results between WL-SV, AR-LDM, and our proposed Coln.

models, respectively. As shown in Figure 6, the characters synthe-
sized by WL-SV [16] contain broken or incorrect shapes. How-
ever, the story images synthesized by our Coln have the correct
shapes and clear backgrounds. Compared with StoryDALL-E [22]
in Figure 7, our Coln can synthesize a more consistent character
appearance. Although our Coln has achieved better image quality
than StoryDALL-E, we have observed some limitations in terms
of generalization compared to AR-LDM [26]. Due to the powerful
Stable Diffusion with large-scale pretraining, AR-LDM can gen-
erate uncommon content not frequently seen in the training set.
However, it is worth noting that our Coln still achieves comparable
results to AR-LDM in certain scenarios with ~360xfaster synthesis
speed and 4.6% generator parameters.

4.5 Ablation Study

To verify the effectiveness of different components in the pro-
posed Coln, we conduct ablation studies on the story visualiza-
tion and continuation tasks, respectively. The results of Pororo-SV
and Flintstones-SV are shown in Table 3. The components being
evaluated include DINO-based D, Context G, Contextual SVF, and

Table 3: The performance of different components of our
model on the test set of Pororo-SV and Flintstones-SV.

Task Method Pororo Flintstones
FID()) FSD(l) FID(l) FSD(])
Baseline 52.64 65.08 58.29 64.78

+ CLIP-based D 31.46 52.19 38.71 55.46
+ DINO-based D 28.46 49.34 33.71 52.46

Visualization + Context G 24.39 42.56 29.50 46.55
+ Contextual SVF  19.38 38.19 27.96 39.32
+ Intra-SI (Coln) 16.93 33.41 24.52 36.15
Baseline 57.15 66.12 62.11 67.18
+ CLIP-based D 36.18 52.10 40.66 58.69
+ DINO-based D 32.74 48.49 35.23 53.69
Continuation + Context G 26.83 43.41 28.97 48.40

+ Contextual SVF  23.53 38.14 23.22 45.69
+ Intra-SI (Coln) 18.63 34.73 19.95 39.17

Intra-SI. We also compare the results of CLIP-based D and DINO-
based D. Our baseline is a modified text-to-image DF-GAN [40]
adapted for story visualization tasks. The baseline fuses the story
information through FC layers.
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1. pororo talks about what pororo did to crong .

2. pororo and pororo friends are gathered at playground .

3. pororo and pororo friends are talking about loopy .

4. pororo and pororo friends are talking about pororo being secret friend .
5. pororo and pororo friends are talking about pororo being secret friend .
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_Coln

1. wilma is speaking to someone in the room .

2. wilma is in her room . she is happy about something

3. wilma is standing in a room . she is talking .

4. wilma is in a room . fred seems mad at her

5. fred is looking angrily at wilma while pointing a finger as they stand in a room .
! 1

'

(a) Without Slight Shift in DINO-based D

(b) With Slight Shift in DINO-based D

Figure 8: Comparison of the synthesized images between the
DINO-based D with and without Slight Shift.

From Table 3, we can observe that our proposed DINO-based D

achieves better performance than CLIP-based D on these two tasks.

If we further introduce the Context G to decompose the generation
task, we can observe a further improvement of FID and FSD. Armed
with Contextual SVF, the model also decreases FID and FSD from
24.39 and 42.56 to 19.38 and 38.19 for the story visualization task
on Pororo. The proposed Intra-SI further decreases FID and FSD

Anonymous Authors

1. eddy is explaining to rody how to play ball . rody and eddy are both waring a glove .

2. rody is holding glove . rody is trying to understand how to play ball .

3. eddy and rody decide to play ball together . eddy and rody look excited .

4. eddy is holding the ball in his hand . eddy is waring a glove . rody is on the other side . eddy is about
to throw the ball .

Coln(ours)_ _ _ _

1. wilma and betty are in the living room . wilma is standing behind a brown box .

2. betty is sitting on the floor in a room . she is talking and swings a paddle with writing on it .
3. betty is talking and going through a closet .

4. wilma and betty are in the living room . betty speaks . then wilma reaches down into a box .
5. wilma pulls a jersey out of a box while talking to betty in the living room .

StoryDALL-E

=
o
=
o
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(ours) ___

_Colni

on two datasets. The ablation studies demonstrate the effectiveness
of our proposed modules in both story visualization and continua-
tion tasks. Furthermore, we compare the differences in generated
images between the DINO-based D with and without Slight Shift
in Figure 8. It is evident that Slight Shift effectively alleviates the
issue of generating patch-like patterns.

5 CONCLUSION

In this paper, we propose a lightweight and effective CoIn (Con-
textualize and Interchange) framework for story visualization and
continuation. Moreover, we propose a Context-aware Story Gen-
erator that explicitly extracts the global context information and
synthesizes context visual features for each image generator. Fur-
thermore, we propose an Intra-story Interchange module to enable
information exchange between intra-story image generators. Lastly,
a pair of DINO-based discriminators is introduced to assess the story
quality more accurately. Our Coln achieves competitive synthesis
quality with ~360xfaster synthesis speed and 4.6% generator pa-
rameters. Our Coln also significantly reduces the required resources
and training time. This is particularly crucial for tasks like story
visualization that involve generating a large number of images.
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