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A APPENDIX

A.1 EXPERIMENTS
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Figure A.1: Overview of the graph structure for the US Northeast study region. (a) Graph
formed by connecting each of the 358 weather station to its 5 nearest neighbors, and (b) additionally
with each of the weather stations connected to the 8 nearest ERAS5 nodes, forming the heterogeneous
multi-modal graph.

Table A.1: Summary of experiments.

Experiment ERAS ML Spatial Multi-modal Goal

Persistence Similarity to current
Interpolated ERAS v Difference to global
MLP v Forecast

MLP + ERAS v v v Correction

MPNN v v Forecast

MPNN + ERAS v v v v Correction

Our baselines are summarized in [Table A.1]and described below.

* The ERAS data interpolated at the weather stations’ location will tell us how accurate global
reanalysis data are compared to local observations.

* The MADIS persistence shifts the observation by the lead time and tells us how similar the
observation is over time.

* A simple MLP model provides a baseline ML method with no spatial structure.
* The MPNN connects MADIS stations and ERAS gridded data in a spatial graph.

Both the MLP and the MPNN are run with and without ERAS future data, and are thus used both
to forecast or correct. When ERAS is not included, both MLP and MPNN only take time series of
u and v component of wind and temperature at MADIS stations as input. For MLP, a single model
is trained on all MADIS stations simultaneously. For MPNN, it learns on a base graph consisting
of only MADIS nodes as in Figure A.la. The MLP takes interpolated ERAS at weather stations as
input; the MPNN constructs a heterogeneous graph containing both MADIS nodes and ERAS nodes
as shown in Figure A.1b.

A.2 MODEL ARCHITECTURE
A.3 DATA

Processing We test the methods on the Northeastern United States region (Maine, New Hamp-
shire, Vermont, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, and Pennsylva-
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Figure A.2: MPNN model architecture. (a) MPNN model architecture without ERAS. Time
series of weather variables at MADIS stations are embedded with an MLP. These node embeddings
are updated with four iterations of message passing according to a pre-defined graph of MADIS
stations. The final node embeddings are decoded with another MLP to generate forecasts at each
MADIS station. (b) MPNN model architecture with ERAS. Time series of weather variables at
MADIS stations and ERAS grids are embedded with two separate MLPs. MADIS node embeddings
are first updated with messages coming from neighboring ERAS nodes. They are then iteratively
updated four times based on a MADIS station graph (the same graph as (a)). The node embeddings
are lastly updated with neighboring ERAS nodes again; are finally decoded as forecasts by an MLP.

Table A.2: Summary of our curated dataset. This consists of three parts: ERAS, MADIS, and
ERAS interpolated to MADIS station locations.

Name Type Temporal Span  Spatial Span Variables

10m u, 10m v,

ERAS Gridded Mesh ~ 2019-2023  Northeast US 2m temperature,
2m dewpoint temperature,

surface radiation

10m u, 10m v,

Interp. ERAS  Off-Grid Station ~ 2019-2023  Northeast US 2m temperature,
2m dewpoint temperature,

surface radiation

10m wind speed,
10m wind direction,
MADIS Off-Grid Station 2019-2023 Northeast US 2m temperature,
2m dewpoint temperature,
surface radiation

nia; Figure 1a. The MADIS data is processed for quality, only keeping hourly observations with
the quality flag “Screened” or “Verified”, and aggregated by hour, taking the mean hourly observa-
tion. Additionally, only stations with at least 90% of data of sufficient quality are considered. In
the end, over the study regions, it yields 358 stations (c.f. Figure 1 a, dark blue arrows). We select
the 10m wind speed s and wind direction d variables, and derive the u = cos(270 — d) - s and
v = sin(270 — d) - s wind components. We processed 5 years of data (2019 to 2023, included), and
split the data in train, validation and test sets, with the train data containing the hourly MADIS data
for 2019 to 2021, validation 2022 and test 2023. For ERAS5, we use the 10 meters above ground u
and v wind components directly provided as is. For certain models (c.f. section 3.3), we linearly
interpolate the ERAS data towards the location of the MADIS weather stations, using the 8 closest
ERAS nodes, inversely weighted by distance.
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Figure A.3: Examples of environments for three selected weather stations. (a) Overview of
the three stations. The three selected weather stations are: (b) the station with the worst overall
interpolated ERAS ME (Figure A.4), (c) station with the best overall interpolated ERA5 ME (Fig-
ure A.5) and (d) station with the worst overall MPNN + ERAS5 ME (Figure 8). (b), (c) and (d) show
a zoomed-out view of each area; (b’), (c’) and (d’) are zoomed in. (b) and (d) show good examples
of weather stations being surrounded by trees and buildings, where wind is affected by these local
surface characteristics.
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A.4 STATIONS ENVIRONMENT

A.5 ADDITIONAL RESULTS

Table A.3: Test set Wind Vector Error of experiments for each lead time. Wind Vector Error is
averaged over stations and time steps for the year 2023.

Lead Time [hrs] Average
9
Model ERAS? 1 2 4 8 16 24 36 48 ME
Interpolated ERAS v 271 271 271 271 271 271 271 271 2.71
Persistence X 041 055 074 100 122 125 146 1.38 1.00
MLP X 038 05 064 078 087 09 092 0.92 0.74
MLP + ERAS N 038 047 054 059 062 063 064 0.64 0.56
MPNN X 037 047 059 071 083 09 093 0.93 0.72
MPNN + ERAS v 037 045 053 057 059 059 06 0.62 0.54
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Figure A.4: Example time series from the weather station where interpolated ERAS per-
formed worst over all lead times. This weather station highlights how ERAS5 wind magnitude can
be quite different from the reality on the ground (c.f. Figure A.3b for an example of station environ-
ment). The figure also shows how the MPNN + ERAS successfully corrects the ERAS magnitude,
but still incorporates it.
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Figure A.5: Example time series from the weather station where interpolated ERAS per-
formed best over all lead times. This weather station highlights how ERAS5 can be quite closely
matched with a weather station’s observations, especially when the weather station is in an open
environment (c.f. Figure A.3c for an example of a station in an open environment).
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