Appendix for When in Doubt: Neural Non-Parametric Uncer-
tainty Quantification for Epidemic Forecasting

Code for EPIFNP and wILlI dataset is publicly available El

A Additional Related work

Statistical models for Epidemic Forecasting In the recent years, statistical models have been the
most successful in several forecasting targets, as noted in multiyear assessments [34f]. In influenza
forecasting, various recent statistical approaches have been proposed. On one hand, we have models
designed to model the details on the underlying generative distribution of the data. Among these, [4]
proposed a semiparametric Empirical Bayes framework that constructs a prior of the current season’s
epidemic curve from the past seasons and outputs a distribution over epidemic curves. [5]] opts for a
non-parametric approach based on kernel density estimation to model the probability distribution of
the change between consecutive predictions. Closely related, Gaussian processes have been recently
explored for influenza forecasting [44]]. Other popular methods rely on ensembles of mechanistic and
statistical methods [32].

More recently, the deep learning community has take interest in forecasting influenza [/1, 42]] and
COVID-19 [37]. Indeed, deep learning enables to address novel situations where traditional influenza
models fail such as adapting a historical influenza model to pandemic [36]. Deep learning is also
suitable because it provides the capability of ingesting data from multiple sources, which better
informs the model of what is happening on the ground. However, for most of this body of work
uncertainty quantification is either non existent or has been explored with simple techniques that lack
of proper knowledge representation. Our work aims to close this gap in the literature.

Uncertainty Quantification for Deep Learning Recent works have shown that deep neural networks
are over-confident in their predictions [[12} 20]. Existing approaches for uncertainty quantification
can be categorized into three lines. The first line is based on Bayesian Neural Networks (BNNs)
[28] 3L |27]]. They are realized by first imposing prior distributions over neural network parameters,
then infer parameter posteriors and further integrate over them to make predictions. However, as
exact inference of parameter posteriors is often intractable, approximation methods have also been
proposed, including variational inference [3|27]], Monte Carlo dropout [[10] and stochastic gradient
Markov chain Monte Carlo (SG-MCMC) [25]43]]. Such BNN approximations tend to underestimate
the uncertainty [21]]. Moreover, specifying parameter priors for BNNs is challenging because the
parameters of DNNs are huge in size and uninterpretable [21}[26].

The second line tries to combine the stochastic processes and DNNs. Neural Process (NP) [11] defines
a distribution over a global latent variable to capture the functional uncertainty, while Functional
neural process (FNP) [26] use a dependency graph to encode the data correlation uncertainty. However,
they are both for the static data. Recently, recurrent neural process (RNP) [31}|17] has been proposed
to incorporate RNNs into the NP to capture the ordering sequential information.

The third line is based on model ensembling [24] which trains multiple DNNs with different initial-
izations and use their predictions for uncertainty quantification. However, training multiple DNNs
require extensive computing resources.

B Model Hyperparameters

We describe all the hyperparameters used for the EPIFNP model including the model architecture.
In general, we used the hyperparameters as done in [26] with changes made to accommodate the
sequential modules and global embedding for our use case.

B.1 Architecture
B.1.1 Probabilistic Neural Sequence Encoder

The GRU for the encoder model has single hidden layer of 50 units and outputs 50 dimensional
vectors. The Attention layer was similar to that used in transformers. We used a single attention head

3Link to code and dataset: https://github.com/AdityaLab/EpiFNP
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and retained the same number of dimensions, 50, when generating the key and value embeddings. to
generate u;, we derived the mean and log variance using a stack of 3 linear layers for g; and g, with
ReLU in between the hidden layers. All hidden layers have 50 units.

Note that for sampling from multivariate gaussian distribution, we always assumed the covariance
matrix to be a diagonal matrix and only derived log variance for each dimension.

B.1.2 Parameterizing Predictive Distribution

The h; and hy functions used to derive zM were single linear layers with no activation function.

The Attention layer used to derive v was similar to that used in encoder: 1 attention head with 50
dimension units for key and value transforms. d; and ds are two modules of feed forward layers with
a ReLU function between them with first layer having 50 units and the second having 2 to output
mean and log variance of forecast output.

B.2 Other Hyperparameters

Learning rate used was 1le — 4. We also used early stopping to prevent overfitting and randomly
sampled 5% of training points as validation set to determine when we reached the point of overfitting.
EPIFNP usually 2000-3000 epoch to complete training. We found that our model was very robust to
small changes in architecture and learning rate and we mostly optimized for faster rate of convergence
during training.

C Details on Evaluation metrics

Let 2} +1 be a given partial wlLI test sequence with observed ground truth y N +1 i.e., for a k-week-

ahead task yEV)H is just mg\,i 1) For a model/method M let ﬁg\t,)ﬂ u(Y) be the output distribution

of the forecast with mean y}v +1,)M. Then we define the evaluation metrics as follows. We evaluate
all the methods based on metrics for measuring prediction accuracy (RMSE, MAPE and LS are
commonly used in CDC challenges [1}34])) as well as targeted ones (CS) measuring the quality of
prediction calibration of uncertainty. For all metrics, lower is better. EPIFNP is carefully designed to
generate both accurate and well calibrated forecasts, unlike past work which focuses typically on
accuracy only.

¢ Root Mean Sq. Error RMSE(M) = \/% Zf:1(y1(\i)+1 Q%)Jrl u)?

0
¢ Mean Abs. Per. Error MAPE(M) = + Zf 1 W

[ynyal

e Log Score (LS): This score used by the CDC caters to the stochastic aspect of forecast predic-
tion [34].

( )
+0.5 1 A(t)
Z —10g(p 41,0 (1)) dy (13)

(t) —0.5

The integral is approximated by samples from 135&_1, 2 (Y) and calculating the fraction of samples
that fall in the correct interval.

e Calibration Score (CS): In order to evaluate the calibration of output distribution we introduce a
new metric called Calibration Score, which is inspired by reliability diagrams [29]] used for binary
events. The idea behind the calibration score is that a well calibrated model provides meaningful
confidence intervals. For a model M we define a function &y, : [0, 1] — [0, 1] as follows. For each
value of confidence ¢ € [0, 1], let ks (c) denote the fraction of observed ground truth that lies inside
the c confidence interval of predicted output distributions of M. For a perfectly calibrated model M *
we would expect ks« (¢) = ¢. CS measures the deviation of ks from kjs«. Formally, we define CS
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as:

1
CS(M):/ kar(e) = clde ~0.01 Y |ka(e) = cf (14)
0

c€{0,0.01,...,1}

(since integrating over all values of c is intractable in general).
We also define the Calibration Plot (CP) as the profile of kps(c) vs c for all ¢ € [0, 1].

D Detailed forecast results

D.1 Regional forecasts

We also evaluate our model and baselines on wILI dataset specific to different regions in USA. The
wlLlI data for 10 HHS regions are available separately and each of them have different characteristics
in their wiLI trends which are affected by local climate, population density and other factors.
Therefore we train our models on each of the HHS regions seperately and average the scores to
produce the results in table[3] EPIFNP outperforms baselines in most baselines. We observed that for
8 of the 10 regions EPIFNP outperforms all models in all the evaluation metrics across 2 to 4 week
ahead forecast tasks. Even for the remaining 2 regions EPIFNP shows superior scores in majority of
the metrics.

Table 3: Average Evaluation scores of EPIFNP and baselines across all HHS regions. The scores are
averaged over seasons 2014-15 to 2019-20 for all 10 HHS regions.

RMSE MAPE LS CS
Model 2] 3| 4| 2 3] 4| 2| 3] 4| 2] 3] 4
ED 086 | 12| 1.81 | 023 | 025 | 0.36 | 2.89 | 2.60 | 3.32 | 0.17 | 032 | 033
GRU 195 | 2.05 | 2.76 | 039 | 041 | 0.43 | 441 | 452 | 486 | 0.37 | 0.38 | 041
MCDP | 3.01 | 336 | 341 | 0.58 | 0.548 | 068 | 10| 10| 10| 038 | 039 | 0.47
GP 0.64 | 0.83 | 095 | 0.19 | 022 | 0.25 | 0.92 | 144 | 1.63 | 0.13 | 0.16 | 0.15
BNN 225 | 2.87 | 3.02 | 026 | 0.29 | 0.35 | 831 | 9.89 | 10 | 0.38 | 0.42 | 0.46
SARIMA | 1.81 | 233 | 2.8 | 0.36 | 047 | 058 | 33 | 3.87 | 437 | 0.39 | 0.37 | 0.37
RNP 0.87 | 0.88 | 1.17 | 0.19 | 0.23 | 0.29 | 9.27 | 9.58 | 9.78 | 0.46 | 0.46 | 0.47
EB 151 | 153 | 156 | 0.67 | 0.67 | 0.68 | 7.15 | 7.23 | 7.29 | 0.13 | 0.13 | 0.13
DD 0.84 | 1.05 | 1.22 | 044 | 049 | 0.55 | 3.51 | 3.77 | 3.91 | 0.11 | 0.11 | 0.12
EPIFNP | 0.55 | 0.7 | 0.89 | 0.17 | 0.19 | 0.26 | 1.41 | 1.54 | 1.81 | 0.15 | 0.11 | 0.13

D.2 Post-hoc calibration methods

We also evaluated effect of post-hoc methods [23]39]] on calibration of prediction distributions of top
baselines and EPIFNP. The results are summarized in Table @l We observe that EPIFNP doesn’t
benefit much from post-hoc calibration methods due to its already well-calibrated forecasts. However,
they improve the calibration scores of other baselines (sometimes at the cost of prediction accuracy).
However, EPIFNP is still clearly the best performing model.

E Autoregressive inference

We formally describe how to perform autoregressive inference as discussed in Section[4.2]in Algorithm

il

E.1 Results

We provided RMSE, LS and CS of AR task in main paper Table 2. See Table 5| for results for AR
task that includes MAPE scores. As described in Section4.2] EPIFNP outperforms baselines in AR
tasks and its performance in comparable to EPIFNP scores trained separately for different values of

k (Figure|[TT).
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Table 4: Effect of post-hoc calibration on point estimate and calibration scores. Iso and DC are
post-hoc methods introduced in [23]] and [39] respectively.

RMSE MAPE LS CS
Model | Post-Hoc | k=2 | k=3 | k=4 | k=2 | k=3 | k=4 | k=2 | k=3 | k=4 | k=2 | k=3 | k=4
None 0.48 | 0.79 | 0.78 | 0.089 | 0.128 | 0.123 | 0.56 | 0.84 | 0.89 | 0.068 | 0.081 | 0.035
EPIFNP | Tso 0.49 | 0.81 | 0.79 | 0.09 | 0.124 | 0.119 | 0.56 | 0.86 | 0.9 | 0.08 | 0.09 | 0.07
DC 0.44 | 0.74 | 0.77 | 0.088 | 0.114 | 0.117 | 0.55 | 0.75 | 0.86 | 0.07 | 0.08 | 0.035
None 061 | 098 | 1.18 | 0.13 | 022 | 029 | 3.34 | 3.61 | 389 | 043 | 038 | 0.34
RNP Tso 177 | 226 | 2.18 | 0.18 | 027 | 028 | 2.55 | 2.62 | 3.12 | 0.18 | 023 | 0.24
DC 173 [ 2.17 [ 225 [ 0.18 | 027 | 031 | 1.53 | 1.84 [ 205 ] 0.13 | 0.12 | 0.I5
None 128 | 136 | 145 | 021 | 022 | 026 | 2.02 | 2.12 | 227 | 024 | 025 | 0.28
GP Tso 224 [ 251 [ 272 [ 034 | 034 [ 038 | 1.97 | 213 | 2.16 | 0.094 | 0.12 | 0.1
DC 2.15 | 268 | 272 | 032 | 0.37 | 039 | 1.94 | 207 | 204 | 0.09 | 0.1 | 0.1
None 073 | 1.13 | 1.81 | 0.14 | 023 | 033 | 426 | 637 | 8.75 | 024 | 0.15 | 042
EpiDeep | Tso 102 | 125 | 194 | 0.16 | 024 | 034 | 246 | 458 | 464 | 021 | 0.1 | 0.9
DC 115 [ 128 | 174 [ 0.17 | 026 | 032 | 2.11 | 3.97 | 3.65 | 0.18 | 0.14 | 021
None 224 | 241 | 261 | 046 | 051 | 06 | 962 |10 |10 | 024 | 032 | 034
MCDP | Tso 236 | 258 | 253 [ 045 | 047 [ 059 | 672964 [ 10 | 0.14 | 026 | 031
DC 231 | 244 | 252 | 044 | 048 | 057 | 631 | 82410 | 015 | 022 | 025

Algorithm 1: Autoregressive inference (ARI)

Input :Model M trained for 1 week ahead forecasting, test sequence xgl”‘t), k: No. of weeks ahead to
forecast R
Output : Distribution Pas (X fHk) |x£1 ) for forecasting x;

/* Z; is the set of candidate sequences for t—i—z—i—l forecasting. Each sequence
t

(t+k)

has first ¢ values as 1t1 and next ¢ values are sampled by ARI */

Zo = {xglmt)};
for iin I to k do
for jin Ito N do
Sample sequence T from Z;_1;
Feed z to M and sample output y;
Append y to Z to form a new sequence T ® {y};
Add z @ {y} to Z;;
// T® {y} is a candidate sequence for t+ i+ 1 forecast.
end
end
preds = {x : z is lastelement of T € Zi };
Xi(H_k) |13z('1mt))

Approximate PM( from preds

F Ablation study

We examine the effectiveness of three components of EPIFNP in learning accurate predictions
and good calibration of uncertainty: (1) Global Latent Variable v , (2) Local latent variable zM
(3) Modelling sequence encodings u; as a random variable instead of directly using determmlstlc
encodings h;. Detailed results of this study are in Table@ All three components are essential for best
performance of the model. Removing z/ shows very large decrease in log scores and calibration
scores. This aligns with the hypothesis about role of data correlation graph in determining uncertainty
bounds (see Section {-4).

We present the results of ablation experiments in Table @ We see that all three components are
essential for best performance of the model. Removing z;” shows large decrease in log scores and
calibration scores as the model becomes less capable of modelling uncertainty. Of all the ablation
models, making latent embeddings deterministic seems to have least effect on performance though
the reduction is still very detrimental to overall performance.

G EPIFNP adapts to HIN1 Flu season

EPIFNP outperforms all baselines and has 30% and 10% better RMSE and MAPE scores compared
to second best baseline (RNP). LS of EPIFNP is 0.48, about 9.8 times lesser than second best model.
Figure[I2{a) shows the prediction and 95% confidence bounds of EPIFNP and two best performing
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Table 5: Evaluation scores for ARI task (Section

RMSE MAPE IS CS
Model | k=2 k=3 |k=4 | k=2 |k=38]k=4|k=2|k=3 k=4 k=2 k=3 ]k=4
ED 221 | 313 | 382 | 04| 043 | 055 | 603 | 884 10| 042 | 045| 048
MCDP 362 | 403 | 439 | 058 061 067 10 10 10 047 046 049
BNN 341 | 423 | 478 | 051 055| 062 10 10 10 039 041 042
GP 124 | 131 | 138 | 021 | 021 | 024 | 462 | 517 | 551| 037 | 036]| 037
EPIFNP | 0.6 | 0.85| 099 | 0.1 | 0.14 | 0.166 | 0.64 | 096 | 1.14 | 0.063 | 0.074 | 0.048

= Observed
— EpiFNP
8 = EpiFNP ARI
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Week No.

Figure 11: Uncertainty bounds of ARI EPIFNP and normally trained EPIFNP are similar.

baselines. EPIFNP captures the unprecedented early peak observed around week 4. There is also a
high uncertainty bounds around the peak. In contrast RNP has very small uncertainty bounds. GP and
most other baselines (except GRU, RNP and MCDP) do not even capture the peak. Calibration plot
in Figure[T2{b) shows the deviation of EPIFNP from ideal diagonal to be much smaller compared to
other baselines. This results in about 4.6 times smaller CS compared to the best baseline.
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Figure 12: EPIFNP outperforms baselines on real-time forecasting during abnormal HINT1 season
(2009/10). Forecasts for k = 3 weeks ahead forecast by EPIFNP and next two best baselines: RNP
and GP.
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Table 6: Ablation study to measure the effects of 1) Local latent variable le 2) Global latent variable
v and 3) Stochastic SeqEncoder: Modelling u; as stochastic latent variables rather than deterministic

encodings.
Ablation study RMSE MAPE
Model/Weeks ahead 2 3 4 2 3 4
EPIFNP 048 | 0.79 | 0.78 | 0.089 | 0.128 | 0.123
-(Local latent variable) 099 | 145 | 1.51 0.17 0.25 0.29
-(Global latent variable) 1.76 | 2.05 | 2.45 0.33 0.41 0.42
- (Stochastic Encoder) 0.87 | 1.09 | 1.19 0.15 0.21 0.22

-(Stochastic Encoder, Local latent variable) 1.18 | 1.39 | 1.83 0.17 0.18 0.21
- (Stochastic Encoder, Global latent variable) | 0.67 | 0.73 0.9 0.19 0.2 0.26

Ablation study LS CS

Model/Weeks ahead 2 3 4 2 3 4
EPIFNP 0.51 | 0.78 1.2 | 0.069 | 0.081 | 0.035
-(Local latent variable) 3.51 | 6.67 | 8.09 0.21 0.27 0.29
-(Global latent variable) 2.06 | 241 | 3.37 | 0.085 0.12 0.19
- (Stochastic Encoder) 3.13 | 3.53 | 4.88 0.14 0.19 0.24

-(Stochastic Encoder, Local latent variable) 6.11 | 891 | 9.68 0.44 0.48 0.47
- (Stochastic Encoder, Global latent variable) | 2.21 | 3.58 | 3.72 0.41 0.45 0.42
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