
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

A. Appendix
A.1. Extended Related Work

Code generation benchmarks. We present an extended com-
parison of various code benchmarks in Table 5.

A.2. Methodological Details

A.2.1. AIRSPEED VELOCITY METHODOLOGY

To benchmark a new function with Airspeed Velocity,
a developer supplies a setup(...) routine and one
or more time profiling functions (e.g. time_foo(...),
time_bar(...)) and memory profiling functions (e.g.
mem_foo(...), mem_bar(...)). asv then clones
the repository, creates an isolated virtual environment, and
records the performance characteristics for all commits.
The tool ships with best-practice safeguards (CPU affinity,
warm-ups, repeated trials, etc.) to control system variance.

Airspeed velocity offers many advantages towards our goal
of making a benchmark for code optimization:

• Low barrier to entry. The minimalist interface means
developers routinely add new benchmarks, expanding
coverage over time. Asv ships with a robust regression-
detection functionality which further motivates develop-
ers to ensure that the asv benchmarks maximally cover
all performance critical parts of their software. We har-
vested XXX fine-grained timing and memory benchmarks
across X repositories, averaging X benchmarks per project.
Across XXX total commits, Superbench logs XXX timed
runs.

• Maturity and reliability. First released on 1 May 2015,
asv encapsulates nearly a decade of community experi-
ence in timing and memory profiling code on commod-
ity hardware. Most common pitfalls have documented
solutions and work-arounds, and platform-specific best
practices (for Windows, macOS, and Linux) are well es-
tablished, ensuring results are both accurate and precise.

• CI integration. asv co-exists naturally with other
continuous-integration tools, so each commit carries both
performance and correctness metadata.

A.2.2. EXECUTING ASV BENCHMARKS

Once we have collected a list of Python packages that ship
with asv benchmarks, we now need the per-commit timing
and memory profiles those benchmarks generate for each
commit. In practice, we encounter two deployment patterns
for benchmarking new commits: (1) a private benchmark-
ing server that exposes results via a public web interface
(Refer to Figure.3), (2) a benchmark directory committed
with the source tree and runnable locally. The remainder
of this section outlines two complementary workflows for
collecting these measurements

Running all benchmark scripts locally. One could in princi-
ple run asv on the entire commit history of the main branch,
collecting performance data with a one-line command. asv
encapsulates nearly a decade of community experience in re-
liable timing and memory profiling on commodity hardware,
which builds confidence in asv’s measurements. However,
two practical concerns make this naive method impractical.
First, benchmarks executed on our local machine may fail
to expose regressions that are characteristics of certain op-
erating systems and microarchitectures (e.g: performance
characteristics of an x86 Linux node will be different than
that of an ARM MacOS node). Second, running asv from
scratch incurs considerable upfront cost, requiring the se-
quential construction of a new environment for each commit.
With an average runtime of approximately 66 seconds per
commit, a project such as astropy – which has 39514
commits – would require about 30 days of continuous exe-
cution, rendering the method infeasible.

To accelerate benchmarking and amortize this cost, we
launch asv inside Docker containers. Each container is
pinned to a dedicated CPU core and a fixed amount of
RAM, and is given a subset of all the commits we wish to
benchmark. Such sharded sandboxing gives us uniform run-
time conditions across different test bench setups and also
enables us to scale benchmarking horizontally as we can run
as many simultaneous containers as CPU cores. This allows
us to collect results much faster than a serial workflow and
enables running asv on the entire commit history practical.

However, despite these changes, we faced two recurring
challenges while collecting benchmarking results for all
repositories. First, very old commits depend on packages
that are no longer publicly accessible via PyPI. These com-
mits cannot be replicated and are omitted from our bench-
mark. Second, many older packages are incompatible with
newer versions of Python, and visa-versa, which makes
benchmarking all commits with a homogeneous environ-
ment setup extremely challenging. We can mitigate the
second issue by running multiple containers with different
versions of Python.

Dashboard scraping. Because many projects host their asv
results as a self-contained HTML site, in cases where local
execution is not feasible, we can scrape precomputed results
directly from the website. The asv dashboard is a self-
contained static site and has a uniform file hierarchy across
installations; making automated scraping straightforward.
We maintain a curated list of publicly available dashboards
in (Table 2). The time to scrape such webpage is almost
negligible; however, in practice, we throttle our requests to
respect host bandwidth which raises the collection time to
around one hour for all the datasets. This workflow yields
immediate historical performance traces and offers a sanity-
check for the results of our locally running benchmark suite.

13



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Benchmark # Tasks Data Source Does data
leakage help?

Live
updates

Synthesis
scope

High-fidelity
Evaluation

function

Ours 440++ GitHub Doesn’t help;
leaderboard is relative to
humans.

Yes Repository level Yes

SWE-Bench 2292 GitHub Helps; no
relative-performance
eval.

No Repository level No

LiveCodeBench 300++ LeetCode, CodeForces /
AtCoder

Yes; old tasks must be
removed or scores
inflate.

Yes Function level No

CruxEval 800++ Custom No; tasks are
procedurally generated
and adversarial.

No Function level No

ECCO ⇠50 000 IBM CodeNet Yes; many frontier
models trained on
CodeNet.

No Function / File level No

Table 5: An extended comparison of code-optimization benchmarks (From top: SWE-Bench (Jimenez et al., 2024),
LiveCodeBench (Jain et al., 2024a), CruxEval (Gu et al., 2024), ECCO (Waghjale et al., 2024). “++” refers to continually
updating benchmarks.

A.2.3. STEP-DETECTION CONSIDERATIONS

In the current iteration of our dataset, the runtime measure-
ment t1:n, where n is the number of commits, is a scalar
quantity which is averaged across multiple test bench runs.
Our goal is to discover commits that noticeably improve per-
formance, i.e., create an instantaneous yet persistent drop in
runtime. Because CI noise, kernel scheduling, thermal throt-
tling and other non-deterministic system behavior injects
high-frequency variance, simply calculating the pairwise
difference yields too many false positives.

We therefore cast the task as an offline step-detection prob-
lem. Conceptually, we can model our task as an offline
step-detection problem where our data is assumed to be
piecewise constant with added random noise – which re-
flects the common scenario that efficiency improvements
are often facilitated by a subset of all the commits and each
measurement carries some noise. Offline step detection is
a well studied problem in signal processing (Truong et al.,
2020) and many algorithms exist that balance the efficiency-
optimality tradeoff. In this work, we chose to use the PELT
algorithm with an RBF kernel loss (Killick et al., 2012)
for robustness as implemented in the ruptures offline
change point detection library (Truong et al., 2020). This
algorithm is attractive as it makes no strong parametric as-
sumptions about the underlying data, guarantees an optimal
segmentation under an additive cost, and scales linearly in
the size of the sequence n. We set the model regularization
penalty to 3 log(n), which is the Bayesian information cri-
terion; k = 3 is a hyper-parameter that empirically worked
best but can be changed depending on the desired sensitivity.

A.3. Additional Results

In addition to the earlier reported results for the case study
(§5.2, we also performed the same case-study evaluations
for the Oracle versions of the tested baseline agents. These
results in Table 6 reflect a similar result as in §5.1.1, where
a restricted search space from the oracle file paths hampers
full exploration for bottlenecks and forces the agent to un-
productively brute force for what the human optimization
was.

Though evolutionary algorithms OpenEvolve and AlphaE-
volve were natively developed for use with Gemini, we also
wanted to ensure that the LLM backbone was not a signifi-
cant factor for the performance difference. To this, we splice
in GPT-4o as the backbone and obtain results in Table 6 that
highly resemble those obtained with Gemini.

14



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Benchmark GPT-4o Oracle Sonnet 3.7 Oracle OpenEvolve (GPT-4o)

objective benchmark 0.61 0.00 46.36
coordinates.FrameBenchmarks 0.16 0.17 9.88
coordinates.RepresentationBenchmarks -0.01 0.24 28.12
coordinates.SkyCoordBenchmarks -1.05 0.16 18.26
coordinates (core) 30.71 0.19 25.66
imports 0.00 0.00 0.25

Mean Improvement Percentage 3.46 0.17 10.70

Table 6: Runtime improvement percentages for oracle and OpenEvolve patches on Astropy Issue #13479. We compare
GPT-4o Oracle, Sonnet 3.7 Oracle, and OpenEvolve (GPT-4o) across individual benchmarks and the Mean Improvement
Percentage (MIP) in the last row.

15


