
Evolving Computation Graphs

Table 2. The best-performing hyperparameters for each GNN propagation rule in our experiments. The only experiment where the baseline
model outperforms ECG is the SAGE propagation layer on amazon-ratings; hence, the hyperparameters k and pde are irrelevant.

roman-empire amazon-ratings minesweeper tolokers questions

ResNet
L 2 1 5 5 1
d 512 512 512 512 512

GCN
L 5 2 4 4 3
d 512 512 256 512 256
τ MLPBGRL MLP→GNN MLP MLP BGRL
k 3 3 3 3 3
pde 0.5 0.5 0.5 0.5 0.0

SAGE
L 5 2 5 4 5
d 512 1024 256 256 256
τ BGRL Baseline BGRL BGRL BGRL
k 10 — 20 20 10
pde 0.5 — 0.5 0.5 0.0

GAT-sep
L 5 2 5 5 4
d 512 512 256 256 256
τ BGRL MLP→GNN MLP BGRL BGRL
k 10 3 20 20 10
pde 0.5 0.5 0.5 0.5 0.5

GT-sep
L 5 2 5 5 4
d 512 512 256 256 256
τ BGRL MLP→GNN MLP MLPBGRL BGRL
k 20 3 20 20 10
pde 0.5 0.5 0.0 0.0 0.5

A. Training information
We used the same experimental setup as presented in Platonov et al. (2023). Results are aggregated over ten random splits
of the data, with each run taking 50% of the nodes for training, 25% for validation, and 25% for testing. The following
hyperparameters are tuned for all models and baselines, using the average validation performance across the splits:

• Number of GNN/ResNet layers, L ∈ {1, 2, 3, 4, 5}.

• The dimensionality of the GNN/ResNet’s latent embeddings, d ∈ {256, 512, 1024}.

Additionally, for the ECG models only, the following hyperparameters were swept:

• Embeddings used by ECG, τ ∈ {MLP,BGRL,MLPBGRL,MLP → GNN}, referring to:

MLP: Using the embeddings from a pre-trained ResNet;
BGRL: Using the embeddings from a pre-trained BGRL model;

MLPBGRL: Using the normalised concatenation of the ResNet and BGRL embeddings;
MLP→GNN: Using the embeddings from a pre-trained MLP-ECG model of the same type.

5

Evolving Computation Graphs

Table 3. Detailed breakdown of model performance on the datasets proposed by Platonov et al. (2023). ResNet, GCN, SAGE, GAT-sep
and GT-sep are the baselines, while all the other models are variants of ECG. Red marks the best performance on each dataset for each of
the considered GNN architectures and the corresponding ECGs. Accuracy is reported for roman-empire and amazon-ratings,
and ROC AUC is reported for minesweeper, tolokers, and questions.

roman-empire amazon-ratings minesweeper tolokers questions

ResNet 65.88± 0.38 45.90± 0.52 50.89± 1.39 72.95± 1.06 70.34± 0.76

GCN 73.69± 0.74 48.70± 0.63 89.75± 0.52 83.64± 0.67 76.09± 1.27
MLP-ECG-GCN 83.55± 0.39 50.99± 0.64 92.63± 0.10 84.81± 0.25 76.25± 0.59
BGRL-ECG-GCN 80.59± 0.48 48.99± 0.28 92.35± 0.10 84.25± 0.22 77.50± 0.35
MLPBGRL-ECG-GCN 84.53± 0.26 50.11± 0.60 92.47± 0.50 84.73± 0.23 77.32± 0.31
MLP→GNN-ECG-GCN 84.39± 0.22 51.12± 0.38 92.56± 0.23 84.35± 0.31 75.16± 0.87

SAGE 85.74± 0.67 53.63± 0.39 93.51± 0.57 82.43± 0.44 76.44± 0.62
MLP-ECG-SAGE 85.82± 0.62 53.32± 0.39 94.10± 0.08 82.60± 0.23 76.13± 0.41
BGRL-ECG-SAGE 87.88± 0.25 53.12± 0.32 94.11± 0.07 82.61± 0.29 77.23± 0.36
MLPBGRL-ECG-SAGE 86.50± 0.34 52.34± 0.92 94.01± 0.07 82.55± 0.18 76.55± 0.33
MLP→GNN-ECG-SAGE 85.94± 0.57 53.45± 0.27 93.77± 0.12 82.52± 0.22 75.53± 0.64

GAT-sep 88.75± 0.41 52.70± 0.62 93.91± 0.35 83.78± 0.43 76.79± 0.71
MLP-ECG-GAT-sep 88.22± 0.36 52.98± 0.30 94.52± 0.20 83.91± 0.32 77.30± 0.47
BGRL-ECG-GAT-sep 89.62± 0.18 52.20± 0.57 94.24± 0.15 84.23± 0.25 77.38± 0.18
MLPBGRL-GAT-sep 88.73± 0.37 51.06± 0.73 94.39± 0.20 84.11± 0.23 76.97± 0.45
MLP→GNN-ECG-GAT-sep 88.04± 0.32 53.65± 0.39 93.97± 0.19 83.75± 0.30 75.61± 0.74

GT-sep 87.32± 0.39 52.18± 0.80 92.29± 0.47 82.52± 0.92 78.05± 0.93
MLP-ECG-GT-sep 88.56± 0.35 52.68± 0.65 93.62± 0.27 83.65± 0.29 77.82± 0.43
BGRL-ECG-GT-sep 89.56± 0.16 52.37± 0.30 93.55± 0.18 82.97± 0.26 78.12± 0.32
MLPBGRL-GT-sep 88.70± 0.30 52.29± 0.60 93.52± 0.25 84.00± 0.24 77.85± 0.45
MLP→GNN-ECG-GT-sep 88.62± 0.46 53.25± 0.39 92.69± 0.34 83.41± 0.44 75.50± 1.13

Note that, for methods requiring access to labels (such as MLP), a separate set of embeddings is computed for every
dataset split (to avoid test data contamination). For self-supervised methods like BGRL, no labels are used, and hence a
single set of embeddings is produced for all experiments.

• The number of neighbours sampled per node, k ∈ {3, 10, 20}.

• The DropEdge rate, pde ∈ {0.0, 0.5}.

The model configuration with the best-performing average validation performance is then evaluated on the corresponding
test splits, producing the aggregated performances reported in Table 1.

The best-performing hyperparameters for each model type on each dataset are given in Table 2. Each individual experiment
has been executed on a single NVIDIA Tesla P100 GPU, and the longest training time allocated to an individual experiment
has been six hours (on the questions dataset).

For convenience, and to assess the relative benefits of various ECG embedding sources, we provide in Table 3 an expanded
version of 1, showing the test performance obtained by the tuned version of each ECG variant, for every embedding type.

For additional information, the anonymised code can be found at https://anonymous.4open.science/r/
evolving_computation_graphs-97B7/.

A.1. Qualitative experiments

In Figure 2, we also verify how predictive of the node classes the graph topology is when obtained from the original data
compared to when we build a complementary graph GECG. More precisely, we first build the graph GECG as presented
in Step 1 of Algorithm 1, using pre-trained MLP embeddings. Then we use a randomly initialised GCN to compute node

6

https://anonymous.4open.science/r/evolving_computation_graphs-97B7/
https://anonymous.4open.science/r/evolving_computation_graphs-97B7/

Evolving Computation Graphs

Figure 2. For roman-empire, we use a random GCN layer to obtain node embeddings based on the original graph G (left) or from the
complementary graph GECG (right). The colours correspond to the ground-truth labels of the nodes.

embeddings on the input graph G, as well as on GECG. We visualise these two sets of node embeddings using t-SNE by
projecting to a 2D space, attributing the colour of each point based on the node’s ground truth label. We can observe that
using the GECG topology leads to more distinguishable clusters corresponding to the classes even without any training, thus
supporting the enhancements in performance when building ECG-GNN.

B. Homophily
One very popular metric, used by several studies, is edge homophily, which measures the proportion of homophilic edges:

h-edge =
|(u, v) ∈ E : yu = yv|

|E|
(7)

while adjusted homophily was introduced to account for number of classes and their distributions:

h-adj =
h-edge−

∑C
k=1 D

2
k/(2|E|)2

1−
∑C

k=1 D
2
k/(2|E|)2

(8)

where Dk =
∑

u:yu=k du, the sum of degrees for the nodes belonging to class k.

Additionally, label informativeness (LI) measures how much information about a node’s label is gained by observing its
neighbour’s label, on average. It is defined as

LI = I(yξ, yη)/H(yξ) (9)

where (ξ, η) ∈ E is a uniformly-sampled edge, H is the Shannon entropy and I is mutual information.

In Table 4, we analyse the properties of the complementary graphs GECG with k = 3 nearest neighbours. We note that
this represents the graph used by ECG-GCN, which preferred lower values of k, while the optimal values of k for SAGE,
GAT-sep and GT-sep were on the higher end, varying between 3, 10 and 20 depending on the dataset.

We observe that MLP-ECG confirms our hypothesis: taking the edges corresponding to the pairs of nodes marked as most
similar by the ResNet results in a graph GECG with high homophily, especially compared to the original input graph. It is
important to note that all of our MLP-ECG graphs were obtained with a relatively shallow ResNet, which, as it can be seen

7

Evolving Computation Graphs

Table 4. Statistics of the original heterophilous graphs and of the evolutionary computation graph obtained from MLP and BGRL.

roman-empire amazon-ratings minesweeper tolokers questions

edges 32, 927 93, 050 39, 402 519, 000 153, 540
edge homophily 0.05 0.38 0.68 0.59 0.84
adjusted homophily −0.05 0.14 0.01 0.09 0.02
LI 0.11 0.04 0.00 0.01 0.00

ECG(k = 3) edges 67, 986 73, 476 30, 000 35, 274 146, 763
MLP-ECG edge homophily 0.73 0.66 0.79 0.79 0.97
MLP-ECG adjusted homophily 0.7 0.53 0.33 0.4 0.41
MLP-ECG LI 0.65 0.33 0.16 0.19 0.28

BGRL-ECG edge homophily 0.16 0.3 0.68 0.6 0.93
BGRL-ECG adjusted homophily 0.06 0.02 0.12 0.08 0.01
BGRL-ECG LI 0.1 0.03 0.05 0.03 0.03

in Table 1 lacks in performance compared to the graph-based methods. However, our method’s success in conjunction with
GNNs shows that even a weak classifier can be used to generate homophilic graphs that can improve performance when
used to complement the information provided by the given input data.

C. Algorithm

8

Evolving Computation Graphs

Algorithm 1 Evolving Computation Graph for Graph Neural Networks: ECG-GNN
Input: Graph G = (V,E); Node Feature Matrix X; Adjacency Matrix A.
Hyper-parameters: Value of k; Drop edge probability pde; Number of layers L;
Output: Predicted labels ŷ
begin

/* Step 1: Extract embeddings */
HECG ← γ(X,A) /* Embeddings stored in matrix */
/* Step 2: Construct ECG graph */

S← HECGH
⊤
ECG

for u ∈ V do
for v ∈ V do

ŝuv ← suv/(∥hECGu∥∥hECGv∥) /* Compute pair-wise cosine similarities */
end
NECG

u ← top-kv∈V ŝuv /* Compute k nearest neighbours of u */
end
EECG ← {(u, v) | u ∈ V ∧ v ∈ Nu} /* Construct the ECG edges */

/* Step 3: Running ECG-GNN with parallel processing of G and GECG
*/

for u ∈ V do
h0
u ← xu /* Setting initial node features */

end
for l← 1 to L do

/* Message passing propagation with the two parallel processors on G and GECG

respectively */

EECG
(l) ← DropEdge(EECG, pde) /* Randomly drop edges in the ECG graph */

for u ∈ V do
h
(l)
INPu

← ϕ
(l)
INP

(
h
(l−1)
u ,

⊕
(u,v)∈E ψ

(l)
INP

(
h
(l−1)
u ,h

(l−1)
v

))
/* GNN on G */

h
(l)
ECGu

← ϕ
(l)
ECG

(
h
(l−1)
u ,

⊕
(u,v)∈EECG

(l)
ψ

(l)
ECG

(
h
(l−1)
u ,h

(l−1)
v

))
/* GNN on GECG

*/

h
(l)
u ←W(l)h

(l)
INPu

+U(l)h
(l)
ECGu

/* Updating the node representation */
end

end
/* Predict node labels */
for u ∈ V do

pu ← softmax(W(c)h
(L)
u) ŷu ← argmaxc∈C pc /* Predicted class label */

end
return ŷ

end

9

