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ABSTRACT
The supplementary material provides more discussions and visual-
ization comparisons to support the main paper.

1 DATASET ANALYSIS
To comprehensively understand our dataset, we perform a series
of statistical analyses.

Highlight areas.Weuse the highlightmaskmanually annotated
by using Photoshop to measure the proportion of highlight regions
for each image. Figure 1(a) presents the statistics for the ratio of
highlight regions in the image.

Color contrast. Highlights in real-world images are usually
high-intensity and texture-less, which means that the color con-
trast between highlight and non-highlight areas is usually high.
We use the 𝑋 2 distance to measure the color contrast between
highlight and non-highlight areas in the highlight image. Figure
1(b) plots the color contrast of the images in our dataset, where a
higher horizontal axis means a higher contrast. We can see that
the contrast of highlights in the images is relatively uniform and
includes highlights of various intensity types.

Highlight location distribution. To analyze the spatial distri-
bution of highlights, we use a probabilistic image to show the main
spatial distribution of highlights in the dataset, as shown in Figure
1(c). We can observe that the highlights are mainly concentrated in
the center and lower position of the image. The highlights observed
by the human visual imaging system also focus on these regions.

(a) (b) (c)

Figure 1: Statistics of dataset analysis. (a) is the statistics for
the ratio of highlight areas in the images. (b) is statistics
of color contrast, and (c) is statistics of highlight location
distribution.

Material categories. Our NSH dataset contains various reflec-
tive and smooth materials that can easily produce highlights under
light sources in daily life, such as plastic, rubber, stone, porcelain,
leather, wax, plants, etc. We take images from different combina-
tions of angles and shapes to increase the variety and complexity
of the dataset.

2 DISCUSSION AND EXPERIMENTS
Figure 2 presents some other specular highlight removal results
for real-world natural images captured by smartphones or down-
loaded from the internet. From these results, we can observe that,

our method effectively removes highlights in the image, and the
recovered illumination and textures in highlight regions are consis-
tent with surrounding environment. Although we focus on high-
lights removal, our HighlightRNet also can detect the highlight
regions based on the predicted removal result. Figure 2 also gives
the promising highlight detection results for the images, which
effectively distinguish the specular highlight regions.

Figure 3, Figure 4 and Figure 7 provide some visual specular
highlight removal results to further demonstrate the superiority
of our method. Compared with these methods, our HighlightRNet
can effectively remove specular highlights in the images, and our
results are closer to the ground-truth images.

Figure 5 presents some other highlight removal results, contain-
ing some challenging cases, such as overexposure, heavy texture,
uniform patterns and white surfaces in the highlight regions. Ap-
parently, results recovered by our method look more natural and
have little artifacts. Our superior results illustrate the robustness
and generalization ability of the proposed method.

More recently, Fu et al. [2] propose a three-stage framework for
specular highlight removal. Before producing the highlight removal
results, this method needs to decompose the input image into its
albedo and shading components firstly. They train the network us-
ing five labeled data for supervision, such as albedo image, shading
image, specular residue map, highlight-free image and tone correc-
tion image. Such treatment may causes the error accumulation and
reduces the performance of the following highlight removal due to
image decomposition is also a difficult task. In contrast, our method
only requires highlight-free images for supervision. Besides, we
use SSHR dataset used by Fu et al. [2] to train our method. Figure 7
concludes the comparison results. From the results, we can observe
that, our method achieves the better values than that of Fu et al.
[2], clearly demonstrating the effectiveness of our HighlightRNet.
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(a) Input (b) Our results (c) Highlight maps (d) Input (e) Our results (f) Highlight maps

Figure 2: Highlight removal and detection results for real-world natural images. Probability map is the specular highlight
detection result, and the white regions indicate the highlight areas.

(a) Input (b) GT (c) Ours (d) Fu [1] (e) Wu [4] (f) Yang [6] (g) Shen [3] (h) Yama [5]

Figure 3: Visual comparison of our method against state-of-the-art highlight removal methods. The highlight images are from
SHIQ dataset.
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Figure 4: Visual comparison of our method against state-of-the-art highlight removal methods. The highlight images are from
our NSH dataset.

(a) Input (b) Shadow maps (c) Ours (d) Fu [1] (e) Wu [4] (f) Yang [6] (g) Shen [3] (h) Yama [5]

Figure 5: Visual comparison of our method against state-of-the-art highlight removal methods.
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Figure 6: Visual comparison of our method against state-of-the-art highlight removal methods. The highlight images are from
PSD dataset.

(a) Input (b) GT (c) Ours (d) Fu [1]

Figure 7: Visual comparison of our method against state-of-the-art highlight removal methods. The highlight images are from
PSD dataset.
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