
Appendix A Related Work

Due to the vast volume of literature on the RL, we only review the most closely related research to
our problem.

Previous Study on LMDPs As mentioned earlier, LMDPs have been previously introduced with
different names. In the work of [11, 45, 9], the authors study the planning problem in LMDPs, when
the true parameters of the model is given. The authors in [45] have shown that, as for POMDPs [38],
it is P-SPACE hard to find an exact optimal policy, and NP-hard to find an optimal memoryless policy
of an LMDP. On the positive side, several heuristics are proposed for practical uses of finding the
optimal memoryless policy [45, 9].
LMDP has been studied in the context of multitask RL [47, 8, 34, 18]. In this line of work, a common
approach is to cluster trajectories according to different contexts under some separation assumption,
an approach that guided us in designing the algorithms in Section 3.4. However, in this line of work,
the authors assume very long time-horizon such that they can visit every state-action pair multiple
times in a single episode. In order to satisfy such assumption, the time-horizon must be at least
H ≥ Ω(SA). In contrast, we consider a significantly shorter time-horizon that scales poly-logarithmic
with the number of states, i.e., H = poly log(MSA). This short time-horizon results in a significant
difference in learning strategy even when we get a feedback on the true context at the end of episode.

Approximate Planning in POMDPs The study of learning in partially observable domains has a
long history. Unlike in MDPs, finding the optimal policy for a POMDP is P-SPACE hard even with
known parameters [42]. Even finding a memoryless policy is known to be NP-hard [31]. Due to the
computational intractability of exact planning, various approximate algorithms and heuristics within
a policy class of interest [21, 37, 43, 44, 39, 30]. Since LMDP is a special case of POMDP, any of
these methods can be applied to solve LMDP. We will assume that the planning-oracle achieves some
approximation guarantees with respect to maximum long-term rewards obtained by the optimal policy.
We show that when the context is identifiable in hindsight, then we can quickly perform as good as
the policy obtained by the planning-oracle with true parameters.

Spectral Methods for POMDPs Previous studies of partially-observed decision problems assumed
the number of observations is larger than the number of hidden states, as well as, that a set of single
observations forms sufficient statistics to learn the hidden structure [5, 17]. With such assumptions,
one can apply tensor-decomposition methods by constructing multi-view models [2, 1] and recovering
POMDP parameters under uniformly-ergodic (or stationary) assumption on the environment [5, 17].
Our work is differentiated from the mentioned works in two aspects. First, for LMDPs, the observation
space is smaller than the hidden space. Therefore constructing a multi-view model with a set of single
observations is not enough to learn hidden structures of the system. Second, we are not aware of any
natural conditions for tensor-decomposition methods to be applicable for learning LMDPs. Therefore,
we do not pursue the application of tensor-methods in this work.

Predictive State Representation Since the introduction of PSR [33, 41], it has become one major
alternative to POMDPs for modeling partially-observed environments. The philosophy of PSR is
to express the internal state only with a set of observable experiments, or tests. Various techniques
have been developed for learning PSR with statistical consistency and global optimality guarantees
[20, 7, 19]. We use the PSR framework to get an initial estimate of the system. However, the sample
complexity of learning PSR is quite high [24] (see also our finite-sample analysis of spectral learning
technique in Section E.1). Therefore, we only learn PSR up to some desired accuracy and convert it
to an LMDP parameter by clustering of trajectories (Section E.2) to warm-start the optimal policy
learning.

Other Related Work In a relatively well-studied setting of contextual decision processes (CDPs),
the context is always given as a side information at the beginning of the episode [23, 36]. This makes
the decision problem a fully observed decision problem. LMDP is different since the context is hidden.
The main challenge comes from the partial observability which results in significant differences in
terms of analysis from CDPs. Another line of work on decision making with latent contexts considers
the problem of latent bandits [35, 16, 15]. It would be interesting to understand whether any previous
results on latent bandits can be extended to latent MDPs. Another line of research on theoretical
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studies with partially observability considers the environment with rich observations [26, 12, 13].
Rich observation setting assumes that any observation happens from only one internal state which
removes the necessity to consider histories, and thus the nature of the problem is different from our
setting. Recent work considers a sample-efficient algorithm for undercomplete POMDPs [25], i.e.,
when the observation space is larger than the hidden state space and a set of single observations is
statistically sufficient to learn hidden structures. In contrast, our problem is a special case of POMDPs
where the observation space is smaller than the hidden state space.

Appendix B Fundamental Limits of Learning LMDPs (Theorem 3.1)

Figure 3: External view of the system dynamics with wrong action sequences without context information.
Arrows indicate transition probabilities of a surrogate Markov chain that represents the external view.

We consider the following constructions withM deterministic MDPs and H = M , S = M + 1 with
A actions:

1. At the start of episode, one ofM -MDPs in {M1,M2, ...,MM} are chosen with probability
1/M .

2. At each time step, each MDP either goes to the next state or go to the SINK-state depending
on the action chosen at the time step. Once we fall into the SINK state, we keep staying in
the SINK state throughout the episode without any rewards.

3. Rewards of all state-action pairs are all 0 except at time step t = M with the right action
choice aM only in the first MDPM1.

4. At time step t = 1, there are three state-transition possibilities:
• M1: For all actions a ∈ A except a1, we go to the SINK state. For the action a1, we

go to the next state.
• MM : For all actions a ∈ A except a1, we go to the next state. For the action a1, we go
to the SINK state.

• M2, ...,MM−1: For all actions a ∈ A, we go to the next state.
5. At time step t = 2, we again have three cases but nowM1 andMK would look the same:

• M1,MM : For all actions a ∈ A except a2, we go to the SINK state. For the action
a2, we go to the next state.

• MM−1: For all actions a ∈ A except a2, we go to the next state. For the action a2, we
go to the SINK state.

• M2, ...,MM−2: For all actions a ∈ A, we go to the next state.
...

6. At time step t = M − 1,
• M1,M3, ...,MM : For all actions a ∈ A except aM−1, we go to the SINK state. For
the action aM−1, we go to the next state.

• M2: For all actions a ∈ A except aM−1, we go to the next state. For the action aM−1,
we go to the SINK state.

7. At time step t = M , there are two possibilities of getting rewards:
• M1: For the action aM ∈ A, we get reward 1. For all other actions, we get no reward.
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• M2, ...,MM : For all actions a ∈ A, we get no reward.

Note that the right action sequence is a∗ = (a1, a2, ..., aM ). However, without the information on true
contexts, the system dynamics with any wrong action sequence among the AM − 1 wrong sequences,
is exactly viewed as Figure 3 with zero rewards, i.e.,

P(s1:H , r1:H‖do a(1)
1:H) = P(s1:H , r1:H‖do a(2)

1:H),

for any two wrong action sequences a(1) = a
(1)
1:H , a(2) = a

(2)
1:H such that a(1), a(2) 6= a∗. The

probability distribution of observation sequences with any wrong action sequence is the same as the
distribution of sequences generated by the surrogate Markov chain in Figure 3. Therefore, we cannot
gain any information from executing wrong action sequences besides of eliminating this wrong action
sequence. Note that there are AM possible choice of action sequences. Hence the problem is reduced
to find one specific sequence among AM possibilities without any other information on the correct
action sequence. It leads to the conclusion that before we play most of AM action sequences, we
cannot find the correct one.
We formalize the lower bound argument with an ε-additive approximation factor. First, we get the
lower bound Ω(AM/ε2) by properly adjusting the reward distribution at the last time step t = H as
the following:

• M1: For the action aM ∈ A at time stepH = M , we get a reward fromBernoulli distribution
Ber(1/2 + ε). For all other actions, we get a reward from Bernoulli distribution Ber(1/2).

• M2, ...,MM : For all actions a ∈ A, we get a reward from Bernoulli distribution Ber(1/2).

Note that the distribution of the final reward with a∗ is 1/M ·Ber(1/2+ε)+(M−1)/M ·Ber(1/2),
whereas the distribution of all other action sequences is Ber(1/2). Similarly to the above, for any
wrong action sequence, the probability of observations is identical. Hence, identifying the optimal
action sequence a∗ among all AM action sequences requires Ω(AM/ε2) trials, i.e., to identify an ε
optimal arm among AM actions.

Figure 4: Effectively amplifying the number of actions

Now the above argument can be easily extended to get a lower bound ofΩ
((

SA
M

)M · 1
ε2

)
, by effectively

amplifying the number of actions up to O
(
SA
M

)
. That is, we can amplify the effective number of

actions by considering a big state consisting of a tree of states with O(logA S)-depth (see Figure 4).
Since we have suchM big states, total number of states is O(MS) in our lower bound example with
amplified number of actions, or conversely if the number of total states is S, then effective number of
actions is O(SA/M) per each big state. This gives the Ω

(
(SA/M)M/ε2

)
lower bounds. For the

completely formal argument, we refer readers to the lower bound argument for multi-armed bandits
developed in [14]. Since all action-sequences yield the same trajectory distributions (except the last
reward with the correct action-sequence), we can apply their proof to our problem with a minor
adjustment as if we have a bandit problem with (SA/M)M number of arms (e.g., we consider a class
of action sequences as an entire action set in bandit settings).
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Appendix C Analysis of L-UCRL when True Contexts are Revealed

C.1 Analysis of Optimism in Alpha-Vectors

We start with an important observation that the upper confidence bound (UCB) type algorithm can
be implemented in the belief-state space. Even though the exact planning in a belief-state space is
not implementable, we can still discuss how the value iteration is performed in partially observable
domains. Let h be an entire history at time t, and denote b(h) be a belief state over M MDPs
corresponding to a history h. The value iteration with a (history-dependent) policy π is given as

Qπt (h, s, a) = b(h)>R̄(s, a) + Es′,r|h,s,a[V πt+1(h′, s′)],

for t = 1, ...,H , where h′ = ha(rs′) is a concatenated history. Here Qπt (h, s, a) and V πt (h, s) are
state-action-value and state-value function at time step t respectively given a history h and a policy π.
R̄(s, a) ∈ RM is a vector where value ofmth coordinate R̄m(s, a) is an expected immediate reward at
(s, a) inmth MDP, i.e., R̄m(s, a) = Er∼Rm(r|s,a)[r]. In case there exists a hidden reward Rhidm (s, a),
we define R̄m(s, a) = Er∼Rm(r|s,a)[r] +Rhidm (s, a). At the end of episode, we set V πH+1 = 0. We
first need the following lemma on the policy evaluation procedure of a POMDP.

Lemma C.1 For any history h at time t, the value function for a policy π can be written as

V πt (h, s) = b(h)>αh,πt,s , (4)

for some αh,πt,s ∈ RM uniquely decided by t, s, h and π.

Proof. We will show that the value of αh,πt,s is decided only by a history and policy, and is not affected
by the history to belief-state mapping. On the other hand, the Bayesian update for h′ is given by

bm(ha(rs′)) =
bm(h)Tm(s′|s, a)Rm(r|s, a)∑
m bm(h)Tm(s′|s, a)Rm(r|s, a)

=
bm(h)Pm(s′, r|s, a)

P(s′, r|h, s, a)
.

Thus, the value iteration for policy evaluation in LMDPs can be written as:

Qπt (h, s, a) = b(h)>R̄(s, a) +
∑

(s′,r)

∑
m

bm(h)α
ha(rs′),π
t+1,s′ (m)Pm(s′, r|s, a),

V πt (h, s) =
∑
a

π(a|h)Qπt (h, s, a). (5)

Let us explain how the alpha vectors [42] can be constructed recursively from the time step H + 1.
Note that VH+1(h, s) = 0 for any h and s, therefore αh,πH+1,s = 0. Then we can define the set of alpha
vectors recursively such that

αh,a,∗,πt,s (m) = R̄m(s, a),

α
h,a,(s′,r),π
t,s (m) = Pm(s′, r|s, a)α

ha(s′r),π
t+1,s′ (m) ∀(s, a, r, s′), (6)

Finally, the alpha vector for the value with respect to h is constructed as

αh,πt,s (m) =
∑
a

π(a|h)

αh,a,∗,πt,s (m) +
∑
s′,r

α
h,a,(s′,r),π
t,s (m)

 .

Note that in the construction of alpha vectors, the mapping from history to belief-state is not involved,
and the value function can be represented as V πt (h, s) = b(h)>αh,πt,s . �

Now consider the optimistic model defined in Lemma 3.2. For the optimistic model, the intermediate
alpha vectors are constructed with the following recursive equation:

α̃h,a,∗,πt,s (m) = Er∼R̃obsm (r|s,a)[r] + R̃hidm (s, a),

α̃
h,a,(s′,r),π
t,s (m) = T̃m(s′|s, a)R̃obsm (r|s, a)α̃

ha(s′r),π
t+1,s′ (m) ∀(s, a, r, s′), (7)

From the constructions of alpha vectors above, we can show the optimism in alpha vectors:
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Lemma C.2 Let αh,πt,s and α̃h,πt,s be alpha vectors constructed withM∗ and M̃ respectively. Then
for all t, s, h, π, we have

α̃h,πt,s � α
h,π
t,s .

The lemma implies that if the history is mapped to the same belief states in both models, then we also
have the optimism in value functions. Note that in general, different models will lead each history to
different belief states. At the initial time-step, however, we start from similar belief states, and we can
claim Lemma 3.2. The remaining proof of Lemma 3.2 is given in Appendix C.3.

C.2 Proof of Lemma C.2

We show this by mathematical induction moving reverse in time from t = H . The inequality is trivial
when t = H + 1 since all αh,πH+1,s = α̃h,πH+1,s = 0 for any h, π, s. Now we investigate αh,πt,s (m). It is
sufficient to show that for all a ∈ A,

αh,a,∗,πt,s (m) +
∑
s′,r

α
h,a,(s′,r),π
t,s (m) ≤ α̃h,a,∗,πt,s (m) +

∑
s′,r

α̃
h,a,(s′,r),π
t,s (m).

Recall equations for alpha vectors (6), (7).

α̃h,a,∗,πt,s (m) +
∑
s′,r

α̃
h,a,(s′,r),π
t,s (m)− αh,a,∗,πt,s (m)−

∑
s′,r

α
h,a,(s′,r),π
t,s (m)

≥
(
Er∼R̃obsm (r|s,a)[r]− Er∼Robsm (r|s,a)[r]

)
+ R̃hidm (s, a)

+
∑
s′,r

(
T̃m(s′|s, a)R̃obsm (r|s, a)α̃

ha(s′,r),π
t+1,s′ (m)− Tm(s′|s, a)Rm(r|s, a)α

ha(s′,r),π
t+1,s′ (m)

)
≥
(
Er∼R̃obsm (r|s,a)[r]− Er∼Rm(r|s,a)[r]

)
+H min

(
1,
√

5(cR + cT )/Nm(s, a)
)

+
∑
s′,r

(
T̃m(s′|s, a)R̃obsm (r|s, a)α

ha(s′,r),π
t+1,s′ (m)− Tm(s′|s, a)Rm(r|s, a)α

ha(s′,r),π
t+1,s′ (m)

)
,

where the last inequality comes from the induction hypothesis. On the other hand, note that R̃obsm and
T̃m are simply empirical estimates after visiting the state-action pair Nm(s, a) times. Thus, it is easy
to see that with high probability,∣∣∣Er∼R̃obsm (r|s,a)[r]− Er∼Robsm (r|s,a)[r]

∣∣∣ ≤ ‖R̂m −Rm(r|s, a)‖1 ≤
√
cR/Nm(s, a),∑

s′,r

∣∣∣T̂m(s′|s, a)R̂m(r|s, a)α
h,a,(s′,r),π
t+1,s′ (m)− Tm(s′|s, a)Rm(r|s, a)α

h,a,(s′,r),π
t+1,s′ (m)

∣∣∣
≤ H

∑
s′,r

∣∣∣T̂m(s′|s, a)R̂m(r|s, a)− Tm(s′|s, a)Rm(r|s, a)
∣∣∣

≤ H
(
‖(T̂m − Tm)(s′|s, a)‖1 + ‖(R̂m −Rm)(r|s, a)‖1

)
≤ H

(√
cR/Nm(s, a) +

√
cT /Nm(s, a)

)
,

where we used that all alpha vectors in the original system satisfies ‖αh,πt,s ‖∞ ≤ H for all t, s, h, π.
This completes the proof of Lemma C.2.

C.3 Proof of Lemma 3.2

The remaining step is to show the optimism at the initial time. When t = 1, history h is simply the
initial state s. The belief state after observing the initial state is given by

bm(s) =
wmνm(s)∑
s′ wmνm(s′)

, b̃m(s) =
wmν̃m(s)∑
s′ wmν̃m(s′)

.

The expected long-term reward with π for each model is therefore

V πM∗ =
∑
s

P(s1 = s)V (s) =
∑
s

P(s1 = s)b(s)>αs,π1,s =
∑
s

∑
m

wmνm(s)αs,π1,s (m),
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V πM̃ =
∑
s

∑
m

wmν̃m(s)α̃s,π1,s (m).

Following the similar arguments, we have

V πM̃ − V
π
M∗ ≥ H

∑
m

wm
√
cν/N(m)−H

∑
m

wm
∑
s

|νm(s)− ν̃m(s)| ≥ 0,

which proves the claim of Lemma 3.2.

C.4 Proof of Theorem 3.3

Let us define a few notations. SupposeM = (S,A, Tm, Rm, νm) a LMDP and a context m is
randomly chosen at the start of an episode following a probability distribution (w1, w2, ..., wM ). Let
R̄m(s, a) = Er∼Rm(r|s,a)[r] be an expected (observable) reward of taking action a at s inmth MDP.
With a slight abuse in notation, we use Eπ,M[·] to simplify Em∼(w1,...,wM )

[
Eπ,Tm,Rm,νm [·]

∣∣∣m] =∑M
m=1 wmEπm[·].

We start with the following lemma on the difference in values in terms of difference in parameters.

Lemma C.3 LetM1 = (S,A, T 1
m, R

1
m, ν

1
m) andM2 = (S,A, T 2

m, R
2
m, ν

2
m) be two latent MDPs

with different transition, reward and initial distributions. Then for any history-dependent policy π,

|V πM1
− V πM2

| ≤ H · Eπ,M2

[
‖(µ1

m − µ2
m)(s)‖1

]
+

H∑
t=1

Eπ,M2

[
|R̄1
m(st, at)− R̄2

m(st, at)|
]

+H ·
H∑
t=1

Eπ,M2

[
‖(P1

m − P2
m)(s′, r|st, at)‖1

]
. (8)

The proof of Lemma C.3 is proven in C.4.1.
Equipped with Lemma 3.2 and C.3, we now can prove the main theorem. We first define a few new
notations. Let #k(m, s, a) be a count of visiting (s, a) in themthMDP by running a policy πk chosen
at the kth episode. Let Nk

m(s, a) be the total number of visit at (s, a) in the mth MDP before the
beginning of kth episode, i.e., Nk

m(s, a) =
∑k−1
k′=1 #k′(m, s, a). Let Fk be the filteration of events

after running k episodes. Let Ṽ πk the value of the optimistic model chosen at the kth episode with
a policy π. Let π∗ be the optimal policy for the true LMDPM∗. Finally, let us denote (·)k for the
model parameter in the optimistic model at kth episode.

The expected reward ˜̄Rm(s, a) in optimistic model is equivalent to R̃hidm (s, a) + Er∼R̃obsm (·|s,a)[r].
Using the Lemma C.3, the total regret can be rephrased as the following:
K∑
k=1

V π
∗

M∗ − V
πk
M∗ ≤

K∑
k=1

V π
∗

M̃k
− V πkM∗ ≤

K∑
k=1

V πk
M̃k
− V πkM∗

≤
K∑
k=1

∑
(m,s,a)

Eπk,M∗ [#k(m, s, a)] ·

(
H · ‖(P̃km − Pm)(s′, r|s, a)‖1

+
∣∣∣R̃hid,km (s, a)

∣∣∣+
∣∣∣Er∼R̃obs,km (r|s,a)[r]− Er∼Rm(r|s,a)[r]

∣∣∣)

+H ·
K∑
k=1

∑
m

(
‖(µ̃km − µ∗m)(s)‖1EM∗ [#k(m)] +

√
cν/Nk(m)EM∗ [#k(m)]

)
.

Note that R̃hid,km (s, a) = H min
(

1, 5
√

(cT + cR)/Nk
m(s, a)

)
≥ H‖(P̃km −Pm)(s′, r|s, a)‖1, and

this is the dominating term. Therefore, the upper bounding equation can be reduced to
K∑
k=1

V πk
M̃k
− V πkM∗ ≤ 3H

K∑
k=1

∑
(m,s,a)

(
5
√

(cT + cR)/Nk
m(s, a)Eπk,M∗ [#k(m, s, a)]

)

18



+ 2H

K∑
k=1

∑
m

(√
cν/Nk(m)EM∗ [#k(m)]

)
.

Observe that the expected value of Nk
m(s, a) is

∑k−1
k′=1 Eπk′ ,M∗ [#k′(m, s, a)]. Let this quantity

E[Nk
m]. We can check that

V ar (#k(m, s, a)|Fk−1) ≤ HEπk,M∗ [#k(m, s, a)].

From the Bernstein’s inequality for martingales, for any (s, a) (ignoring constants),

Nk
m(s, a) ≥ E[Nk

m(s, a)]− c1
√
HE[Nk

m(s, a)] log(MSAK/η)− c2H log(MSAK/η),

for some absolute constants c1, c2 > 0 and for all k and (m, s, a), with probability at least 1 − η.
From this, we can show that

H

K∑
k=1

∑
(k,s,a)

√
(cT + cR)/Nk

m(s, a)E[#k(m, s, a)]

≤ H
∑

(k,s,a)

(
k0∑
k=1

E[#k(m, s, a)] +

K∑
k=k0+1

√
(cT + cR)/Nk

m(s, a)E[#k(m, s, a)]

)

. H
∑

(m,s,a)

(
H log(MSAK/η) + 2

K∑
k=k0+1

√
(cT + cR)/E[Nk

m(s, a)]E[#k(m, s, a)]

)
,

where k0 is a threshold point where the expected number of visit at (m, s, a) exceeds
4H log(MSAK/η). Note that after this point we can assume, with high probability, thatNk

m(s, a) ≥
E[Nk

m(s, a)]/4. To bound the summation of the remaining term, for a fixed (m, s, a), we denote
Xk = E[Nk

m(s, a)]/H and xk = E[#k(m, s, a)]/H . Note thatXk+1 = Xk +xk and xk ≤ 1. Then,

K∑
k=k0+1

√
1/Xkxk ≤

∫ XK

Xk0

√
1

x− 1
dx ≤ 2

√
XK .

Plugging this equation, we bound the remaining terms:

H
∑

(m,s,a)

(
H log(MSAK/η) + 2

K∑
k=k0+1

√
(cT + cR)/E[Nk

m(s, a)]E[#k(m, s, a)]

)
,

≤ H2MSA log(MSAK/η) + 4H
∑

(m,s,a)

√
(cT + cR)NK

m (s, a)

≤ H2MSA log(MSAK/η) + 4H
√

(cT + cR)HMSAK,

where in the last step, we used Cauchy-Schwartz inequality with
∑

(m,s,a)N
K
m (s, a) = HK. Simi-

larly, we can show that

H

K∑
k=1

∑
m

√
cν/Nk(m)E[#k(m)] . HM log(MSAK/η) + 4H

√
cνMK.

Our choice of confidence parameters cT for a transition probability is cT = O(S log(MSAK/η)),
and this is the dominating factor. Thus, the total regret is dominated by

H
√
cTHMSAK . HS

√
MAN log(MSAK/η),

which in turn gives a total regret bound of O
(
HS
√
MAN log(MSAN/η)

)
where N = HK.
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C.4.1 Proof of Lemma C.3

Proof. We first observe that

V πM1
− V πM2 =

M∑
m=1

wm

(
E1,π
m

[
H∑
t=1

rt

]
− E2,π

m

[
H∑
t=1

rt

])

=

M∑
m=1

wm

H∑
t=1

 ∑
(s1,a1,r1,...,st,at,rt)

rtP
1,π
m (s1, ..., rt)− rtP2,π

m (s1, ..., rt)

 ,

whereP1,π
m (s1, a1, r1, ..., rt−1, st) := νpm(s1)Πt−1

i=1π(ai|s1, ..., ri−1, si)Tm(si+1|si, ai)Rm(ri|si, ai).
We decompose the main difference as∑

(s,a,r)1:t

rt(P
1,π
m ((s, a, r)1:t)− P2,π

m ((s, a, r)1:t))

=
∑

((s,a,r)1:t)

rt(R
1
m(rt|st, at)−R2

m(rt|st, at))P1,π
m ((s, a, r)1:t−1, st, at)

+
∑

(s,a,r)1:t

rtRm(rt|st, at)(P1,π
m − P2,π

m )((s, a, r)1:t−1, st, at)

≤
∑
st,at

∣∣Ert∼R1
m(·|st,at)[rt]− Ert∼R2

m(·|st,at)[rt]
∣∣P2,π

m (st, at)

+ ‖(P1,π
m − P2,π

m )((s, a, r)1:t−1, st, at)‖1.
Now we bound the total variation distance of the length t histories. For notational convenience, let us
denote |P1 − P2|(·) = |P1(·)− P2(·)| for any probability measures P1,P2. Then,∑
(s,a,r)1:t−1,st,at

|P1,π
m − P2,π

m |((s, a, r)1:t−1, st, at)

=
∑

(s,a,r)1:t−1,st

|P1,π
m − P2,π

m |((s, a, r)1:t−1, st)
∑
at

π(at|(s, a, r)1:t−1, st)

=
∑

(s,a,r)1:t−1,st

|P1,π
m − P2,π

m |((s, a, r)1,t−1, st)

≤
∑

(s,a,r)1:t−1,st

|P1,π
m − P2,π

m |((s, a, r)1:t−2, st−1, at−1)P1
m(st, rt−1|st−1, at−1)

+
∑

(s,a,r)1:t−1,st

P2,π
m ((s, a, r)1:t−2, st−1, at−1)|P1

m − P2
m|(st, rt−1|st−1, at−1)

≤
∑

(s,a,r)1:t−2,st−1,at−1

|P1,π
m − P2,π

m |((s, a, r)1:t−2, st−1, at−1)

+
∑

(s,a,r)1:t−2,st−1,at−1

‖(P1,π
m − P2,π

m )(st, rt−1|st−1, at−1)‖1P2,π
m ((s, a, r)1:t−2, st−1, at−1)

= ‖(P1,π
m − P2,π

m )((s, a, r)1:t−2, st−1, at−1)‖1
+

∑
st−1,at−1

‖(P1,π
m − P2,π

m )(st, rt−1|st−1, at−1)‖1P2,π
m (st−1, at−1).

We can apply the same expansion recursively to bound total variation for length t− 1 histories. Now
plug this relation to the regret bound, we have

|V πM1
− V πM2

| ≤
M∑
m=1

wm
∑
(s,a)

H∑
t=1

∣∣Er∼R1
m(·|s,a)[r]− Er∼R2

m(·|s,a)[r]
∣∣P2,π

m (st = s, at = a)

+

M∑
m=1

wm

H∑
t=1

(∑
s

|ν1
m(s)− ν2

m(s)|P2
m(s1 = s)
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+
∑
(s,a)

t∑
t′=1

‖(P1,π
m − P2,π

m )(s′, r|s, a)‖1P2,π
m (st′ = s, at′ = a)

)

≤
M∑
m=1

wm

H∑
t=1

(
E2,π
m

[
|R̄1
m(st, at)− R̄2

m(st, at)|
])

+H ·
M∑
m=1

wm

(
‖(µ1

m − µ2
m)(s)‖1 +

H∑
t=1

E2,π
m

[
‖(P1

m − P2
m)(s′, r|st, at)‖1

])
,

giving the equation (8) as claimed. �

Appendix D Learning with Separation and Good Initialization

D.1 Well-Separated Condition for MDPs

In this subsection, we formalize a condition for clusterable mixtures of MDPs: the overlap of trajecto-
ries from different MDPs should be small in order to correctly infer the true contexts from sampled
trajectories. We call the underlying MDPs well-separated if they satisfy the following separation
condition:

Condition 3 (Well-Separated MDPs) If a trajectory τ of length H is sampled from MDPMm∗ by
running any policy π ∈ Π, we have

Pτ∼Mm∗ ,π

(
Pτ∼Mm,π(τ)

Pτ∼Mm∗ ,π(τ)
> (εp/M)c1

)
< (εp/M)c2 ∀m 6= m∗. (9)

for a target failure probability εp > 0 where c1, c2 ≥ 4 are some universal constants.

Here, Pτ∼Mm,π is a probability of getting a trajectory from the context m with policy π. One
sufficient condition that ensures the well-separated condition (9) is Assumption 1 as guaranteed by
the following lemma:

Lemma D.1 Under the Assumption 1 with a constant δ = Θ(1), if the time horizon is sufficiently long
such thatH > C · δ−4 log2(1/α) log(M/εp) for some absolute constant C > 0 and α = δ2/(200S),
then the well-separated condition (9) holds true with c1, c2 ≥ 4.

Proof of Lemma D.1 is given in Appendix D.2. We remark here that we have not optimized the
requirement on the time horizon H to satisfy Condition 3, and we conjecture it can be improved.
We also mention here that the required time-horizon can be much shorter if the KL-divergence
between distributions is larger, even though the l1 distance remains the same. Finally, we remark that
Assumption 1 is only a sufficient condition, and can be relaxed as long as Condition 3 is satisfied.

Remark 1 (Logarithmic dependency of H on 1/εp) We note here that the convergence guarantee
for the online EM might be extended to allow some small probability of wrong inference of contexts.
In that case, we do not require H to scale logarithmically with the inverse of a failure probability. It
would be an analogous to the local convergence guarantee in a mixture of well-separated Gaussian
distributions [28, 27]. The situation is even more complicated since we may run a possibly different
policy in each episode. It would be an interesting question whether the online EM implementation
would eventually get some good converged policy and model parameters in more general settings.

D.2 Proof of Lemma D.1

In this proof, we assume all probabilistic event is taken with true contextm∗: unless specified, we
assume P(·) and E[·] are measured with contextm∗.
Suppose a trajectory τ is obtained from MDPMk∗ . Let us denote the probability of getting τ from
mth MDP by running policy π as Pτ∼Mm,π(τ) = Pm(τ). It is enough to show that

ln

(
Pm∗(τ)

Pm(τ)

)
> c ln(M/εp), ∀m 6= m∗,
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with probability 1− (εp/M)4. Note that for any history-dependent policy π,

ln

(
Pm∗(τ)

Pm(τ)

)
=

H∑
t=1

ln

(
Pm∗(st+1, rt|st, at)
Pm(st+1, rt|st, at)

)
.

For simplicity, let us compactly denote (s′, r) as o, and (st+1, rt) as ot. Note that in general,
ln
(
Pm∗ (τ)
Pm(τ)

)
can be unbounded due to zero probability assignments. Thus we consider a relaxed

MDP that assigns non-zero probability to all observations. Let α > 0 be sufficiently small such that
α ln(1/α) < δ2/(200S). We define similar probability distributions such that P̂m

P̂m(o|s, a) = α+ (1− 2αS)Pm(o|s, a).

We split the original target into three terms and bound each of them:

ln

(
Pm∗(τ)

Pm(τ)

)
= ln

(
Pm∗(τ)

P̂m(τ)

)
+ ln

(
P̂m(τ)

Pm(τ)

)
.

Note that ‖Pm − P̂m(o|s, a)‖1 ≤ 4Sα. For the first term, we investigate the expectation of this
quantity first:

E

[
H∑
t=1

ln

(
Pm∗(ot|st, at)
P̂m(ot|st, at)

)]
= E

[
H∑
t=1

E

[
ln

(
Pm∗(ot|st, at)
P̂m(ot|st, at)

)∣∣∣∣∣s1, a1, r1, s2, ..., rt−1, st, at

]]

= E

[
H∑
t=1

∑
ot

Pm∗(ot|st, at) ln

(
Pm∗(ot|st, at)
P̂m(ot|st, at)

)]

= E

[
H∑
t=1

DKL(Pm∗(ot|st, at), P̂m(ot|st, at))

]
≥ Hδ2,

where in the last step we applied Pinsker’s inequality.
Nowwe want to apply Chernoff-type concentration inequalities for martingales. We need the following
lemma on a sub-exponential property of P(X) on a general random variable X:

Lemma D.2 Suppose X is arbitrary discrete random variable on a finite support X . Then,
ln(1/P(X)) is a sub-exponential random variable [48] with Orcliz norm ‖ ln(1/P(X))‖ψ1

= 1/e.

Proof. Following the definition of sub-exponential norm [48], we find ‖ ln(1/P(X))‖ψ1
= O(1):

‖ ln(1/P(X))‖ψ1 = sup
q≥1

q−1EX [lnq(1/P(X))]1/q

= sup
q≥1

q−1

(∑
X∈X

P(X) lnq(1/P(X))

)1/q

.

For any q ≥ 1, let us first find maximum value of p lnq(1/p) for 0 ≤ p ≤ 1. Taking a log and finding
a derivative with respect to p yields

1

p
+ q

(−1/p)

ln(1/p)
=

1

p
(1− q/ ln(1/p)).

Hence p lnq(1/p) takes a maximum at p = e−q with value (q/e)q. This gives a bound for sub-
exponential norm:

‖ ln(1/P(X))‖ψ1 = sup
q≥1

q−1

(∑
X∈X

P(X) lnq(1/P(X))

)1/q

≤ sup
q≥1

q−1(q/e) = 1/e.
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With the above Lemma and the sum of sub-exponential martingales, it is easy to verify (see Proposition
5.16 in [48]) that

P (ln (Pm∗(τ)) ≤ E [ln (Pm∗(τ))]−Hε1) ≤ exp
(
−c ·min(ε1, ε

2
1)H

)
,

where c > 0 is some absolute constant, since ln(Pm∗(τ)) =
∑H
t=1 ln(Pm∗(ot|st, at)) is a sum of

H sub-exponential martingales. We can also apply Azuma-Hoeffeding’s inequality to control the
statistical deviation in ln(P̂m(τ)):

P
(

ln
(
P̂m(τ)

)
≥ E

[
ln
(
P̂m(τ)

)]
+Hε2

)
≤ exp

(
− Hε22

2 log2(1/α)

)
,

since P̂m(τ) is bounded by ln(1/α).

Now let ε = ε1 + ε2 = c2 · log(1/α)
√

2 log(M/εp)/H for some absolute constant c2 > 0. If the
time horizon H ≥ C0δ

−4 log2(1/α) log(M/εp) for some sufficiently large constant C0 > 0, then a
simple algebra shows that

ln

(
Pm∗(τ)

P̂m(τ)

)
≥ Hδ2 −Hε ≥ Hδ2/2,

with probability at least 1− (εp/M)5.
Finally, we bound extra terms caused by using approximated probabilities. We note that

ln

(
P̂m(o|s, a)

Pm(o|s, a)

)
≥ −4αS, ∀(o, s, a),

given 2αS is sufficiently small. Therefore for any trajectory, we have ln
(
P̂m(τ)/Pm(τ)

)
≥

−4αSH ≥ −Hδ2/4. Thus we have ln (Pm∗(τ)/Pm(τ)) ≥ Hδ2/4 ≥ 4 log(M/εp) with prob-
ability at least 1− (εp/M)5, which satisfies Condition 3.

D.3 Proof of Theorem 3.4

The key component is the following lemma on the correct estimation of belief in contexts.

Lemma D.3 Let a trajectory is sampled fromm∗th MDP. Under the Assumption 1 with good initial-
ization εinit < δ2/(200 ln(1/α)) in (3) and H > C · δ−4 log2(1/α) log(N/η) for some universal
constant C > 0, we have

b̂(m∗) ≥ 1− (N/η)−4,

with probability at least 1− (N/η)−4.

Since we have estimated belief is almost approximately correct forO(N) episodes with εp = O(1/N),
we now have the confidence intervals for transition matrices and rewards:

Corollary 1 With probability at least 1− 1/N , for all round of episodes, we have

‖(T̂m − T ∗m)(s′|s, a)‖1 ≤
√
cT /Nm(s, a) + 1/N3,

‖(R̂m −R∗m)(r|s, a)‖1 ≤
√
cR/Nm(s, a) + 1/N3,

‖(ν̂m − ν∗m)(s)‖1 ≤
√
cν/Nm(s) + 1/N3.

for all s, a, r, s′.

The corollary is straight-forward since the estimation error accumulated from errors in beliefs through-
outK episodes is at most 1/N3. If we build an optimistic model with the estimated parameters as in
Lemma 3.2, the optimistic value with any policy for the model satisfies

V πM̃ ≥ V
π
M∗ −H2/N2. (10)
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Equation (10) is a consequence of Lemma 3.2 and LMDP version of sensitivity analysis in partially
observable environments [40], which can also be inferred from C.3. Following the same argument in
the proof of Theorem 3.3, we can also show that the estimated visit counts at (s, a) is at least

Nm(s, a) ≥ E[Nm(s, a)]− c1
√
HE[Nm(s, a)] log(MSAK/η)− c2H log(MSAK/η)− 1/N2,

for some absolute constants c1, c2 > 0 for all (s, a), with probability at least 1− η. The additional
regret caused by small errors in belief estimates is therefore bounded by

SH2/N2 ∗N +H2MSA/N2 ≤ 1/N,

assuming N = HK � H2S2MA. The remaining steps are equivalent to the proof of Theorem 3.3.

D.4 Proof of Lemma D.3

Proof. The proof for Lemma D.3 is an easy replication of the proof for Lemma D.1. We show that

H∑
t=1

ln

(
α+ (1− 2αS)P̂m∗(ot|st, at)
α+ (1− 2αS)P̂m(ot|st, at)

)
≥ 8 log(N/η), (11)

with probability at least 1− (N/η)−4 for allm∗ 6= m.

Let Qm = α + (1 − 2αS)P̂m for all m. Note that ‖Qm − Qm∗‖1 ≥ δ/2 due to the initialization
condition. Furthermore, | ln(Qm(o|s, a)/Qm∗(o|s, a))| ≤ ln(1/α). Hence we can apply Azuma-
Hoeffeding’s inequality to get

H∑
t=1

ln

(
Qm∗(ot|st, at)
Qm(ot|st, at)

)
≥ E

[
H∑
t=1

ln

(
Qm∗(ot|st, at)
Qm(ot|st, at)

)]
− ln(1/α)

√
H log(N/η)

with probability at least 1− (MN)−4. To lower bound the expectation, we can proceed as before:

E

[
H∑
t=1

ln

(
Qm∗(ot|st, at)
Qm(ot|st, at)

)]
= E

[
H∑
t=1

∑
ot

Pm∗(ot|st, at) ln

(
Qm∗(ot|st, at)
Qm(ot|st, at)

)]

= E

[
H∑
t=1

∑
ot

Qm∗(ot|st, at) ln

(
Qm∗(ot|st, at)
Qm(ot|st, at)

)]

+ E

[
H∑
t=1

∑
ot

(Pm∗ −Qm∗)(ot|st, at) ln

(
Qm∗(ot|st, at)
Qm(ot|st, at)

)]

≥ E

[
H∑
t=1

DKL(Qm∗(ot|st, at), Qm(ot|st, at))

]
− E

[
H∑
t=1

‖Pm∗ −Qm∗‖1

]
ln(1/α)

≥ Hδ2/4−H(2αS + εinit) ln(1/α).

As long as 2αS ln(1/α) ≤ δ2/200 and εinit ln(1/α) ≤ δ2/200, we have

E

[
H∑
t=1

ln

(
Qm∗(ot|st, at)
Qm(ot|st, at)

)]
≥ Hδ2/8.

IfH ≥ Cδ−4 ln(1/α)2 log(N/η) for sufficiently large constant C > 0, (11) holds with probability
at least 1− (N/η)−4. The implication of lemma is:

b̂(k∗) ≥ 1− (N/η)−8 ·M ≥ 1− (N/η)−4,

which proves the claimed lemma. �
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Appendix E Algorithm Details for Initialization

E.1 Spectral Learning of PSRs

In this subsection, we implement a spectral algorithm to learn PSR in detail. Recall that we define
PT ,Hs = LsHs in Condition 1, 2 such that

(PT ,Hs)i,j = Pπ(τi, hs,j) = (Ls)i,:(Hs)(:,j).

where PT ,Hs ∈ R|T |×|Hs| is a matrix of joint probabilities of tests and histories ending with s.
Let the top-k left and right singular vectors of PT ,Hs be Us and Vs respectively. Note that with
the rank conditions, U>s PTs,HsVs is invertible. We also consider a matrix of joint probabilities of
histories, intermediate action-reward-next-state pairs, and tests PT ,(s′,r)a,Hs = Ls′D(s′,r),a,sHs,
where D(s′,r),a,s = diag(P1(s′, r|a, s), ...,PM (s′, r|a, s)). For the simplicity in notations, we
occasionally replace (s′, r) by a single letter o. The transformed PSR parameters of the LMDP can
be computed by

Bo,a,s = U>s′PT ,oa,HsVs(UsPT ,HsVs)
−1 = (U>s′Ls′)Do,a,s(U

>
s Ls)

−1.

The initial and normalization parameters can be computed as

b1,s = U>s P(T , s1 = s) = U>s P(T |s)(w · ν)(s) = (U>s Ls)(w · ν)(s),

b>∞,s = P>HsVs(U
>
s PT ,HsVs)

−1,

where PHs ∈ R|Hs| is a vector of probability of sampling a history in Hs, and (w · ν)(s) is M
dimensional vector with eachmth entry wmνm(s). For the normalization factor, note that P>Hs =

1>Hs, therefore
b>∞,s = 1>HsVs(U

>
s PT ,HsVs)

−1 = 1>(U>s Ls)
−1(U>s LsHsVs)(U

>
s PT ,HsVs)

−1 = 1>(U>s Ls)
−1.

It is easy to verify that

P((s, a, r)1:t, st) = b>st,∞Bot−1,at−1,st−1
...Bo1,a1,s1bs1,1 = 1>Dot−1,at−1,st−1

...Do1,a1,s1(w·ν)(s1).

With Assumption 2, we assume that a set of histories and testsH, T contain all possible observations
of a fixed length l. Furthermore, we assume that the short trajectories are collected such that each
history is sampled from the sampling policy π and then the intervening action sequence for test is
uniformly randomly selected. We estimate the joint probability matrices with N short trajectories
such that

(P̂Hs)i =
1

N
#(hs,i), (P̂T ,Hs)i,j =

Al

N
#(τi, hs,j), (P̂T ,oa,Hs)i,j =

Al+1

N
#(τi, oa, hs,j),

where # means the number of occurrence of the event when we sample histories from the sampling
policy π. For instance, #(τi, hs,j) means the number of occurrence of jth history in Hs and test
resulting in ith test in T . Factors Al and Al+1 are importance sampling weights for intervening
actions. The initial PSR states are estimated separately: (P̂T ,s1=s)i = Al

N #(τi, s1 = s), assuming
we get N sample trajectories from the beginning of each episode.

Now let Ûs, V̂s be left and right singular vectors of P̂T ,Hs . Then the spectral learning algorithm
outputs parameters for PSR:

B̂o,a,s = Û>s′ P̂T ,oa,Hs V̂s(Û
>
s P̂T ,Hs V̂s)

−1,

b̂>∞,s = P̂>Hs V̂s(Û
>
s P̂T ,Hs V̂s)

−1,

b̂1,s = Û>s P̂(T , s1 = s). (12)
Then, the estimated probability of a sequence with any history-dependent policy π is given by

P̂π((s, a, r)1:t−1, st) = Πt−1
i=1π(ai|(s, a, r)1:i−1, si) · b̂>∞,stB̂ot−1,at−1,st−1

...B̂o1,a1,s1 b̂1,s1 . (13)
The update of PSR states and the prediction of next observation is given as the following:

b̂1 = b̂1,s1 , b̂t =
B̂ot−1,at−1,st−1 b̂t−1

b̂>∞,stB̂ot−1,at−1,st−1
b̂t−1

, (14)
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P̂(s′, r|(s, a, r)1:t−1, st|| do a) = b̂>s′,∞B̂(s′,r),a,st b̂t. (15)

From the above procedure, we can establish a formal guarantee on the estimation of probabilities of
length t > 0 trajectories obtained with any history-dependent policies:

Theorem E.1 Suppose the LMDP and a set of historiesH and tests T satisfies Assumption 2. If the
number of short trajectories N = n0 satisfies

n0 ≥ C ·
MA2l+1

pπσ2
τσ

2
h

t2

ε2t

(
S +

Al

σ2
h

)
log(SA/η),

where C > 0 is an universal constant, and pπ = minsP
π(end state = s), then for any (history

dependent) policy π, with probability at least 1− η,

‖(Pπ − P̂π)((s, a, r)1:t−1, st)‖1 ≤ εt.

We mention that the formal finite-sample guarantee of PSR learning only exists for hidden Markov
models [20], an extension to LMDPs requires re-derivation of the proof to include the effect of arbitrary
decision making policies. For completeness, we provide the proof of Theorem E.1 in Appendix F.1.
As a result of spectral learning of PSR (see a detailed procedure in Appendix E.1), we can provide a
key ingredient to cluster longer trajectories to recover the original LMDP model.

Theorem E.2 Suppose we have successfully estimated PSR parameters from the spectral learning
procedure in Appendix E.1, such that we have the following guarantee on estimated probabilities of
trajectories with any history-dependent policy π:

‖(Pπ − P̂π)((s, a, r)1:t−1, st)‖1 ≤ εt,

for sufficiently small εt > 0. Suppose we will execute a policy π for t time steps, observe a history
((s, a, r)1:t−1, st), and then estimate probabilities of all possible future observations (or tests ot:t+l−1)
with intervening action sequence aτt:t+l−1. Then we have the following guarantee on conditional
probabilities with target accuracy εc > 0:

‖(Pπ − P̂π)(ot:t+l−1|(s, a, r)1:t−1, st||do aτt:t+l−1)‖1 ≤ 4εc,

with probability at least 1− εt/εc.

E.2 Clustering with PSR Parameters and Separation

We begin with the high-level idea of the algorithm that works as the following: suppose we have
a new trajectory of length H and the last two states are sH−1, sH from unknown context m∗. We
first consider true conditional probability given a history of h = (s, a, o)1:H−2. Here H > C0 ·
δ−4 log2(1/α) log(N/η) is the length of episodes which satisfies the required condition for H in
Lemma D.1, and N is total number of episodes to be run with L-UCRL (Algorithm 1). Under
Condition 3 with a failure probability εp = O(1/N), the true belief state over contexts b at time step
O(H) satisfies

b(m∗) ≥ 1− (η/N)4.

With PSR parameters, we can estimate prediction probabilities at time step H − 1 for any given
histories. This in turn implies that for any intervening actions aτ1 , ..., aτl′ of length l′, the prediction
probability given the history of length H − 1 is nearly close to the prediction in them∗th MDP:

‖(P− Pm∗)(oτ1 ...oτl′ |h||do aτ1 ...aτl′)‖1 ≤ (η/N)4,

with probability at least 1 − (η/N)4. On the other hand, note that in the m∗th MDP,
Pm∗(o

τ
1 ...o

τ
l′ |h||do aτ1 ...aτl′) = Pm∗(o

τ
1 ...o

τ
l′ |sH−1||do aτ1 ...aτl′). Therefore, combining with Theo-

rem E.2, we have that

‖(P− P̂)(oτ1 ...o
τ
l′ |h||do aτ1 ...aτl′)‖1 ≤ 4εc, ∀aτ1 ...aτl′ ∈ Al

′
,

26



Algorithm 5 Recovery of LMDP parameters
Input: A set of short historiesH and tests T for learning PSR, and tests T ′ for clustering
1: // Learn PSR parameters up to precision o(δ)
2: Estimate PSR parameters {b̂1,s, b̂∞,s, B̂o,a,s, ∀o, a, s} following (12) in Appendix E.1 up to

precision o(δ)
3: // Get clusters {T̂m(·|s, a), R̂m(·|s, a)}(s,a)∈S×A,m∈[M ] with learned PSR parameters
4: Initialize Vs = {} for all s ∈ S
5: for n1/3 episodes do
6: Play exploration policy π and get a trajectory h = (s1, a1, r1, ..., sH , aH , rH)

7: Get PSR state b̂H−1 at time step H − 1 using equation (14)
8: Compute pH−1(T ′) = P̂(T ′ |(s, a, r)1:H−2, sH−1) using equation (15)
9: Add pH−1 in VsH−1

10: end for
11: for all s ∈ S do
12: FindM -cluster centers Cs that cover all points in Vs (e.g., with k-means++ [3])
13: end for
14: // Build each MDP model by correctly assigning contexts to estimated transition and reward

probabilities
15: for n1/3 episodes do
16: Play exploration policy π until time-step H − 1 and get a PSR state b̂H−1 at time step H − 1

17: Play an uniformly sampled action a and get a PSR state b̂H at time step H
18: Compute pH−1(T ′), pH(T ′)
19: Find centers (labels) cH−1 ∈ CsH−1

and cH ∈ CsH such that cH−1 and cH are the closest to
pH−1 and pH respectively.

20: If sH−1 and sH are different, let two centers cH−1, cH be in the same context
21: end for
22: If reordering of contexts are inconsistent, return FAIL
23: Otherwise, construct T̂m and R̂m from cluster centers {Cs}s∈S
24: for n1/3 episodes do
25: Play exploration policy π and get a PSR state b̂H at time step H
26: Compute pH(T ′) and find centers cH ∈ CsH that is closest to pH(T ′)
27: Get the contextm where cH belongs to, and update initial state distribution ν̂m ofmth MDP
28: end for

with probability at least 1−Al′εt/εc. In other words, the prediction probability estimated with PSR
parameters are almost correct within error (η/N)4 + 4εc with probability at least 1−Al′εt/εc.

In a slightly more general context, let T ′ be a set of all tests of length l′ with all possible intervening
Al
′ action sequences where 1 ≤ l′ ≤ l. The core idea of clustering is to have the error in prediction

probability εc smaller than the separation of prediction probabilities between different MDPs. Let
δpsr be the average l1 distance between predictions of all length l′ tests such that:∑

aτ1 ...a
τ
l′∈A

l′

‖(Pm1
− Pm2

)(oτ1 ...o
τ
l′ |s||do aτ1 ...aτl′)‖1 ≥ Al

′
· δpsr, ∀s ∈ S, (16)

for allm1 6= m2 ∈ [M ]. For instance, Assumption 2 alone gives (16) with l′ = l and Al′ · δpsr ≥ στ .∑
aτ1 ...a

τ
l′∈A

l′

‖(Pm1 − Pm2)(oτ1 ...o
τ
l′ |s||do aτ1 ...aτl′)‖1 ≥ ‖Ls(em1 − em2)‖1

≥ ‖Ls(em1
− em2

)‖2 ≥
√

2στ ,

where em is a standard basis vector inRM with 1 at themth position. If MDPs satisfy the Assumption
1, then equation (16) holds with l′ = 1 and δpsr = δ. The discussion in the main text (Section 3.4) is
referring to this case.
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Figure 5: Connected graph constructed from an MDP with Assumption 4

Once the equation (16) is given true with some δpsr = Θ(1), with high probability, we can identify
the context by grouping trajectories with same ending state and similar l′-step predictions at time-step
H − 1. Hence a prediction at the (H − 1)th time step serves as a label for each trajectory.
We are then left with recovering the full LMDP models. Even though we can cluster trajectories
according to predictions conditioning on length H − 1 histories, if we have two trajectories landed in
two different states at (H − 1)th time-step, we have no means to combine them even if they are still
from the same context. In order to resolve this, our approach requires the following assumption:

Assumption 4 For allm ∈ [M ], let Gm be an undirected graph where each node in Gm corresponds
to each state s ∈ S. Suppose we connect (s, s′) in Gm (assign an edge between s, s′) for s 6= s′ if
there exists at least one action a ∈ A such that Tm(s′|s, a) ≥ α3 for some α3 > 0. Then, Gm is
connected, i.e., from any states there exists a path to any other states on Gm.

The high-level idea of Assumption 4 is to consider a graph between states as in Figure 5. We want to
recover edges between different states s, s′ in Gm so that we can assign same labels resulted from the
same context but ended at different states.
With Assumption 4, if we have a trajectory that ends with last two states (sH−1, sH) = (s, s′) where
s 6= s′, then we can find labels of this trajectory according to two different labeling rules at state s and
s′. Hence, we can associate labels assigned by predictions at two different states s, s′. Afterwards,
even if we have two trajectories ending at different states from the same context, we can assign the
same label to two trajectories if we have seen a connection between (s, s′). In other words, this step
connects labels according to the same context in different states s, s′. Note that even if there is no
direct connection, we can infer the identical context if we have a path in a graph by crossing over
states that have direct connections.

Remark 2 Assumption 4 is satisfied if, for instance, each MDP has a finite diameter D > 0 [22]
where

D = min
π

max
m,s 6=s′

Eπm[# of steps(s→ s′)],

D is the minimum required number of expected steps in any MDP (with some deterministic memoryless
policy π) to move from any state s to any other states s′. In this case, each Gm is connected with
α3 ≥ 1/D, since if we have some disconnected groups of states in Gm, then the diameter cannot be
smaller than 1/α3 (see also Figure 5). Note that in general, we only need α3 to be bounded below to
make each graph Gm connected for all states. With the connectivity of Gm, we can associate labels in
all different states in a consistent way to resolve ambiguity in the ordering of contexts.

As we get more trajectories that end with various sH−1 and sH , whenever sH−1 6= sH , we can
associate labels across more different states, and recover more connections (edges in Gm). Then, once
every node in Gm is connected in each contextm, we can recover full transition and reward models
for the contextm since we resolved the ambiguity in the ordering of labels of all different states. After
we recover transition and reward models, we recover initial distribution of each MDP with a few more
length H trajectories. The full clustering procedure is summarized in Algorithm 5.
To reliably estimate the parameters with Algorithm 5 to serve as a good initialization for Algorithm 1,
we require

εc ≤
1

4
·min(εinit, δpsr), (MN)−4 +Al

′
εt/εc ≤ 0.01/n1,
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which in turn implies the desired accuracy in total variation distance between full length t trajectories:
εt � A−l

′
εc/n1. From Theorem E.1, total sample complexity we need for the initialization to be

n0 ≥ C0 ·
H2Mn2

1

ε2c
· A

2l+2l′+1

psσ2
τσ

2
h

(
S +

Al

σ2
h

)
poly log(N/η),

for sufficiently large absolute constant C0 > 0. We conclude this section with the full end-to-end
guarantees (full version of 3.5).

Theorem E.3 Let Assumption 2 hold for an LMDP instance with a sampling policy π. Furthermore,
assume the LMDP satisfies Assumptions 1 and 3. We learn the PSR parameters with n0 short
trajectories of length 2l + 1 where

n0 = poly(Al, S, ε−1
c , σ−1

h , σ−1
τ , α−1

2 , α−1
3 , H,M),

where εc < min(δ, εinit) is a desired accuracy for estimated predictions, and α3 > 0 is a parameter
related to the connectivity of MDPs (see Assumption 4). Let the number of additional episodes with
time-horizon H ≥ C · δ−4 log2(1/α) log(N/η) (as in Theorem 3.4)

n1 = C1 ·MA log(MS)/(α2α3),

with some absolute constant C1 > 0. Then with probability at least 2/3, Algorithm 5 returns a good
initialization of LMDP parameters that satisfies (3).

Note that the 2/3 probability guarantee can be boosted to arbitrarily high precision 1− η by repeating
Algorithm 5 O(log(1/η)) times, and selecting a model via majority vote.

E.2.1 Proof of Theorem E.3

Proof. Let n1 ≥ C1 · log(n1)MA/(α2α3), εc = c · min(δpsr, εinit) for some sufficiently large
constant C1 > 0 and sufficiently small constant c > 0. Let εt = εc/(10n1A

l′). Plugging this to the
Theorem E.1 and Theorem E.2, if we use n0 short trajectories for learning PSR where

n0 ≥ C0 ·
H2M3

ε2cα
2
2α

2
3

· A
2l+2l′+3

psσ2
τσ

2
h

(
S +

Al

σ2
h

)
poly log(N/η),

then the error of the estimated conditional probability given a trajectory and a test is less than εc with
probability at least 9/10 for all n1 trajectories (over the randomness of new trajectories).
With Assumption 3, with n1 � M/α2 log(MS), we can visit all states in all MDPs at least once
at time step H − 1 after n1/3 episodes with probability larger than 9/10. Furthermore, for all n1/3
trajectories h1, ..., hn1/3 up to H − 1 time step, we have

‖(Pπ − P̂π)(T
′
|hi)‖1 ≤ Al

′
εc, ∀i ∈ [n1],

with probability at least 9/10 by union bound. Let ki and si be the true context and ending state of hi.
With Assumption 1 and the separation Lemma D.1, we also have with probability at least 1− η that

‖Pπ(T
′
|hi)− Pπki(T

′
|si)‖1 ≤ Al

′
· (η/N)4, ∀i ∈ [n1],

where N � n1 is the number of episodes to be run after initialization with Algorithm 1. Note
that the prediction probabilities are δpsr-separated, Theorem E.2 ensures that all possible sets of
l′-step predictions are within error εc � δpsr. Thus, we are guaranteed that all his whose estimated
P̂π(T ′ |hi) are within Al

′
εc-error are generated from the same context. Note that with Assumption 1,

we have l′ = 1 and δpsr = δ.
Suppose now that we have Assumption 1. In this case, we set T ′ be a set of all possible observations
of length 1. Now we are remained with the recovery of full transition and reward models for each
context. Note that same guarantees in the previous paragraph hold for predictions at the time stepH
with probability 9/10. With Assumption 4 (see also Remark 2), we build a connection graph for each
context. That is, with n1 = O(MA log(MS)/(α2α3)) episodes (since we need to see at least one
occurrence of all edges in all contexts, i.e., all (m, s) with edges to neighborhood states s′ via action
a), we have pairs of (sH−1, sH) in the same trajectory where sH−1 and sH are sufficient to recover
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all edges in all graphs Gm. Note that each edge occurs with probability at least O(α2α3/(MA)) and
there are at mostMS2 edges, which gives a desired number of trajectories for clustering.
More specifically, by associating 1-step predictions at time steps H − 1 and H in the same trajectory,
we can connect labels found at sH−1 with estimated quantity Pm(·|sH−1, a) and the same one found
at sH , as we confirm these labels are in the same true contextm of the trajectory. We can aggregate
more sample trajectories until we recover all edges in the connection graph Gm. As long as this
association results in a consistent reordering of contexts in all states, we can recover the full transition
models (as well as rewards and initial distributions) for all contexts.
Now we visit every state s with probability at least α2 at time step H − 1 by Assumption 3. Then, by
taking uniform action a at time step H − 1, with probability at least α3/A, we reveal the connection
from s to some other state s′ (which is essential for the consistent reordering of contexts) at time step
H by Assumption 4. If we repeat this process for n1 = C1 ·MA log(MS)/(α2α3) episodes, we can
collect all necessary information for the reordering of contexts in all different states. In conclusion,
Algorithm 5 recovers Tm andRm up to εc-accuracy for allm, s, a (not necessarily in the same order in
m). Initial state distributions for all contexts can be similarly recovered. The entire process succeeds
with probability at least 2/3. �

Appendix F Proofs for Spectral Learning of PSR

In this section, we provide deferred proofs for the Lemmas used in Appendix E.1. If the norm ‖ · ‖ is
used without subscript, we mean l2-norm for vectors and operator norm for matrices.

F.1 Proof of Theorem E.1

Let us define a few notations before we get into the detail. Let us denote ps = 1>PHs = P(end state =

s), and empirical counterpart p̂s = 1>P̂Hs , for the (empirical) probability of sampling a history
ending with s. First, we normalize joint probability matrices:

PT ,H|s =
PT ,Hs
ps

, PT ,oa,H|s =
PT ,oa,Hs

ps
, P̂T ,H|s =

P̂T ,Hs
ps

, P̂T ,oa,H|s =
P̂T ,oa,Hs

ps
.

We occasionally express unnormalized PSR states with PSR parameters {(b∞,s, Bo,a,s, b1,s)} as
given a history (s, a, o)1:t−1 as

bt,s1 = B(o,a,s)t−1
B(o,a,s)t−2

...B(o,a,s)1b1,s1 = B(o,a,s)t−1:1
b1,s1 .

The empirical counterpart will be defined similarly with ·̂ on the top. We often concisely use ht instead
of (s, a, o)1:t−1 = (s, a, r)1:t−1st. We represent the probability of choosing actions a1, ..., at−1 when
the history is ht−1 as

π(a1:t−1|ht−1) = π(a1|h1)π(a2|h2)...π(at−1|ht−1).

Now suppose that empirical estimates of probability matrices satisfy the following:

‖PHs − P̂Hs‖2 ≤ ε0,s
‖P(T , s1 = s)− P̂(T , s1 = s)‖2 ≤ ε1,s

‖PT ,H|s − P̂T ,H|s‖2 ≤ ε2,s
‖PT ,oa,H|s − P̂T ,oa,H|s‖2 ≤ ε3,oas,

for all s, a, o. The following lemma shows how the error in estimated matrices affects the accuracy of
PSR parameters.

Lemma F.1 Let the true transformed PSR parameters with Ûs, V̂s be

B̃o,a,s = Û>s′PT ,oas,Hs V̂s(Û
>
s PT ,Hs V̂s)

−1,

b̃∞,s = P>Hs V̂s(Û
>
s PT ,Hs V̂s)

−1,

b̃1,s = Û>s P(T , s1 = s),
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for all s, a, o. Let σM,s be the minimum (M th) singular value of σM (Û>s PT ,H|sV̂s). Then, we have
that

‖B̃o,a,s − B̂o,a,s‖2 ≤
ε3,oas
σM,s

+
√
AlPπ(o|s||do a)

2ε2,s
σ2
M,s

,

‖b̃s,∞ − b̂s,∞‖2 ≤
ε0,s

psσM,s
+

2ε2,s
σ2
M,s

,

‖b̃s,1 − b̂s,1‖2 ≤ ε1,s,
where Pπ(·) is the probability of events when we sample histories with the exploration policy π.

The proofs of helping lemmas will be proved at the last of this subsection. We define the following
quantities with error bounds similarly as in [20]:

δ∞,s = ‖L>s Ûs(b̃∞,s − b̂∞,s)‖∞ ≤ ‖L>s ‖∞,2‖b̃∞,s − b̂∞,s‖2 ≤
√
Al‖b̃∞,s − b̂∞,s‖2,

δ1,s = ‖(Û>s Ls)−1(b̃1,s − b̂1,s)‖1 ≤
√
M‖b̃1,s − b̂1,s‖2/σM (Ûs

>
Ls),

∆o,a,s = ‖(Û>s Ls)−1(B̃o,a,s − B̂o,a,s)(Û>s Ls)‖1 ≤
√
M‖B̃o,a,s − B̂o,a,s‖2/σM (Û>s Ls),

∆ = max
a,s

∑
o

∆o,a,s, δ∞ = max
s
δ∞,s, δ1 = max

s
δ1,s. (17)

We let εt = δ∞ + (1 + δ∞)((1 + ∆)tδ1 + (1 + ∆)t − 1). We first note that for any fixed action
sequence a1:t−1, it holds that∑

(s,o)1:t−1

|b̃>∞,sB̃(o,a,s)t−1:1
b̃1,s1 − b̂>∞,sB̂(o,a,s)t−1:1

b̂1,s1 |

≤ δ∞ + (1 + δ∞)((1 + ∆)tδ1 + (1 + ∆)t − 1).

This equation is a direct consequence of the Lemma 12 in [20]. However, here we aim to get the
bound for all history dependent policy, hence we need to establish the theorem by re-deriving the
induction hypothesis with considering the policy. We now bound the original equation. Observe first
that ∑

(s,a,r)1:t−1,st

|Pπ((s, a, r)1:t−1, st)− P̂π((s, a, r)1:t−1, st)|

=
∑

(s,a,r)1:t−1,st

π(a1:t−1|ht−1)|b̃>∞,sB̃(o,a,s)t−1:1
b̃1,s1 − b̂>∞,sB̂(o,a,s)t−1:1

b̂1,s1 |.

Following the steps in [20], for each s1, we will prove the following Lemma:

Lemma F.2 For any t, we have∑
(s,a,o)1:t−1

π(a1:t−1|ht−1)‖(Û>stLst)
−1(B̃(o,a,s)t−1:1

b̃1,s1−B̂(o,a,s)t−1:1
b̂1,s1)‖1

≤ (1 + ∆)tδ1 + (1 + ∆)t − 1.
(18)

We are now ready to prove the original claim. Let us denote b̃t,s1 = B̃(o,a,s)t−1:1
b̃1,s1 and b̂t,s1 =

B̂(o,a,s)t−1:1
b̂1,s1 . The remaining step is to involve the effect of error in b̂∞,st . Following the similar

steps, we decompose the summation as:∑
(s,a,o)1:t−1

π(a1:t−1|ht−1)|b̃>∞,stB̃(o,a,s)t−1:1
b̃1,s1 − b̂>∞,stB̂(o,a,s)t−1:1

b̂1,s1 |

=
∑

(s,a,o)1:t−1

π(a1:t−1|ht−1)|(b̃∞,st − b̂∞,st)>(Û>stLst)(Û
>
stLst)

−1b̃t,s1 |

+
∑

(s,a,o)1:t−1

π(a1:t−1|ht−1)|(b̃∞,st − b̂∞,st)>(Û>stLst)(Û
>
stLst)

−1(b̃t,s1 − b̂t,s1)|
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+
∑

(s,a,o)1:t−1

π(a1:t−1|ht−1)|b̃>∞,st(Û
>
stLst)(Û

>
stLst)

−1(b̃t,s1 − b̂t,s1)|.

For the first term,∑
(s,a,o)1:t−1

π(a1:t−1|ht−1)|(b̃∞,st − b̂∞,st)>(Û>stLst)(Û
>
stLst)

−1b̃t,s1 |

≤
∑

(s,a,o)1:t−1

π(a1:t−1|ht−1)‖(b̃∞,st − b̂∞,st)>(Û>stLst)‖∞‖(Û
>
stLst)

−1b̃t,s1‖1

≤
∑

(s,a,o)1:t−1

π(a1:t−1|ht−1)δ∞,st‖(Û>stLst)
−1b̃t,s1‖1

≤ δ∞
∑

(s,a,o)1:t−1

π(a1:t−1|ht−1)P(ht|a1:t−1) ≤ δ∞.

Following the similar step, the second term is bounded by δ∞((1 + ∆)tδ1 + (1 + ∆)t − 1). For the
last term, note that b̃>∞,st(Û

>
stLst) = 1>. Therefore,∑

(s,a,o)1:t−1

π(a1:t−1|ht−1)|b̃>∞,st(Û
>
stLst)(Û

>
stLst)

−1(b̃t,s1 − b̂t,s1)|

≤
∑

(s,a,o)1:t−1

π(a1:t−1|ht−1)‖(Û>stLst)
−1(b̃t,s1 − b̂t,s1)‖1

≤ ((1 + ∆)tδ1 + (1 + ∆)t − 1).

Therefore, we conclude that∑
(s,a,o)1:t−1

|Pπ((s, a, o)1:t−1)− P̂π((s, a, o)1:t−1)| ≤ δ∞ + (1 + δ∞)((1 + ∆)tδ1 + (1 + ∆)t − 1).

Finally, in other to make the error term smaller than εt, we want the followings:

δ∞ ≤ εt/8,∆ ≤ εt/4t, δ1 ≤ εt/4.

We need the following lemma on finite-sample error in estimated probability matrices:

Lemma F.3 For a sufficiently large constant C > 0, the errors in empirical estimates of the proba-
bility matrices are bounded by

‖PHs − P̂Hs‖2 ≤ C
√
ps
N

log(SA/η),

‖PT ,Hs − P̂T ,Hs‖2 ≤ CAl
√
ps
N

log(SA/η),

‖P(T , s1 = s)− P̂(T , s1 = s)‖2 ≤ CAl
√
P(s1 = s)

N
log(SA/η),

‖PT ,oa,Hs − P̂T ,oa,Hs‖2 ≤ CAl+1

(√
Pπ(o|s||do a)ps

NA
log(SA/η) +

log(SA/η)

N

)
,

for all s, a, o with probability at least 1− η.

This lemma follows the same concentration argument to Proposition 19 in [20] using McDiarmid’s
inequality. The proofs of three lemmas are given at the end of this subsection. With Lemma F.1, F.3
and equation (17), we now decide the sample size. For ∆,

∆ ≤
∑
o

∆o,a,s

≤
√
M

σM (Û>s Ls)

(∑
o

ε3,oas
σM,s

+
√
AlPπ(o|s||do a)

2ε2,s
σ2
M,s

)
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≤
√
M

σM (Û>s Ls)

(∑
o ε3,oas
σM,s

+
√
Al

2ε2,s
σ2
M,s

)
.

The summation of ε3,oas is bounded by∑
o

ε3,oas ≤ CAl+1
∑
o

(√
Pπ(o|s||do a)

NAps
log(SA/η) +

log(SA/η)

Nps

)

≤ CAl+1

(√
2S

NAps
log(SA/η) +

2S log(SA/η)

Nps

)
.

Also note that

ε2,s ≤ CAl
√

log(SA/η)

Nps
.

In order to have ∆ < εt/(4t), the sample size should be at least

N ≥ C ′ ·K t2

ε2t

(
A2l+1S

psσ2
M (Û>s Ls)σ

2
M,s

+
A3l+1

psσ2
K(Û>s Ls)σ

4
M,s

)
log(SA/η),

for some large constant C ′ > 0.

Finally, σM,s = σM (Û>s PT ,H|sV̂s) ≥ (1−ε0)σM (PT ,H|s) where ε0 = ε22,s/((1−εt)σM (PT ,H|s))
2

by applying Lemma F.9 twice. Hence, as long as N � 1/σM (PT ,H|s), it holds that σM,s ≥
σM (PT ,H|s)/2. Similarly, we have σM (Û>s Ls) ≥ σM (Ls)/2. Plugging this inequality in the sample
complexity completes the Theorem E.1.

F.2 Proof of Theorem E.2

Proof. We first define an extended policy π′ which runs the given policy π for t times and play
intervening action sequences at...at+l−1. Let us denote o = (r, s′) to represent a pair of reward and
next state compactly. A simple corollary of Theorem E.1 is the following lemma:

Lemma F.4 With the estimated PSR parameters in Theorem E.1, for any given trajectory (s, a, o)1:t−1,
the following holds:∑

at,rt,...,st+l

π(a1:t−1|ht−1)|b>∞,st+lB(o,a,s)t+l−1:1
b1,s1 − b̂>∞,st+lB̂(o,a,s)t+l−1:1

b̂1,s1 |

≤ εlPπ((s, a, o)1:t−1) + 2π(a1:t−1|ht−1)‖(Û>stLst)
−1(b̃t,s1 − b̂t,s1)‖1.

On top of this lemma, we also have the following lemma that bounds the probability of bad events in
which the error in estimated probability can be arbitrarily large:

Lemma F.5 For any history-dependent policy π, with the PSR parameters guaranteed in Theorem
E.1, we have

|P̂π
′
((s, a, o)1:t−1)− Pπ((s, a, o)1:t−1)| ≤ εcPπ((s, a, o)1:t−1),

π(a1:t−1|ht−1)‖(Û>stLst)
−1(b̃t,s1 − b̂t,s1)‖1 ≤ εcPπ((s, a, o)1:t−1),

with probability at least 1− εt/εc.

By the definition of conditional test probability, note that

|P̂π
′
(τ |(s, a, o)1:t−1)− Pπ

′
(τ |(s, a, o)1:t−1)| =

∣∣∣∣∣ P̂π
′
(τ, (s, a, o)1:t−1)

P̂π((s, a, o)1:t−1)
− P

π′(τ, (s, a, o)1:t−1)

Pπ((s, a, o)1:t−1)

∣∣∣∣∣ ,
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which is less than

(1 + εc)

Pπ((s, a, o)1:t−1)

∣∣∣P̂π′(τ, (s, a, o)1:t−1)− Pπ
′
(τ, (s, a, o)1:t−1)

∣∣∣+ εc
Pπ
′
(τ, (s, a, o)1:t−1)

Pπ((s, a, o)1:t−1)
,

with probability at least 1− εt/εc. Now we sum over all possible trajectories τ in O with intervening
actions a1...al after observing (s, a, o)1:t−1. Under the good event guaranteed in Lemma F.5, the
summation over all possible future trajectories is less than

(1 + εc)

Pπ((s, a, o)1:t−1)
((εt + 2εc)P

π((s, a, o)1:t−1) + εcP
π((s, a, o)1:t−1)) ≤ 4εc,

from Lemma F.4 and F.5. Therefore, for a fixed intervening action sequences at, ..., at+l−1, we can
conclude that

‖Pπ(O|(s, a, o)1:t−1||do at:t+l−1)− P̂π(O|(s, a, o)1:t−1||do at:t+l−1)‖1 ≤ 4εc,

with probability at least 1− εt/εc. �

F.3 Proof of Lemma F.1

Proof. The proof of the lemma can be done by unfolding expressions:

‖B̃o,a,s − B̂o,a,s‖ = ‖Û>s′PT ,oa,H|sV̂s(Û>s PT ,H|sV̂s)−1 − Û>s′PT ,oa,H|sV̂s(Û>s P̂T ,H|sV̂s)−1‖
≤ ‖(Û>s′ (PT ,oa,H|s − P̂T ,oa,H|s)V̂s)(Û>s PT ,H|sV̂s)−1‖

+ ‖(Û>s′PT ,oa,H|sV̂s)((Û>s PT ,H|sV̂s)−1 − (Û>s P̂T ,H|sV̂s)
−1)‖

≤ ε3,oas
σM,s

+ ‖PT ,oa,H|s‖2
2ε2,s
σ2
M,s

≤ ε3,oas
σM,s

+ Pπ(o|s||do a)
√
Al

2ε2,s
σ2
M,s

,

where we used Lemma F.10 from matrix perturbation theory for the second inequality, and

‖PT ,ao,Hs‖2 ≤
√ ∑
τ∈T ,h∈Hs

Pπ(ooτ1o
τ
2 ...o

τ
l |h||do aaτ1 ...aτl )2Pπ(h)2

≤
√ ∑
a1,a2,...,al

∑
o1,...,ol

∑
h∈Hs

Pπ(oo1...al|h||do aa1...al)2Pπ(h)2

≤
√ ∑
a1,a2,...,al

Pπ(o|h||do a)2
∑

o1,...,ol

∑
h∈Hs

Pπ(o1...ol|hao||do a1...al)2Pπ(h)2

≤ Pπ(o|h||do a)

√ ∑
a1,a2,...,al

∑
h∈Hs

Pπ(h)2 = Pπ(o|h||do a)
√
Al
√∑
h∈Hs

Pπ(h)2

≤ Pπ(o|h||do a)
√
Al
∑
h∈Hs

Pπ(h) = Pπ(o|h||do a)
√
Alps,

therefore ‖PT ,oa,H|s‖ ≤ Pπ(o|h||do a)
√
Al for the last inequality. For initial and normalization

parameters,

‖b̃∞,s − b̂∞,s‖ ≤ ‖(PHs − P̂Hs)>V̂s(Û>s PT ,Hs V̂s)−1‖+ ‖P>Hs V̂s((Û
>
s PT ,Hs V̂s)

−1 − (Û>s P̂T ,Hs V̂s)
−1)‖

≤ ε0,s
σM (PT ,Hs)

+ ‖PHs/p̂s‖2
2ε2,s

σM (PT ,H|s)2
≤ ε0,s
psσM (PT ,H|s)

+
2ε2,s

σM (PT ,H|s)2
.

‖b̃s,1 − b̂s,1‖ ≤ ε1,s.

�
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F.4 Proof of Lemma F.2

Proof. We show this lemma by induction on t. For t = 1, we bound ‖(Ûs1Ls1)−1(b̃1,s1− b̂1,s1)‖1 ≤
δ1,s1 by definition. Now assume it holds for t− 1 and check the induction hypothesis.∑
(s,a,o)1:t−1

π(a1:t−1|ht−1)‖(Û>stLst)
−1(B̃(o,a,s)t−1:1

b̃1,s1 − B̂(o,a,s)t−1:1
b̂1,s1)‖1

=
∑

(s,a,o)1:t−2

∑
at−1,ot−1

π(at−1|ht−1)π(a1:t−2|ht−2)‖(Û>stLst)
−1(B̃(o,a,s)t−1:1

b̃1,s1 − B̂(o,a,s)t−1:1
b̂1,s1)‖1

=
∑
at−1

π(at−1|ht−1)
∑
ot−1

∑
(s,a,o)1:t−2

π(a1:t−2|ht−2)‖(Û>stLst)
−1(B̃(o,a,s)t−1:1

b̃1,s1 − B̂(o,a,s)t−1:1
b̂1,s1)‖1

=
∑
at−1

π(at−1|ht−1)
∑
ot−1

∑
(s,a,o)1:t−2

π(a1:t−2|ht−2)‖(Û>stLst)
−1(b̃t,s1 − b̂t,s1)‖1.

We investigate the inside sum by decomposing ‖(Û>stLst)
−1(b̃t,s1 − b̂t,s1)‖1 as

‖(Û>stLst)
−1(b̃t,s1−b̂t,s1)‖1 = ‖(Û>stLst)

−1(B̃(o,a,s)t−1
− B̂(o,a,s)t−1

)(Û>st−1
Lst−1

)‖1‖(Û>st−1
Lst−1

)−1b̃t−1,s1‖1
+ ‖(Û>stLst)

−1(B̃(o,a,s)t−1
− B̂(o,a,s)t−1

)(Û>st−1
Lst−1

)‖1‖(Û>st−1
Lst−1

)−1(b̃t−1,s1 − b̂t−1,s1)‖1
+ ‖(Û>stLst)

−1B̃(o,a,s)t−1
(Û>st−1

Lst−1
)(Û>st−1

Lst−1
)−1(b̃t−1,s1 − b̂t−1,s1)‖1.

For the first term,∑
ot−1

∑
(s,a,o)1:t−2

π(a1:t−2|ht−2)‖(Û>stLst)
−1(B̃(o,a,s)t−1

− B̂(o,a,s)t−1
)(Û>st−1

Lst−1
)‖1‖(Û>st−1

Lst−1
)−1b̃t−1,s1‖1

=
∑
ot−1

∑
(s,a,o)1:t−2

π(a1:t−2|ht−2)∆(o,a,s)t−1
‖(Û>st−1

Lst−1
)−1b̃t−1,s1‖1

≤ ∆
∑

(s,a,o)1:t−2

π(a1:t−2|ht−2)‖(Û>st−1
Lst−1

)−1b̃t−1,s1‖1

= ∆
∑

(s,a,o)1:t−2

π(a1:t−2|ht−2)P(ht−2) = ∆,

where we used the definition of b̃t−1,s1 = Û>st−1
Lst−1P((s, a, o)1:t−2). For the second term, by the

induction hypothesis,∑
ot−1

∑
(s,a,o)1:t−2

π(a1:t−2|ht−2)∆(o,a,s)t−1
‖(Û>st−1

Lst−1)−1(b̃t−1,s1 − b̂t−1,s1)‖1

≤ ∆
∑

(s,a,o)1:t−2

π(a1:t−2|ht−2)‖(Û>st−1
Lst−1)−1(b̃t−1,s1 − b̂t−1,s1)‖1

= ∆((1 + ∆)t−1δ1 + (1 + ∆)t−1 − 1).

The last term can also be derived following the same argument in [20]. It gives∑
ot−1

∑
(s,a,o)1:t−2

π(a1:t−2|ht−2)‖(Û>stLst)
−1B̃(o,a,s)t−1

(Û>st−1
Lst−1

)(Û>st−1
Lst−1

)−1(b̃t−1,s1 − b̂t−1,s1)‖1

≤
∑
ot−1

∑
(s,a,o)1:t−2

π(a1:t−2|ht−2)‖D(o,a,s)t−1
(Û>st−1

Lst−1
)−1(b̃t−1,s1 − b̂t−1,s1)‖1

≤
∑
ot−1

∑
(s,a,o)1:t−2

π(a1:t−2|ht−2)‖D(o,a,s)t−1
‖1‖(Û>st−1

Lst−1
)−1(b̃t−1,s1 − b̂t−1,s1)‖1

≤ (1 + ∆)t−1δ1 + (1 + ∆)t−1 − 1.

Now combining these three bounds, we get∑
at−1

π(at−1|h1:t−1)
∑
ot−1

∑
(a,r,s′)1:t−2

π(a1:t−2|h1:t−2)‖(Û>stLst)
−1(b̃t,s1 − b̂t,s1)‖1
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≤
∑
at−1

π(at−1|h1:t−1)(∆ + (1 + ∆)((1 + ∆)t−1δ1 + (1 + ∆)t−1 − 1))

≤
∑
at−1

π(at−1|h1:t−1)((1 + ∆)tδ1 + (1 + ∆)t − 1) = (1 + ∆)tδ1 + (1 + ∆)t − 1.

�

F.5 Proof of Lemma F.3

Proof. For the first inequality, we note that

‖PHs − P̂Hs‖2 ≤ ps‖PH|s − P̂H|s‖2 + |ps − p̂s|‖PH|s‖2.

Let Ns = p̂sN . For the first term, we can use McDiarmid’s inequality since a change at one sample
among Ns samples (conditioned on starting test from s) causes only

√
2/Ns difference:

‖PH|s − P̂H|s‖2 − E[‖PH|s − P̂H|s‖2] .

√
1

Ns
ln(1/η),

with probability at least 1− η/100. Let #(hs,i) be a count of a history hs,i after seeing Ns histories
that end with s. Also,

E[‖PH|s − P̂H|s‖2] ≤
√
E[‖PH|s − P̂H|s‖22] ≤

√√√√|Hs|∑
i=1

V ar

(
1

Ns
#(hs,i)

∣∣∣s)

≤

√√√√ 1

Ns

|Hs|∑
i=1

P(hs,i|s) ≤
√

1

Ns
.

Therefore, we can conclude that ‖PH|s − P̂H|s‖2 .
√

1
Ns

ln(1/η). On the other hand, we can show

that |ps − p̂s| .
√

ps
N log(1/η) + log(1/η)

N via a simple application of Bernstein’s inequality. Note
that our sample complexity guarantees N � log(1/η)/ps. Hence,

‖PHs − P̂Hs‖2 ≤ ps‖PH|s − P̂H|s‖2 + |ps − p̂s|‖PH|s‖2

. ps

√
1

Ns
log(1/η) +

√
ps
N

log(1/η)‖PH|s‖2 .
√
ps
N

log(1/η).

Similarly, we can show that

E[‖PT ,H|s − P̂T ,H|s‖2] ≤
√
E[‖PT ,H|s − P̂T ,H|s‖2F ] ≤

√√√√ ∑
j∈[T ],i∈[|Hs|]

V ar

(
Al

Ns
#(τj , hs,i)

∣∣∣s)

≤ Al
√√√√ 1

Ns

∑
j∈[T ],i∈[|Hs|]

P(τj , hs,i|s) ≤ Al
√

1

Ns
.

Following the same argument with McDiarmid’s inequality, we get the second inequality. The
remaining inequalities can be shown through similar arguments. Taking over union bounds over all
s, a, o gives the Lemma. �

F.6 Proof of Lemma F.4

Proof. As in the proof in Theorem E.1, let us denote b̃t,s1 = B̃(o,a,s)t−1:1
b̃1,s1 . Then, we can

decompose the terms as before:∑
rt,st+1,...,st+l

|b>∞,st+lB(o,a,s)t+l−1:1
b1,s1 − b̂>∞,st+lB̂(o,a,s)t+l−1:1

b̂1,s1 |
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=
∑

rt,...,st+l

|b̃>∞,st+lB̃(o,a,s)t+l−1:t
b̃t,s1 − b̂>∞,st+lB̂(o,a,s)t+l−1:t

b̂t,s1 |

=
∑

rt,...,st+l

|b̃>∞,st+lB̃(o,a,s)t+l−1:t
(Û>stLst)(Û

>
stLst)

−1b̃t,s1 − b̂>∞,st+lB̂(o,a,s)t+l−1:t
(Û>stLst)(Û

>
stLst)

−1b̂t,s1 |

≤
∑

rt,...,st+l

‖(b̃>∞,st+lB̃(o,a,s)t+l−1:t
− b̂∞,st+lB̂(o,a,s)t+l−1:t

)(Û>stLst)‖1‖(Û
>
stLst)

−1b̃t,s1‖1

+
∑

rt,...,st+l

‖(b̃>∞,st+lB̃(o,a,s)t+l−1:t
− b̂∞,st+lB̂(o,a,s)t+l−1:t

)(Û>stLst)‖1‖(Û
>
stLst)

−1(b̃t,s1 − b̂t,s1)‖1

+
∑

rt,...,st+l

‖b̃>∞,st+lB̃(o,a,s)t+l−1:t
(Û>stLst)‖1‖(Û

>
stLst)

−1(b̃t,s1 − b̂t,s1)‖1.

We follow the same induction procedure starting with showing the following equation:∑
st,rt,...,st+l−1

‖(Û>st+lLst+l)
−1(B̃(o,a,s)t+l−1:t

− B̂(o,a,s)t+l−1:t
)(Û>stLst)‖1 ≤ (1 + ∆)l − 1.

We show this equation by induction as in the previous proof. If l = 1, then

‖(Ûst+1Lst+1)−1(B̃(o,a,s)t − B̂(o,a,s)t)(Û
>
stLst)‖1 ≤

∑
ot

∆ot,at,st ≤ ∆,

by the definition of ∆. Now we assume it holds for sequences of length less than l, and prove the
induction hypothesis for l. We again split the term into three terms:∑

rt,...,st+l

‖(Û>st+lLst+l)
−1(B̃(o,a,s)t+l−1:t

− B̂(o,a,s)t+l−1:t
)(Û>st+l−1

Lst+l−1
)‖1

≤
∑

st,rt,...,st+l

‖(Û>st+lLst+l)
−1(B̃(o,a,s)t+l−1

− B̂(o,a,s)t+l−1
)(Û>st+l−1

Lst+l−1
)‖1×

‖(Û>st+l−1
Lst+l−1

)−1B̃(o,a,s)t+l−2:t
(Û>stLst)‖1

+
∑

rt,...,st+l

‖(Û>st+lLst+l)
−1(B̃(o,a,s)t+l−1

− B̂(o,a,s)t+l−1
)(Û>st+l−1

Lst+l−1
)‖1×

‖(Û>st+l−1
Lst+l−1

)−1(B̃(o,a,s)t+l−2:t
− B̂(o,a,s)t+l−2:t

)(Û>stLst)‖1

+
∑

rt,...,st+l

‖(Û>st+lLst+l)
−1B̃(o,a,s)t+l−1

(Û>st+l−1
Lst+l−1

)‖1×

‖(Û>st+l−1
Lst+l−1

)−1(B̃(o,a,st+l−2:t
− B̂(o,a,st+l−2:t

)(Û>stLst)‖1

≤ ∆ + ∆
∑

rt,...,st+l−1

‖(Û>st+lLst+l)
−1(B̃(o,a,s)t+l−1:t

− B̂(o,a,s)t+l−1:t
)(Û>stLst)‖1

+
∑

rt,...,st+l−1

‖(Û>st+lLst+l)
−1(B̃(o,a,s)t+l−1:t

− B̂(o,a,s)t+l−1:t
)(Û>stLst)‖1,

where in the last step, we used
∑
rt,...,st+l

‖(Û>st+lLst+l)
−1B̃(o,a,s)t+l−1:t

(Û>stLst)‖1 = 1 as well as∑
rt+l−1,st+l

‖(Û>st+lLst+l)
−1B̃(o,a,s)t+l−1

(Û>stLst)‖1 = 1. By induction hypothesis, it is bounded
by

∆ + ∆((1 + ∆)l−1 − 1) + (1 + ∆)l−1 − 1 = (1 + ∆)l − 1.

With the Lemma, we can verify that∑
rt,...,st+l

‖(b̃>st+lB̃(o,a,s)t+l−1:t
− b̂>st+lB̂(o,a,s)t+l−1:t

)(Û>stLst)‖1

≤
∑

rt,...,st+l

‖(b̃st+l − b̂st+l)(Û>st+lLst+l)‖∞‖(Û
>
st+l

Lst+l)
−1(B̃(o,a,s)t+l−1:t

− B̂(o,a,s)t+l−1:t
)(Û>stLst)‖1
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+
∑

rt,...,st+l

‖b̃st+l(Û>st+lLst+l)‖∞‖(Û
>
st+l

Lst+l)
−1(B̃(o,a,s)t+l−1:t

− B̂(o,a,s)t+l−1:t
)(Û>stLst)‖1

+
∑

rt,...,st+l

‖(b̃st+l − b̂st+l)(Û>st+lLst+l)‖∞‖(Û
>
st+l

Lst+l)
−1B̃(o,a,s)t+l−1:t

(Û>stLst)‖1

≤ δ∞ + (δ∞ + 1)((1 + ∆)l − 1).

Let εl := δ∞ + (δ∞ + 1)((1 + ∆)l − 1). From the above, we can conclude that∑
at,rt,...,st+l

π(a1:t|ht)|b>∞,st+lB(o,a,s)t+l:1b1,s1 − b̂
>
∞,st+lB̂(o,a,s)t+l:1 b̂1,s1 |

=
∑

at,rt,...,st+l

|π(a1:t−1|ht−1)b>∞,st+lB(o,a,s)t+l−1:t
b̃t,s1 − b̂>∞,st+lB̂(o,a,s)t+l−1:t

b̂t,s1 |

≤ εlπ(a1:t−1|ht−1)‖(Û>stLst)
−1b̃t,s1‖1 + εlπ(a1:t−1|ht−1)‖(Û>stLst)

−1(b̃t,s1 − b̂t,s1)‖1
+

∑
at,rt,...,st+l

π(a1:t−1|ht−1)‖b̃>∞,st+lB̃(o,a,s)t+l−1:t
(Û>stLst)‖1‖(Û

>
stLst)

−1(b̃t,s1 − b̂t,s1)‖1

≤ εlPπ((s, a, o)1:t−1) + (1 + εl)π(a1:t−1|ht−1)‖(Û>stLst)
−1(b̃t,s1 − b̂t,s1)‖1,

where we used

π(a1:t−1|ht−1)‖(Û>stLst)
−1b̃t,s1‖1 = π(a1:t−1|ht−1)1>(Û>stLst)

−1b̃t,s1 = P((o, a, s1:t|s1),

and ∑
rt,...,st+l

‖b̃>∞,st+lB̃(o,a,s)t+l−1:t
(Û>stLst)‖1 =

∑
st,rt,...,st+l

‖1>D̃(o,a,s)t+l−1:t
‖1 = 1.

Since εl < 1, we get the Lemma. �

F.7 Proof of Lemma F.5

Proof. Note that from equation (18) in Lemma F.2, we have∑
s1,a1,r1,...,rt−1,st

π(a1:t−1|ht−1)‖(Û>stLst)
−1(b̃t,s1 − b̂t,s1)‖1 ≤ εt.

Let Eb be a bad event where for a sampled trajectory s1, a1, r1, ..., rt−1, st, the difference in estimated
probability is larger than εcPπ(s1, a1, r1, ..., rt−1, st), i.e.,

π(a1:t−1|ht−1)‖(Û>stLst)
−1(b̃t,s1 − b̂t,s1)‖1 ≥ εcPπ(s1, a1, r1, ..., rt−1, st).

Note that Pπ(s1, a1, r1, ..., rt−1, st) = π(a1:t−1|ht−1)1>(Û>stLst)
−1b̃t,s1 =

π(a1:t−1|ht−1)‖(Û>stLst)
−1b̃t,s1‖1. If Pπ(Eb) > εt/εc, then∑

(s,a,o)1:t−1

π(a1:t−1|ht−1)‖(Û>stLst)
−1(b̃t,s1 − b̂t,s1)‖1 ≥

∑
(s,a,o)1:t−1∈Eb

π(a1:t−1|ht−1)‖(Û>stLst)
−1(b̃t,s1 − b̂t,s1)‖1

≥
∑

(s,a,o)1:t−1∈Eb

εcπ(a1:t−1|ht−1)‖(Û>stLst)
−1b̃t,s1‖1

≥ εcPπ(Eb) > εt,

which is a contradiction. Similarly, by Theorem E.1, we have∑
(s,a,r)1:t−1,st

|Pπ((s, a, r)1:t−1, st)− P̂π((s, a, r)1:t−1, st)| ≤ εt.

Following the same argument, we can show the contradiction if the Lemma F.5 does not hold. �
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F.8 Auxiliary Lemmas for Spectral Learning

For completeness of the paper, we include the following lemmas from Appendix B in [20] and [46].

Lemma F.6 (Theorem 4.1 in [46]) Let A ∈ Rm×n with m ≥ n and Â = A + E for some E ∈
Rm×n. If singular values of A and Â are σ1 ≥ σ2 ≥ ... ≥ σn and σ̂1 ≥ σ̂2 ≥ ... ≥ σ̂n respectively,
then

|σi − σ̂i| ≤ ‖E‖2, ∀i ∈ [n].

The following lemma is also called the Davis-Kahn’s Sin(Θ) theorem.

Lemma F.7 (Theorem 4.4 in [46]) Let A ∈ Rm×n withm ≥ n with singular value decomposition
(SVD) (U1, U2, U3,Σ1,Σ2, V1, V2) such that

A = [U1 U2 U3]

[
Σ1 0
0 Σ2

0 0

] [
V >1
V >2

]
.

Similarly, Â = A + E for some E ∈ Rm×n has a SVD (Û1, Û2, Û3, Σ̂1, Σ̂2, V̂1, V̂2). Let Φ be the
matrix of canonical angles between range(U1) and range(Û1), and Θ be the matrix of canonical
angles between range(V1) and range(V̂1). If there exists α, δ > 0 such that σmin(Σ1) ≥ α+ δ and
σmax(Σ2) < α, then

max{‖ sin Φ‖2, ‖ sin Θ‖2} ≤ ‖E‖2/δ.

Lemma F.8 (Corollary 22 in [20]) Suppose A ∈ Rm×n with rank k ≤ n and m ≥ n, and Â =
A+E with E ∈ Rm×n. Let σk(A) be the kth singular value of A and assume ‖E‖2 ≤ ε · σk(A) for
some small ε < 1. Let Û be top-k left singular vectors of Â, and Û⊥ be the remaining left singular
vectors. Then,

• σk(Â) ≥ (1− ε)σk(A).

• ‖Û>⊥U‖2 ≤ ‖E‖2/σk(Â).

Proof. The first inequality follows from Lemma F.6, and the second inequality follows from Lemma
F.7 by plugging α = 0 and δ = σ̂k. �

Lemma F.9 (Lemma 9 in [20]) Suppose A ∈ Rm×n with rank k ≤ n, and Â = A + E with
E ∈ Rm×n for ‖E‖2 ≤ ε ·σk(A) with small ε < 1. Let ε0 = ε2/(1−ε)2 and Û be top-k left singular
vectors of Â. Then,

• σk(Û>Â) ≥ (1− ε) · σk(A).

• σk(Û>A) ≥
√

1− ε0 · σk(A).

Proof. The first item is immediate since σk(Û>Â) = σk(Â). Let U be top-k left singular vectors
of A. If the top-k SVD of A is A = UΣV >, then

σk(Û>UΣV >) ≥ σmin(Û>U) · σk(Σ) ≥
√

1− ‖Û>⊥U‖22 · σk(A) ≥
√

1− ε0 · σk(A),

where the first inequality holds since V is orthonormal and Û>U is full-rank, and the final inequality
follows from Lemma F.8. �

Lemma F.10 (Theorem 3.8 in [46]) Let A ∈ Rm×n with m ≥ n, and let Ã = A + E with E ∈
Rm×n. Then,

‖Ã† −A†‖2 ≤
1 +
√

5

2
·max{‖A†‖22, ‖Ã†‖22} · ‖E‖2.
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Algorithm 6 Exploring Deterministic MDPs with Latent Contexts
Initialization: For O(M logM) episodes, observe the possible initial states (discard all other in-
formation). If there is only one initial state s1 for O(M logM) episodes, then set C1 = {(φ, s1)}.
Otherwise, let C1 be a set of all observed initial states with {({(init, s1)}, s1),∀s1 observed}.
1: for t = 1, ...,H do
2: Let Ct+1 = {}.
3: for each (C, s) ∈ Ct do
4: for each a ∈ A do
5: Let O = {}.
6: 1. Find any action sequence a1, ..., at−1 that can result in a state s with distinguishing

observations C.
7: 2. For O(M logM) episodes, run the action sequence a1, ..., at−1 (execute any policy

for the remaining time steps).
8: 2.1. If we reached the state s with distinguishing observations C, then run action a, and

get a new observation of next state and reward (s′, r).
9: 2.2. Update O ← O ∪ {(s′, r)} and record the probability p of observing (s′, r) condi-

tioned on C and s.
10: if |O| = 1 then
11: 3.1. With the only element (s′, r) ∈ O, update Ct+1 ← Ct+1 ∪ {(C, s′)}.
12: Record that there is a path from (C, s) to (C, s′) by taking action a with a reward r.
13: else
14: 3.2. For all (s′, r) ∈ O, letC ′ = C∪{(s, a, s′, r)}. UpdateCt+1 ← Ct+1∪{(C ′, s′)}.

15: Record that there is a path from (C, s) to (C ′, s′) by taking action a with a reward r
and a recorded probability p.

16: end if
17: end for
18: end for
19: end for

Appendix G Guarantees for Latent Deterministic MDPs

In this section, we provideupper bound for LMDP instances with deterministic MDPs. The upper
bound for latent deterministic MDPs supports our conjecture on the sample complexity of learning
general LMDPs, and could be of independent interest.
Although the lower bound is exponential inM , it could be tolerable with sufficiently small number of
contextsM = O(1). In this appendix, we briefly discuss whether the exponential dependence inM is
sufficient for learning deterministic MDPs with latent contexts. If that is the case, then we can exclude
the possibility of Ω(AH) lower bound for deterministic LMDP instances. Intuitively, the exponential
dependence in time-horizon is unlikely in LMDPs for the following reason: under certain regularity
assumptions, if the time-horizon is extremely longH � S2A such that every state-action pair can be
visited sufficiently many times, then each trajectory can be easily clustered and the recovery of the
model is straight-forward. The following theorem shows that we do not suffer from Ω(AH) sample
complexity for deterministic LMDPs:

Theorem G.1 (Upper Bound for Deterministic LMDPs) For any LMDP with a set of deter-
ministic MDPs, there exists an algorithm such that it finds the optimal policy after at most
O
(
H(SA)M · poly(M) logM

)
episodes.

The algorithm for the upper bound is implemented in Algorithm 6. While the upper bound for deter-
ministic LMDPs does not imply the upper bound for general stochastic LMDPs, we have shown that
the exponential lower bound higher than O((SA)M ) cannot be obtained via deterministic examples.
We leave it as future work to study the fundamental limits of general instances of LMDPs, and
in particular, whether the problem is learnable with Õ((SA)M ) sample complexity, which can be
promising when the number of contexts is small enough (e.g.,M = 2, 3).
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G.1 Proof of Theorem G.1

Algorithm 6 is essentially a pure exploration algorithm which searches over all possible states. After
the pure exploration phase, we model the entire system as one large MDP with poly(M) · (SA)M

states. The optimal policy can be found by solving this large MDP.
The core idea behind the algorithm is that since the system is deterministic, whenever there exist more
than one possibility of observations (a pair of reward and next state) from the same state and action, it
implies that at least one MDP shows a different behavior from other MDPs for the state-action pair.
Therefore, each observation can be considered as a new distinguishing observation that can separate
at least one MDPs from other MDPs. Afterwards, we can consider a sub-problem of exploration in
the remaining time-steps given the distinguishing observation in history and the current state. The
argument can be similarly applied in sub-problems, which leads to the concept of conditioning on a
set of distinguishing observations and the current state.
On the other hand, if an action results in the same observation for all MDPs given a set of distinguishing
observations and a state, then we would only see one possibility. In this case, this state-action pair does
not reveal any information on the context, and can be ignored for future decision making processes.
Algorithm 6 implements the above principles: for each time step t, we construct a set of all reachable
states with a set of distinguishing observations in histories. In order to find out all possibilities,
for each observation set, state, and action we first find the action sequence by which we can reach
the desired state (with target distinguishing observation set). Since all MDPs are deterministic, the
existence of path means at least one MDP always results in the desired state with the action sequence.
The sequence can be found by the induction hypothesis that we are given all possible transitions and
observations in previous time steps 1, ..., t − 1. By the coupon-collecting argument, if we try the
same action sequence for O(M logM) episodes, we can see all different transitions that all different
MDPs resulting in the target observation set and state can give. By doing this for all reachable states
and observation sets, we can find out all possibilities that can happen at the time step t. The procedure
repeats until t = H and eventually we can find all possible outcomes from all action sequences.
An important question is how many different possibilities we would encounter in the procedure.
Note that as we find out a new distinguishing observation, we cut out the possibility of at least one
MDP conditioning on that new observation. Since there are only M possible MDPs, the size of
distinguishable observation sets cannot be larger thanM − 1. Based on this observation, we can see
that the number of all possible combinations of the observation set and state is less than

(
MSA
M−1

)
· S.

Note that theMSA is the total number of possible state-action-observation (s, a, s′, r) pairs. Hence
in each time step, the iteration complexity does not exceed

(
MSA
K−1

)
· SA times the number of episodes

for each possible state and observation set. Since we loop this procedure forH steps, the total number
of episodes is bounded by O

(
HSA

(
MSA
M−1

)
·M logM

)
, which results in the sample complexity of

O
(
H(SA)M · poly(M) logM

)
.
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