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MULTIVIEW EQUIVARIANCE IMPROVES 3D CORRE-
SPONDENCE UNDERSTANDING WITH MINIMAL FEA-
TURE FINETUNING – SUPPLEMENTARY MATERIAL

A APPENDIX

A.1 METRIC AND LOSS IMPLEMENTATION DETAILS

In this section, we give the detailed mathematical definitions of the evaluation metrics and the loss
used in our method.
• Average Pixel Error (APE): Suppose we have N objects, each rendered from k = 42 different

views. For a pixel x1 in the first image, the ground-truth corresponding pixel x2 in the second
image is determined via back-projection into 3D and re-rendering, excluding occluded points.
The evaluated method predicts x̃2. APE is computed as:

APE =
∑
N

k∑
i

k∑
j

∑
x1→x2

∥x2 − x̃2∥2
min(W,H)

where W,H are the image width and height.
• Percentage of Correct Dense Points (PCDP): PCDP measures the proportion of predicted points
x̃2 that fall within a normalized threshold δ of the ground-truth point x2:

PCDP =
∑
N

k∑
i

k∑
j

∑
x1→x2

∞(
∥x2 − x̃2∥2
min(W,H)

< δ)

Here ∞(·) is the indicator function and δ is a threshold (commonly 0.05, 0.1 or 0.15).
• Smooth Average Precision (SmoothAP): SmoothAP is used as the training loss to enforce accu-

rate feature correspondences:

SmoothAP =
1

SP

∑
i∈SP

1 +
∑

j∈SP
σ(Dij)

1 +
∑

j∈SP
σ(Dij) +

∑
j∈SN

σ(Dij)

where given a query point x1, SP is the positive set containing ground-truth points {x2},SN is
the negative set containing all other points in the second view, and σ is the sigmoid function, and
Dij = fj · fx1 − fi · fx1 measures the difference in feature similarity with respect to the query
point x1. Ideally, we want all negative points to have smaller similarities with respect to x1 than
all positive ones. In this case,

∑
j∈SN

σ(Dij) = 0 and we get SmoothAP = 1. In training, we
optimize the loss: 1− SmoothAP .

A.2 QUANTITATIVE RESULTS ON OBJAVERSE AND MVIMGNET

The detailed quantitative results on 3D equivariance of Objaverse and MVImgNet are given in Ta-
ble 1 and 2.

A.3 QUANTITATIVE AND QUALITATIVE RESULTS ON THE THREE TASKS

We present detailed quantitative results for the three tasks (pose estimation, video tracking, and
semantic transfer) in this section. Additionally, we compare our method with DUSt3R Wang et al.
(2024), FiT Yue et al. (2024) and FiT-Reg Yue et al. (2024). FiT-Reg is FiT finetuned on DINOv2
with registers Darcet et al. (2023). For pose estimation and tracking, we also provide comparisons
with state-of-the-art methods such as OnePose++ He et al. (2022b), MegaPose Labbé et al. (2022),
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Model PCDP(%) APE(%)↓
0.05↑ 0.1↑ 0.2↑

DINOv2 Oquab et al. (2023) 22.60 36.84 58.88 19.12
finetuned 30.61 43.65 61.78 17.98
DINOv2-Reg Darcet et al. (2023) 23.05 37.24 58.23 19.51
finetuned 22.81 36.39 57.84 19.48
MAE He et al. (2022a) 16.25 30.71 55.46 20.58
finetuned 22.57 35.94 56.93 19.88
CLIP Radford et al. (2021) 17.05 33.00 57.17 20.11
finetuned 22.54 38.01 59.71 19.17
DeiT Touvron et al. (2022) 18.07 33.89 58.05 19.72
finetuned 23.39 38.47 59.95 19.00

Table 1: Evaluation of dense correspondence on Objaverse.

Model PCDP(%) APE(%)↓
0.05↑ 0.1↑ 0.2↑

DINOv2 Oquab et al. (2023) 62.09 77.94 92.49 6.24
finetuned 71.74 83.12 93.41 4.96
DINOv2-Reg Darcet et al. (2023) 64.54 78.99 92.25 6.06
finetuned 64.35 78.38 92.36 5.90
MAE He et al. (2022a) 59.10 75.82 91.42 6.73
finetuned 73.76 82.58 92.75 4.76
CLIP Radford et al. (2021) 46.63 63.49 80.53 11.34
finetuned 60.23 72.78 85.69 8.42
DeiT Touvron et al. (2022) 54.63 72.36 87.64 8.34
finetuned 67.31 80.12 91.63 5.89

Table 2: Evaluation of dense correspondence on MVImgNet.

and Co-Tracker Karaev et al. (2023), which are specifically trained on these tasks. The results are
summarized in Tables 3, 4, 5, 6, and 7.
Our experiments reveal that although FiT aims for 3D consistency, it significantly disrupts the se-
mantics of certain parts, as shown in Figure 1. While this semantic disruption may be acceptable
for FiT’s original tasks like semantic segmentation and depth estimation—where an additional lin-
ear head can correct these issues—it becomes problematic for our tasks that require 3D-consistent,
dense, pixel-level features. We hypothesize that FiT’s poor performance stems from its naive ap-
proach to learning 3D consistency through an explicit 3D Gaussian field. When outliers or noise are
present, the simple mean square error causes feature representations to shift toward these outliers.

A.4 QUANTITATIVE RESULTS FOR OTHER VARIANTS OF DINOV2

In addition to evaluating the DINOv2 base model, we tested our finetuning method on other variants,
including small, large, and giant. Our method consistently yields improvements across almost all
metrics for these model variants. The full results are presented in Table 8.

A.5 RESULTS FOR OTHER FOUNDATION MODELS WITH DIFFERENT ARCHITECTURES.

In addition to ViT, we apply our method to other architectures like ConvNeXt and find that we can
consistently improve its performance on downstream tasks as well as shown in Table 9. However,
we’ve also observed that ConvNeXt features are not as good as those of modern ViTs. Nonetheless,
we do expect and observe improvements in non-ViT based methods like ConvNeXt. This finding
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Method OnePose-LowTex

1cm-1deg 3cm-3deg 5cm-5deg

OnePose++ He et al. (2022b) 16.8 57.7 72.1

DUSt3R Wang et al. (2024) 2.88 16.61 26.79
FiT Yue et al. (2024) 1.05 9.18 16.52
FiT-Reg Yue et al. (2024) 3.44 23.51 37.68

DINOv2 Oquab et al. (2023) 9.43 48.45 67.45
Finetuned 13.58 58.03 77.35
DINOv2-Reg Darcet et al. (2023) 9.95 52.65 71.72
Finetuned 13.41 59.32 78.64
MAE He et al. (2022a) 4.41 20.76 32.27
Finetuned 10.27 39.37 52.97
CLIP Radford et al. (2021) 2.85 19.65 33.84
Finetuned 6.72 35.63 52.94
DeiT Touvron et al. (2022) 2.55 16.85 31.67
Finetuned 7.20 33.24 49.43

Table 3: Quantitative results of one-shot pose estimation on OnePose-LowTex.

Method VSD MSSD MSPD AR

MegaPose Labbé et al. (2022) 53.5 59.7 72.8 62.0

DUSt3R Wang et al. (2024) 11.6 11.5 15.8 13.0
FiT Yue et al. (2024) 4.4 3.2 3.4 3.7
FiT-Reg Yue et al. (2024) 10.2 9.4 11.3 10.3

DINOv2 Oquab et al. (2023) 34.9 39.4 58.8 44.4
Finetuned 39.9 44.4 63.9 49.4
DINOv2-Reg Darcet et al. (2023) 34.2 37.9 55.4 42.5
Finetuned 38.1 42.3 60.0 46.8
MAE He et al. (2022a) 15.9 17.9 26.8 20.2
Finetuned 32.2 36.8 54.0 41.0
CLIP Radford et al. (2021) 17.0 19.1 31.0 22.4
Finetuned 28.3 31.3 35.6 28.3
DeiT Touvron et al. (2022) 19.4 19.8 31.2 23.5
Finetuned 29.4 31.1 45.6 35.4

Table 4: Quantitative results of one-shot pose estimation on YCB-Video.

is particularly interesting as it teaches us a valuable lesson: with relatively simple 3D fine-tuning,
we can achieve even better 3D features than those obtained through pretraining on a vast set of
unstructured 2D images.

A.6 RESULTS ON OTHER SEMANTIC-RELATED TASKS

Here, we report results on other semantic-related tasks less focused on 3D understanding. As shown
in Table 10, our finetuning method performs on par or slightly worse compared to baseline models in
these tasks. We recon that these tasks do not benefit as much from the dense 3D equivariant features
our method emphasizes, but rather from coarse, object-level global features. For instance, in tasks
where a plane or side of a box should share the same semantic mask and depth, pixel-level dense
features are unnecessary to achieve satisfactory results. Future work can be explored to enhance
object-level global feature representation.
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Method TAP-VID-DAVIS

AJ δxavg OA

Co-Tracker Karaev et al. (2023) 65.6 79.4 89.5

DUSt3R Wang et al. (2024) 13.06 22.64 77.27
FiT Yue et al. (2024) 20.45 33.46 77.27
FiT-Reg 23.28 37.30 77.27

DINOv2 Oquab et al. (2023) 40.40 58.11 81.46
Finetuned 46.85 63.84 84.15
DINOv2-Reg Darcet et al. (2023) 37.89 55.43 80.77
Finetuned 44.91 62.23 83.85
MAE He et al. (2022a) 29.99 48.16 77.27
Finetuned 36.04 54.97 77.27
CLIP Radford et al. (2021) 25.86 41.17 79.28
Finetuned 32.13 49.31 79.09

DeiT Touvron et al. (2022) 26.80 42.06 78.45
Finetuned 32.55 48.41 78.49

Table 5: Quantitative results of tracking on TAP-VID-DAVIS.

Method PF-PASCAL

PCK0.05 PCK0.10 PCK0.15

DUSt3R Wang et al. (2024) 4.70 8.21 13.01
FiT Yue et al. (2024) 13.10 23.99 33.45
FiT-Reg Yue et al. (2024) 22.39 36.45 45.27

DINOv2 Oquab et al. (2023) 42.18 56.90 65.59
Ours 47.24 60.76 67.57
DINOv2-Reg Darcet et al. (2023) 38.29 53.74 61.94
Finetuned 44.44 57.27 65.27
MAE He et al. (2022a) 11.98 20.16 28.16
Finetuned 14.45 23.79 32.56
CLIP Radford et al. (2021) 13.87 24.85 35.13
Finetuned 20.39 32.36 42.58
DeiT Touvron et al. (2022) 17.73 31.17 41.17
Finetuned 20.24 33.29 41.62

Table 6: Quantitative results of PF-PASCAL (Different Viewpoints).

Instance Recognition The objective for this task is to identify and differentiate individual object
instances within a scene, even when multiple objects belong to the same class (e.g., recognizing
distinct cars in a street scene). This task was evaluated using the Paris-H(ard) Radenović et al.
(2018) dataset, with performance measured by mean Average Precision (mAP), which captures the
precision-recall trade-off. Two probe training configurations were explored: one utilizing only the
class token (Cls) and another concatenating patch tokens with the class token (Cls+Patch). Our fine-
tuned model demonstrated performance on par with the DINOv2 baseline, achieving mAP scores of
76.23 for Cls and 75.43 for Cls+Patch.

Semantic Segmentation This task involves assigning a semantic label to each pixel in an image,
thereby grouping regions based on their object class, without distinguishing between individual
instances of the same class. The VOC2012 Everingham et al. (2010) dataset was used to evaluate this
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Method PF-PASCAL

PCK0.05 PCK0.10 PCK0.15

DUSt3R Wang et al. (2024) 2.64 8.01 15.00
FiT Yue et al. (2024) 13.96 27.42 37.39
FiT-Reg Yue et al. (2024) 26.47 45.74 55.32

DINOv2 Oquab et al. (2023) 60.22 79.05 85.95
Finetuned 69.16 84.94 89.82
DINOv2-Reg Darcet et al. (2023) 52.86 71.93 80.11
Finetuned 62.63 79.24 86.69
MAE He et al. (2022a) 17.16 31.52 43.54
Finetuned 21.26 36.16 48.52
CLIP Radford et al. (2021) 17.44 31.38 41.81
Finetuned 27.40 42.72 52.67
DeiT Touvron et al. (2022) 21.21 38.96 50.36
Finetuned 30.18 49.69 60.34

Table 7: Quantitative results of PF-PASCAL (Same Viewpoint).

ViT models OnePose-LowTex TAP-VID-DAVIS PF-PASCAL (Diff. View)
1cm-1deg 3cm-3deg 5cm-5deg AJ δxavg OA PCK0.05 PCK0.10 PCK0.15

DINOv2-S 8.14 45.77 65.79 37.56 55.04 80.54 39.02 53.26 61.49
Finetuned 12.85 56.17 74.27 45.17 61.35 83.14 41.02 53.78 60.95

DINOv2-L 10.83 51.68 70.01 42.56 59.88 83.29 44.22 57.92 65.85
Finetuned 13.86 58.79 77.46 49.10 65.00 85.42 51.66 62.96 70.48

DINOv2-G 13.58 58.73 76.27 44.79 61.01 85.27 44.57 57.63 65.76
Finetuned 14.58 60.08 78.48 50.77 66.00 85.82 50.89 61.98 68.44

DINOv2-S-reg 10.25 49.04 68.83 34.61 52.21 79.35 31.30 45.47 54.73
Finetuned 12.25 56.69 75.66 40.53 58.50 81.14 38.78 52.08 59.26

DINOv2-L-reg 10.89 51.17 69.99 39.47 56.69 82.26 41.26 56.24 63.38
Finetuned 14.00 58.58 77.12 46.43 63.20 84.43 48.03 60.17 67.13

DINOv2-G-reg 11.14 53.84 72.28 41.39 58.62 83.09 40.94 53.84 61.87
Finetuned 14.24 59.88 79.19 47.93 64.43 85.38 47.36 59.20 66.55

Table 8: Other dino variant results on OnePose-LowTex, TAP-VID-DAVIS, and PF-PASCAL.

OnePose-LowTex TAP-VID-DAVIS PF-PASCAL (Diff. View)
1cm-1deg 3cm-3deg 5cm-5deg AJ δavg OA PCK0.05 PCK0.10 PCK0.15

ConvNext-small 3.25 13.46 21.39 15.98 26.08 74.72 10.32 16.30 22.17
small-finetuned 5.28 19.98 28.23 16.70 26.56 74.54 11.61 19.38 25.56
ConvNext-base 5.10 22.22 34.81 17.57 28.21 72.47 13.62 21.03 27.81
base-finetuned 8.05 32.69 46.41 18.53 28.48 71.24 15.64 25.37 32.13
ConvNext-large 4.71 25.33 36.48 19.43 30.24 73.71 11.05 17.57 24.19
large-finetuned 7.21 30.68 44.47 19.45 30.68 74.33 14.56 24.04 31.57

Table 9: ConvNext finetuning results on OnePose-LowTex, TAP-VID-DAVIS, and PF-
PASCAL.

task, with performance metrics including mean Intersection over Union (mIoU) and mean Accuracy
(mAcc). These metrics assess the overlap between predicted segmentation and ground truth, as well
as pixel-wise classification accuracy. Our fine-tuned model achieved an mIoU of 82.65 and mAcc
of 90.21, performing slightly below but comparable to DINOv2.
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Figure 1: FiT and DINOv2 semantic correspondence visualization. We find that FiT signifi-
cantly disrupts the semantics of certain parts.

Depth Estimation This task aims to predict the distance to each pixel in an image, effectively
generating a depth map that represents the 3D structure of the scene. This task is critical for ap-
plications requiring spatial understanding, such as indoor navigation and scene reconstruction. We
used the NYUv2 Silberman et al. (2012) dataset for evaluation, employing the δ1 accuracy and ab-
solute relative error (abs rel) metrics to assess depth prediction performance. Our fine-tuned model
achieved a δ1 score of 85.48 and an abs rel of 0.1299, slightly underperforming but comparable to
the DINOv2 baseline.

Model Paris-H Inst. Recognition VOC2012 Segmentation NYUv2 Depth Estimation
Cls↑ Cls+Patch↑ mIoU↑ mAcc↑ δ1 ↑ abs rel↓

DINOv2 Oquab et al. (2023) 75.92 73.69 83.60 90.82 86.88 0.1238
Finetuned 76.23 75.43 82.65 90.21 85.48 0.1299

Table 10: Quantitative results of instance recoginition, semantic segmentation and depth esti-
mation.

A.7 MORE RESULTS ON LERF

In addition to the Wild-Gaussians experiment in our main paper, we visualize LERF 3D features
after replacing its DINO regularizer with our fine-tuned version in Figure 2. When given the text

6



Published as a conference paper at ICLR 2025

ViT models OnePose-LowTex TAP-VID-DAVIS PF-PASCAL (Diff. View)
1cm-1deg 3cm-3deg 5cm-5deg AJ δxavg OA PCK0.05 PCK0.10 PCK0.15

DINOv2-FT (LR 1e-6) 11.86 55.03 73.12 44.79 62.56 83.17 47.34 60.10 68.23
DINOv2-FT (LR 3e-6) 13.05 57.45 75.89 45.93 63.32 83.73 47.20 60.50 67.21
DINOv2-FT (LR 1e-5) 13.58 58.03 77.35 46.85 63.84 84.15 47.25 60.76 67.57
DINOv2-FT (LR 3e-5) 13.15 58.33 77.49 46.70 63.45 83.35 45.70 57.96 65.99

Table 11: Ablation on the learning rate for finetuning.

Figure 2: Visualization of LERF relevancy maps for the query “plate”. Our finetuned DINO fea-
tures produce a more focused and accurate relevancy map compared to the original DINO features,
with better localization of the plate region and reduced noise in irrelevant areas such as cookies.

query ”plate”, LERF with our fine-tuned DINO produced a better relevancy map than the original.
Our relevancy map localizes of the plate region better and reduces noise in irrelevant areas such as
cookies. These experiments demonstrate that our 3D fine-tuning produces better general-purpose
features that enhance various applications.

A.8 MORE ABLATION STUDY ANALYSIS

A.8.1 ABLATIONS ON MULTI-LAYER FEATURE FUSION

In addition to extracting features solely from the last layer (11th), we experiment with two different
variations: concatenating the features from the last 4 layers and concatenating features from the
2nd, 5th, 8th, and 11th layers. The results are presented in the Table 12. We find that fusing features
from different layers does improve the instance-level correspondence a little bit but greatly harms
semantic correspondences in tracking and semantic transfer. This indicates that features from earlier
layers focus more on instance-level details, while the final layer captures more semantic information.

OnePose-LowTex TAP-VID-DAVIS PF-PASCAL (Diff. View)
1cm-1deg 3cm-3deg 5cm-5deg AJ δavg OA PCK0.05 PCK0.10 PCK0.15

Layer 11 13.58 58.03 77.35 46.85 63.84 84.15 47.24 60.76 67.57
Layer 2,5,8,11 15.34 59.56 76.81 39.67 56.74 76.29 39.84 53.05 60.15

Layer 8,9,10,11 14.24 60.35 79.27 41.25 56.56 80.15 44.99 57.73 64.48

Table 12: Ablations on the choice of feature blocks on DINOv2 base model.

A.8.2 ABLATIONS ON LEARNING RATE

Our finetuning method is insensitive to the choice of learning rate, and it can work within a reason-
able range of learning rates, as shown in Table 11.

A.8.3 QUALITATIVE RESULTS ON NUMBER OF CONVOLUTION LAYERS

Upon analyzing the effect of additional convolutional layers, we find that while one additional con-
volutional layer significantly improves the performance, adding two or three layers introduces noise
into the features. This noise likely arises from the increased parameter freedom, which can overfit
to local patterns and reduce the consistency of dense pixel-wise features, as shown in Figure 3. It
clearly show that the additional layers produce less coherent features, leading to a degradation in
downstream task performance.
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Figure 3: Comparison of feature visualizations with varying convolutional layers. Adding more
than one convolutional layer introduces noise and reduces feature coherence, as shown by the high-
lighted regions.

A.9 OTHER FINDINGS AND DISCUSSIONS

Why Untextured Symmetric Hemisphere can Enhance 3D Understanding? Unlike a perfect
sphere, the hemisphere we used is not completely symmetric and provides information about edges
and viewpoint orientation. Our visualization of the learned embeddings in Figure 4 shows that after
fine-tuning on the hemisphere, the network achieves better edge correspondences and can differenti-
ate between inward and outward views. Even though the object lacks texture, the shadows and edge
features provide sufficient cues for the ViT features to develop 3D understanding.
Similarly, in cognitive science, scientists have discovered that the human brain excels at inferring
3D structure. Biederman’s Recognition-by-Components (RBC) theory Biederman (1987) suggests
that humans recognize objects through simple 3D primitives called geons (geometrical ions)—basic
shapes such as cubes, cylinders, and cones.

Training without Background Enhances Background-invariance Interestingly, we observed
that finetuning on object-centric datasets without backgrounds enhanced the foundation model’s
background invariance. Specifically, when comparing an object on a black background (i.e., no
background) with the same object on a natural background from the same viewpoint, the finetuned
model demonstrated superior feature consistency across corresponding pixels. We quantitatively
validated this finding using pairs of images from a random 1K subset from the MSCOCO val dataset.
For each annotated object, one image crop was masked while the other was unmasked. We measured
the number of inliers by counting mutual nearest neighbors in the feature space that were within 1
pixel of the ground truth. The results confirmed that our finetuned model significantly improved
feature consistency across these variations.

A.10 PIPELINE VISUALIZATION FOR DOWNSTREAM APPLICATIONS

Figures 6, 7, 8, and 9 illustrate the detailed pipelines for various downstream tasks. Note that for pose
estimation, tracking, and semantic transfer, no linear fine-tuning is applied. These tasks exclusively
assess the quality of the pretrained features from the ViT.
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Figure 4: Feature visualization of an untextured hemisphere from different viewpoints. Top
row: Input hemisphere rendered from four different angles. Middle row: Feature embeddings from
DINOv2 visualized using RGB mapping, showing inconsistent features across views and edges
(highlighted by white circles). Bottom row: Our fine-tuned DINOv2 produces more consistent
features that better preserve correspondences across viewpoints, particularly at edges and inward
outward views.

Method #Inliers

DINOv2 Oquab et al. (2023) 99
Finetuned 159
DINOv2-RegDarcet et al. (2023) 76
Finetuned 148
MAE He et al. (2022a) 97
Finetuned 196
CLIP Radford et al. (2021) 18
Finetuned 61
DeiT Touvron et al. (2022) 25
Finetuned 81

Table 13: Quantitative results on the num-
ber of feature inliers that are background-
invariant.

Figure 5: Visualization of DINOv2’s fea-
ture correspondence before and after fine-
tuning, using mutual nearest neighbor.
After finetuning, we get more feature corre-
spondences.

A.11 QUALITATIVE RESULTS FOR POSE ESTIMATION/TRACKING/SEMANTIC TRANSFER

In this section, we provide qualitative comparisons on various downstream tasks. The results for
pose estimation, tracking, and semantic correspondence are shown in Figures 10, 11 and 12, respec-
tively. Since DINOv2-Reg exhibits performance highly similar to DINOv2, we omit its qualitative
results.
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Figure 6: Pose estimation pipeline. During the onboarding phase, 2D dense features are extracted
from the provided reference video and stored in a database. During inference, features are matched
between a single query image and the database, followed by 3D-2D RANSAC-PnP to compute the
final pose.

Figure 7: Tracking pipeline. For each point in the source frame, its nearest neighbors are located
in the feature space across other frames.

Figure 8: Semantic transfer pipeline. For the given keypoints in the reference image, descriptors
are extracted using the frozen ViT, and their nearest neighbors are identified in the query image’s
feature space.
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Figure 9: Semantic segmentation and depth estimation pipeline. Given an input image, a linear
layer is fine-tuned on top of the frozen ViT to predict segmentation or depth.

Figure 10: Qualitative results on YCB-Video pose estimation for different models, both before
and after finetuning, are presented. Ground-truth poses are shown in green, while predictions are
depicted in red. It can be observed that, in most cases, pose accuracy improves after finetuning,
particularly for the MAE, CLIP, and DeiT models.
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DINOv2

DINOv2 
Finetuned

MAE

MAE 
Finetuned

Frame 0 Frame 10 Frame 20 Frame 30 Frame 40 Frame 50

DeiT

DeiT
Finetuned

CLIP

CLIP
Finetuned

Figure 11: Qualitative results on TAP-VID-DAVIS for different models, both before and after fine-
tuning, are shown. Query points are marked in various colors in the first frame, with red lines
indicating the trajectory of the points. Prior to finetuning, the trajectories are highly noisy and in-
consistent. However, after finetuning, tracking becomes significantly more stable.
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Figure 12: Qualitative results on PF-PASCAL (different views) for various models, both before and
after finetuning, are presented. For each pair, the left image is the reference, and the right is the
query. Ground-truth correspondences are shown in green, while predictions are depicted in red. It
can be observed that, in most cases, finetuning improves accuracy by aligning the keypoints closer
to their correct positions.
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