
A Estimating Intrinsic Reward Functions

In our approach, the intrinsic reward can be separated into two parts. One is related to action-aware
diversity, while the other is related to observation-aware diversity. We revisit the formulation of our
information-theoretic objective (Eq. 2) and discuss how to better estimate it.

A.1 Intrinsic Rewards for Action-Aware Diversity

First we analyze term 2�, which is related to action-aware diversity. This part can be written as:
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The computational problem here is how to estimate p (at|⌧t), which can be expanded as:

p (at|⌧t) =
X

id

p (id|⌧t)⇡ (at|⌧t, id) , (11)

where p (id|⌧t) needs estimation. Any approximation will result in an upper bound of the objective:
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However, to optimize term 2�, we need a lower bound (Eq. 3). Additional approximation of p (id|⌧t)
may render the optimization intractable. Fortunately, as we will show in this section, a good but
not accurate approximation of p (id|⌧t) can still lead to satisfactory learning performance. We now
discuss two ways to estimate p (id|⌧t).
First, we can follow previous work [46] and make the assumption that p (id|⌧t) ⇡ p (id), which
conforms to a uniform distribution. Then, we can calculate p (at|⌧t) as below:

p (at|⌧t) ⇡
1

n

X

id

⇡ (at|⌧t, id) , (13)
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Figure 8: Comparison of assuming p (id|⌧t) ⇡
p (id) and estimating p (id|⌧t) with variational in-
ference on a SMAC super hard map 6h_vs_8z.

where n is the number of agents.

However, in this paper, we encourage each agent
to behave differently from others when neces-
sary. As a result, it is likely that p (id) might
occasionally be different from p (id|⌧t), which
means the above assumption might not be valid
all the time.

As an alternative, we can leave out the assump-
tion by using the Monte Carlo method (MC) for
estimating the distribution p (id|⌧t). In tabular
cases, we count from samples to calculate the
frequency p (id|⌧t) = N(id,⌧t)

N(⌧t)
, where N(·) is

the time of visitation. However, MC becomes
impractical in complex environments such as
GRF and SMAC with long horizons and contin-
uous spaces. For these complex cases, inspired
by Wang et al. [48], we adopt variational inference to learn a distribution q⇠ (id|⌧t), parameterized by
a neural network with parameters ⇠, to estimate p (id|⌧t) by optimizing the evidence lower bound
(ELBO).

We empirically test these two estimation methods on a SMAC super hard map 6h_vs_8z (Fig. 8)
(the observation-aware diversity is estimated with Eq. 15). The experimental results demonstrate that
the two methods have similar performance but assuming p (id|⌧t) ⇡ p (id) outperforms estimating
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p (id|⌧t) with variational approximation in both average performance and variance between random
seeds. We hypothesize that the estimation error renders the variational inference approach unstable.
Therefore, we decide to use Eq. 13 to estimate p (at|⌧t) in this paper.

A.2 Intrinsic Rewards for Observation-Aware Diversity

We then analyze term 3�, which is related to observation-aware diversity. This part can be written as:
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The computational problem here is how to estimate p (ot+1|⌧t, at). We can directly adopt variational
inference and learn the variational distribution q�2 (ot+1|⌧t, at), parameterized by a neural network
with parameters �2, by optimizing the evidence lower bound. With q�2 (ot+1|⌧t, at), rI can be
written as:

rI = Eid [�2DKL(SoftMax(�1Q(·|⌧t, id))||p(·|⌧t))
+�1 log q� (ot+1|⌧t, at, id)� log q�2 (ot+1|⌧t, at)] .

(15)

This method use a forward prediction model of agents’ next observation.

One concern is that the forward method involves inference on the continuous observation space,
which may be too large to estimate accurately on complex tasks. We can omit it by deriving a lower
bound.

We have that
E[log p(o0|⌧, a, id)� log p(o0|⌧, a)] = I(o0; id|⌧, a). (16)

Therefore, optimising term 3� is equivalent to optimising I(o0; id|⌧, a). Notice that
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we have

I(o0; id|⌧, a) = �H (o0|⌧, a, id) +H (o0|⌧, a)

= �H (o0|⌧, a, id) +
X

o0,⌧,a

p(o0, ⌧, a) log
p(⌧, a)

p(o0, ⌧, a)

= �H (o0|⌧, a, id) +
X

o0,⌧,a

p(o0, ⌧, a) log
X

id

q (id|o0, ⌧, a) p(⌧, a)

p(o0, ⌧, a)

= �H (o0|⌧, a, id) +
X

o0,⌧,a

p(o0, ⌧, a) log
X

id

q (id|o0, ⌧, a) p(id|o
0, ⌧, a)p(⌧, a)

p(o0, id, ⌧, a)

� �H (o0|⌧, a, id) +
X

o0,⌧,a

p(o0, ⌧, a)
X

id

p (id|o0, ⌧, a) log q(id|o0, ⌧, a)p(⌧, a)
p(o0, id, ⌧, a)

= �H (o0|⌧, a, id) +
X

o0,id,⌧,a

p(o0, id, ⌧, a) log
q(id|o0, ⌧, a)
p(o0, id|⌧, a)

= �H (o0|⌧, a, id) + E [log q (id|o0, ⌧, a)] +H (o0, id|⌧, a) ,

(18)

where q(id|o0, ⌧, a) can be an arbitrary distribution. We use variational inference and a neural network
parameterized by ⌘1 to estimate it. Moreover, H (o0, id|⌧, a) can be decomposed as:

H (o0, id|⌧, a) = H(id|⌧, a) +H (o0|⌧, a, id) . (19)

With Eq. 19, Eq 18 can be further written as:

I(o0; id|⌧, a) � �H (o0|⌧, a, id) + E [log q⌘1 (id|o0, ⌧, a)] +H (o0, id|⌧, a)
= �H (o0|⌧, a, id) + E [log q⌘1 (id|o0, ⌧, a)] +H(id|⌧, a) +H (o0|⌧, a, id)
= E [log q⌘1 (id|o0, ⌧, a)] +H(id|⌧, a)
= E [log q⌘1 (id|o0, ⌧, a)� log p(id|⌧, a)] .

(20)
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With the above mathematical derivation, we bypass the estimation of p (ot+1|⌧t, at). Although
p(id|⌧t, at) is introduced, we now infer in a much smaller and discrete space rather than the continuous
observation space. We can estimate p(id|⌧t, at) using similar methods introduced in the previous
section. We adopt variational inference to learn the distribution q⌘2 (id|⌧t, at), parameterized by a
neural network with parameters ⌘2, by optimizing the evidence lower bound. With this backward
prediction model of agents’ identity, rI can be written as:

rI = Eid [�2DKL(SoftMax(�1Q(·|⌧t, id))||p(·|⌧t))
+�1 log q⌘1 (id|ot+1, ⌧t, at)� log q⌘2 (id|⌧t, at)] .

(21)
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Figure 9: Comparison of forward and backward
estimation for observation-aware diversity on a
SMAC super hard map 6h_vs_8z.

We empirically compare these two methods on
a SMAC super hard map 6h_vs_8z as shown
in Fig. 9 (p(·|⌧t) is estimated with Eq. 13). The
experimental results demonstrate that estimating
rI with a forward prediction model noticeably
outperforms estimating with a backward predic-
tion model, although the forward model might
be more difficult to estimate as discussed be-
fore. We hypothesize that simultaneously and in-
dependently estimating q� (ot+1|⌧t, at, id) and
q�2 (ot+1|⌧t, at) might bring advantages simi-
lar to those of curiosity-driven methods, leading
to outstanding performance on tasks requiring
extensive exploration, so we use Eq. 15 to en-
courage diversity in this paper.

B Experiment Details

B.1 Baselines

We compare our approach with multi-agent value-based methods (QMIX [5] & QPLEX [6]), a
variational exploration method (MAVEN [25]), and an individuality emergence (EOI [26]) method.
For QMIX, QPLEX, MAVEN, and EOI, we use the codes provided by the authors, whose hyper-
parameters have been fine-tuned.

B.2 Architecture and Hyperparameters

In this paper, we use a QPLEX style mixing network with its default hyperparameters suggested
by the original paper. Specifically, in complex environments (GRF and SMAC), the transformation
part has four 32-bits attentional heads, each with one middle layer of 64 units. Weights in the joint
advantage function of the dueling mixing part are produced by a four-head attention module without
hidden layers. In toy environment Pac-Men, we do not use the transformation part but still generate
weights in the joint advantage function of the dueling mixing part by the four-head module without
hidden layers. For individual Q-functions, agents share a trajectory encoding network consisting
of two layers, a fully connected layer followed by a GRU layer with a 64-dimensional hidden state.
After the trajectory encoding network, all agents share a one-layer Q network, while each agent has
its independent Q network with the same structure as the shared Q network.

For all experiments, the optimization is conducted using RMSprop with a learning rate of 5 ⇥
10�4, ↵ of 0.99, and with no momentum or weight decay. For exploration, we use ✏-greedy,
with ✏ annealed linearly from 1.0 to 0.05 over 500K time steps and kept constant for the rest
of the training, for both CDS and all the baselines and ablations. Our method introduces four
important hyperparameters: �, �1, �2, that are related to the intrinsic rewards, and �, which is
the scaling weight of the L1 regularization term. For the environment in the case study (Pac-
Men), � is set to 0.01. For GRF and SMAC, we set � to 0.1 to strengthen being diverse only

when necessary. For other hyperparameters related to intrinsic rewards, we tune with grid search
(� 2 {0.05, 0.1, 0.2},�1 2 {0.5, 1.0, 2.0}, and �2 2 {0.5, 1.0, 2.0}). We tune for GRF on the
academy_3_vs_1_with_keeper. We notice Corridor has a fundamental difference compared with
6h_vs_8z, MMM2 and 3s5z_vs_3s6z in the ratio of the number of enemy agents to our agents, which
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requires different kinds of sophisticated strategies. Our approach can be compatible with different
situations by adjusting the ratio of H (⌧T ) and H (⌧T | id) in Eq. 1. So we tune hyperparameters
for SMAC on both 6h_vs_8z and Corridor. For other SMAC maps, we fine-tune � to get better
adaptability to the environments. Moreover, for GRF scenarios, we use a prioritized replay buffer of
the TD error for CDS, all the baselines, and ablations.

Table 1: CDS Hyperparameters.
Environment � �1 �2 �

Case Study Pac-Men 0.15 2.0 1.0 0.01
6h_vs_8z 0.1 2.0 1.0 0.1
MMM2 0.07 2.0 1.0 0.1
3s5z_vs_3s6z 0.03 2.0 1.0 0.1

SMAC Corridor 0.1 0.5 0.5 0.1
3s_vs_5z 0.04 0.5 0.5 0.1
5m_vs_6m 0.01 2.0 1.0 0.1
academy_3_vs_1_with_keeper 0.1 0.5 1.0 0.1

GRF academy_counterattack_hard 0.1 0.5 1.0 0.1
3_vs_1_with_keeper (full field) 0.1 0.5 1.0 0.1

B.3 GRF Scenarios

academy_3_vs_1_with_keeper academy_counterattack_hard 3_vs_1_with_keeper (full field)

Figure 10: Visualization of the initial position of each agent in three GRF environments considered
in our paper, where blue points represent our agents, red points represent opponents, and the yellow
point represents the ball.

In this paper, we achieve state-of-the-art performance on all the tested GRF tasks, including two
official scenarios academy_3_vs_1_with_keeper and academy_counterattack_hard. Further-
more, we design one full-field scenario 3_vs_1_with_keeper (full field) to compare the perfor-
mance of our approach and baselines on a task with a more complex problem space. The visualization
of the initial position of each agent for the three GRF scenarios are shown in Fig. 10.

B.4 Infrastructure

Experiments are carried out on NVIDIA GTX 2080 Ti GPU. And the training of our approach on all
environments can be finished in less than two days.
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