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A ADDITIONAL ABLATIONS

A.1 IP ADAPTER VS CAT

A popular method for image-conditioning in image diffusion models is IP Adapter Ye et al. (2023).
A CNN feature extractor takes the conditional input views and extracts features that will then be
added to the intermediate features in the diffusion model forward pass. Here we compare it to using
the conditioning method from CAT3D that directly uses conditional inputs as frames to the diffusion
model without noising. We generally find that they are similar but IP adapter can exhibit more abrupt
transitions between the input condition and neighbouring regions in the generated panorama. We
show a few examples in Fig. A1.

IP

CAT

Figure A1: Qualitative figure comparing IP vs CAT type architecture for input conditioning. When
using IP adapter, the consistency between input conditioning views and neighbouring views (high-
lighted in red box) is worse compare to CAT.

A.2 ABLATING THE EFFECTS OF SHIFTING THE NOISE SCHEDULE

During inference we use up to 8 × 16 = 128 frames which is much larger than the 16 frames used
by the base video model. As mentioned in § 3.1 the increased data dimensionality also requires a
corresponding increase in terminal noise to minimize the terminal step gap with the noise prior. In
particular we interpolate between the standard noise schedule and a noise schedule that has been
shifted by 10. We compare these qualitatively in Fig. A2. Note that without changing the noise
schedule, the model is largely incapable of generating plain regions such as clear sky or white snow
fields and instead fills in the frame with visual clutter.

Default SNR

Shifted SNR

Turquoise sea meets rocky coast, with tropical plants and buildings under 
a stunning pink-purple sunset.

A view of a serene fjord with snow-covered mountains, a boat sailing on 
the calm waters, and a clear sky.

Figure A2: Qualitative comparison of shifting the noise schedule in the video-conditioned setting.
Each of the six horizontal views is visualized independently before stitching into a panorama. With-
out shifting toward higher noise levels, the model struggles to generate clear skies or water, intro-
ducing objects that disrupt scene cohesion (e.g., sudden mountains and rocks).

A.3 ABLATING THE EFFECT OF NOISE AUGMENTATION FOR AUTOREGRESSIVE GENERATION

In this section, we qualitatively analyze the impact of noise augmentation during training on the
model’s autoregressive generation performance. To demonstrate this, we compare two models: one
trained with noise augmentation and the other without. To maximize the effect of error accumula-
tion, we use both models to 6 frames at a time, for a total of 10 iterations to get a video consisting
of 10× 5 + 1 = 51 frames. Figure A3 shows a side-by-side comparison of the different scenarios.

As autoregressive iterations increase, the model without noise-augmentation produces increasingly
saturated frames. While the model trained with noise augmentation also shows some degradation, it
maintains significantly better output quality over time, demonstrating its usefulness in reducing the
severity of error accumulation.
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Without 
Noise Aug

With
Noise Aug

Frame 1 Frame 26 Frame 51

Figure A3: Qualitative comparison of autoregressive generation with and without noise augmenta-
tion. Both models exhibit a decline in output quality over time, but the model trained without noise
augmentation shows a more rapid and severe degradation, with frames becoming increasingly satu-
rated. In contrast, the model with noise augmentation deteriorates more gradually.

A.4 ABLATING THE EFFECTS OF FREEZING BASE MODEL LAYERS

A minecraft castle stands on a hill. A group of pokemon are running on a beach.

Without
freezing

With
freezing

Figure A4: Qualitative figure comparing text conditional panorama video generation using base
model freezing vs no freezing. Freezing model weights is better able to retain some of the prior
knowledge on out of distribution prompts.

When finetuning our model for multi-view generation we choose to freeze the base model layers.
We ablate this choice qualitatively here on the text conditional panorama video generation task.
We evaluate out of distribution prompts that make the overfitting behaviour very obvious when not
freezing any base layers as can be seen in Fig.A4.

B ADDITIONAL VIDEO CONDITIONAL RESULTS

We show more video conditional generation results in Fig. B1 where we also apply autoregressive
generation to extend the video length.

C ADDITIONAL TRAINING DETAILS

During the first stage of training we adapt the base video model towards the shifted and interpo-
lated noise schedule as well as the v-prediction parameterization. This stage is trained for 10, 000
iterations on the original dataset and a batch size of 128. Following that we insert the multi-view at-
tention layers and train our model using the multiview video data. The batch size for this phase is 32
and we train these models for 15, 000 iterations. Both stages use a constant learning rate of 0.0001.
Most of our experiments are conducted on 32 A100 GPUs (or lower using gradient accumulation).
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360DVD

Ours

Equirectangular Ground view Sky view

Figure A5: Qualitative figure comparing text conditional video generation, 360DVD VS ours and
highlighting the distortion in 360DVD near the poles. Note that both generations were first trans-
formed to the same equirectangular format before consistent sky and ground views were extracted.
360DVD struggles in these views as the distortion is highest here and deviates the most from per-
spective view images whereas we natively generate perspective views.
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Condition ConditionGenerated samples Generated samples

A view of the turquoise sea meeting the rocky coastline, dotted with 
greenery and traditional buildings, all under a mesmerizing pink and 

purple sunset sky.

Hyperspeed fly through Arctic mountains showing an enormous round 
crater from an asteroid. The camera flies towards a smoking asteroid, 

muted colors, low contrast, fast footage.

A dream-like FPV hyper-speed fly through multiple locations. streets 
at night, a dense tropical jungle, underwater coral.

A FPV drone shot through a castle on a cliff

A yellow bird sitting on a branch in a lush jungle with a thick 
rainforest in the background with mist.

Make the scene dramatic with thunders all over, and fires blowing, 
depicting a terrific sound thundering across the sky and the earth 
on the battlefield. The scene is dark, intense, and colorful

Figure B1: More results of video conditional autoregressive generation on out of distribution videos.
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