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Scalable Super-Resolution Neural Operator
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ABSTRACT
Recent advances in continuous super-resolution (SR) has made a
substantial progress towards universal SR models, which are char-
acterized by using a single deep neural network (DNN) to fulfill
arbitrary scale SR tasks. When deployed on resource stringent plat-
forms, however, a trained DNN model usually requires experience-
demanding and laborious manual efforts to compress the models
following a predetermined compute budget. This paper proposes
an inference-time adaptive network width optimization method for
arbitrary scale SR modules, dubbed as Scalable Super-Resolution
Neural Operator (SSRNO), which is capable of efficien performance-
preserving deployment on various mobile or edge devices with
only a user input parameter indicating the desired compression
rate. SSRNO realizes the continuous parameterization of SRNO[42]
by virtue of two novel contributions. First, we propose the Integral
Neural Network (INN) formulation for the Galerkin type attention,
which is an indispensable component for spatial discretization in-
variant SR neural networks. Second, we further propose an adaptive
layer-wise compression rate estimation mechanism, which allows
for the flexible adaptation to variant capacity through the neural
network layers. Extensive experiments validate the outperforming
overall performances over existing continuous SR models in terms
of reconstruction accuracy, model scalability as well as throughput.
For instance, compared with the baseline SRNO, a typical configu-
ration of SSRNO can achieve a model size compression up to 62%
and an over 2× speedup in situations where resources are limited,
while it can also expand itself to keep the PSNR degradation within
0.1 dBs when the limitations are alleviated. The code will be made
public soon.

CCS CONCEPTS
• Computing methodologies→ Image representations; Re-
construction; Image processing; Antialiasing.

KEYWORDS
Super-resolution, Arbitrary Scale, Neural Network Compression,
Galerkin Attention

1 INTRODUCTION
Single-image super-resolution (SISR) is a computer vision task that
reconstructs a high-resolution (HR) image from a low-resolution
(LR) image, which has high practical utility in many fields like secu-
rity cameras[1, 35], medical diagnosis[11], object detection[37] etc.
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https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Comparison of continuous SRmodels on DIV2K val-
idation (×4) for PSNR, model size (MB) and speed. Through-
put is tested on Urban100(×4, image size 256×161).

Early deep-learning based image super-resolution (SR) methoda
[9, 15, 22, 27, 33] use convolutional neural networks (CNNs) to
approximate nonlinear mappings between LR-HR image pairs. As
manifested by the successful applications ranging from natural lan-
guage processing to computer vision, the attention mechanism of
transformers[41] has also been explored in SISR tasks, and further
augmented with Implicit Neural Representation [10, 38], achiev-
ing appealing arbitrary scale. Reconstruction results with a single
module[7, 12, 17, 36, 42]. Particularly, Super-Resolution Neural Op-
erator (SRNO)[42] makes use of the galerkin-type attention[8] to
learn the operator mapping between the LR and HR image function
spaces, allowing for continuous and zero-shot super-resolution.
However, most of these methods have complex DNNs structures
with large amount of parameters, which leads to unfordable con-
sumption of computational resources when deployed on edge de-
vices.

Several recent works[25, 30] construct efficient transformer or
attention structures to reduce the parameters and FLOPs. As an-
alyzed in[25, 30] and also verified in our experiments, muti-head
self-attention (MHSA) is usually less efficient than feed-forward
network (FFN) layers. MHSA heads are not of equal importance
and there exists high similarities among attention heads, which
means some heads learn similar projections of the input full fea-
tures and thus gives rise to computational redundancy. Moreover,
due to the qudratic computational compelxity, MHSA runs much
slower than FFN. Therefore, many works focus on reducing unim-
portant attention heads[19] or change the attention structures[43]
to make MHSA more efficient. Nevertheless, these methods usually
require manual adjustment of the target compression rate and care-
ful pruning procedures, which can involve repeated fine-tuning

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

jobs demanding experiences and skills. What makes these methods
more undesirable is that they can only produce a single compressed
model and can not provide the flexibility to choose the appropriate
model size based on the target platform resources to achieve the
best performance.

Integral Neural Networks (INN)[39] is a newly emerged novel
model compression method for convolutional layers and fully-
connected layers, which are represented as integrals of continuous
weight functions. Practically, the number of sampled points from
those continues functions determines the number of parameters
in resulting models. In order to maintain the performance over
different model sizes, INN trains various size of parameter partition
of the model weights, and requires a user input compression rate to
consistently sample each layer of the continuously parameterized
underlying DNN.

Although INN performs well on convolution layers and fully-
connected layers, the continuous parameterization for the attention
layer in transformer blocks[41] has not been addressed by INN[39].
The difficulty mainly arises from the soft-max operation (see anal-
ysis in Sec. 2.3), which hinders its application to the prevalent
Transformer-based DNN compressions. Moreover, the choice of
using the same compression rate for the whole model is suboptimal.
Without carefully considering the range of compression rates, the
performance of INN can significantly degrade because different
layers in DNNs have different redundancies [6, 16, 32] and the total
compression budget should be able to adaptively distributed among
different layers.

To address the above issues, we propose Scalable Super-Resolution
Neural Operator (SSRNO), which achieves the continuous parame-
terization of SRNO[42] and therefore is capable of adaptive DNN
scalability at inference time while keeping the model performance.
First, we propose the INN formulation for the Galerkin type atten-
tion, which is an indispensable component for the spatial discretiza-
tion invariant neural networks. We further propose an adaptive
layer-wise compression rate estimation mechanism, which allows
for the flexible adaptation to variant capacity among neural net-
work layers. Our method mitigates the impact of human expertise
on model compression and provides stable optimization results. Our
experiments show that SSRNO achieves up to 86% compression rate
in the attention part, and a minimum model size of 38% leading to
around 2× through-put on Nvidia RTX 4090 GPU, Intel Xeon CPU
and the ONNX format, while the performance loss in PSNR can be
controlled below 0.1 dB. Fig.1 presents a comparison of arbitrary
scale SR models in terms of accuracy, model size and inference
speed.

In summary, our main contributions are as follows:

• We propose the INN representation for the Galerkin-type
attention mechanism, which completes the toolbox for con-
tinuous parameterization of attention-based DNNs.
• We propose an addaptive layer-wise compression rate esti-
mation method, which can automatically select the optimal
layer compression rate.
• We train and verify the Scalable Super-Resolution Neural
Operator (SSRNO) for arbitrary scale SR problems, which
for the first time fulfills compute-agnostic arbitrary scale

Figure 2: Workflows of SSRNO. The solid lines represent
the model training process, while the dashed line denote
the inference process. A discrete instance of SSRNO can be
sampled by setting a single hyper-parameter of model size
or threshold epsilon. See Sec. 3.3 for more details.

SR model training and flexible model size adjustment at
inference time.

2 RELATEDWORK
2.1 Super-Resolution Neural Operator
Neural Operator (NO) is a novel neural network architecture pro-
posed for discretization invariant solutions of PDEs via infinite
dimensional operator learning[26]. The goal of NO is to learn a
mapping G : A → U between two infinite dimensional spaces A
andU by using a finite collection of observations of input-output
pairs. In practice, NO employs a three-phrase architecture to ap-
proximate G by a neural network 𝐺𝜃 with 𝜃 the parameters:

𝑧0 (𝑥) = L(𝑥, 𝑎(𝑥))
𝑧𝑡+1 (𝑥) = 𝜎 (𝑊𝑡𝑧𝑡 (𝑥) + (K𝑡 (𝑧𝑡 ;Φ)) (𝑥))
𝑢 (𝑥) = P(𝑧𝑇 (𝑥)),

(1)

where L : R𝑑𝑎+𝑑 → R𝑑𝑧 is the lifting function mapping input
𝑎 to the first hidden representation 𝑧0 and P : R𝑑𝑧 → R𝑑𝑢 is
the projection function projecting the final output of the kernel
integration back to the output function spaceU.𝑊 : R𝑑𝑧 → R𝑑𝑧

is a linear transformation and 𝜎 : R𝑑𝑧 → R𝑑𝑧 is the nonlinear
activation function. For the integration kernel K𝑡 : {𝑧𝑡 : 𝐷𝑡 →
R𝑑𝑧 } ↦→ {𝑧𝑡+1 : 𝐷𝑡+1 → R𝑑𝑧 }, one of the most adopted forms is :

(K𝑡 (𝑧𝑡 ;Φ)) (𝑥) =
∫
𝐷

𝐾𝑡 (𝑥,𝑦;Φ)𝑧𝑡 (𝑦)d𝑦, ∀𝑥 ∈ 𝐷 (2)
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where the kernel function 𝐾𝑡 : R𝑑+𝑑 → R𝑑𝑧×𝑑𝑧 is parameterized
by Φ.

SRNO utilizes the NO framework to solve the SR problem. The
goal of SRNO is to learn an operator between LR and HR image
spaces, where image instances are regarded as evaluations of con-
tinuous functions on specified locations. By learning the mapping
relationship between differentmagnification ratios, SRNO can trans-
form LR images into images of arbitrary resolutions. In implemen-
tation, SRNO uses the same architecture with NO as in Eq.1. For
the dual consideration of model size and runtime efficiency, SRNO
utilizes Galerkin-type attention as the kernel integration which will
discussed next.

2.2 Galerkin Attention
Galerkin attention is a novel self-attention mechanism and it is a
linear variant of fourier-type attention without the softmax nor-
malization. The galerkin-type attention is formed as follows:

𝑦 = 𝑦 + 𝑔(𝑦 +𝐴𝑡𝑡𝑛(𝑦))

𝐴𝑡𝑡𝑛(𝑦) = 𝑄 (�̃�𝑇 �̃� )/𝑛
⋄̃ = 𝐿𝑛(𝑥𝑊⋄)

(3)

where𝑊⋄ ∈ R𝑑×𝑑 ,⋄ ∈ {𝑄,𝐾,𝑉 } are the trainable projection matri-
ces, 𝑛 is sequence length, 𝑔(·) refers to a standard 2-layer FFN and
𝐿𝑛(·) refers to the layer normalization[4]. The vanilla attention has
a complexity of 𝑂 (𝑛2𝑑) where 𝑛 is the token number. The matrix
product 𝑄𝐾𝑇 as well as the subsequent soft-max intermediate re-
sult are both needed to be stored and take 𝑂 (𝑛2) memroy[14]. In
contrast, galerkin-type attention is softmax-free and compute 𝐾𝑇𝑉
first. It only has 𝑂 (𝑛𝑑2) time complexity and needs 𝑂 (𝑑2) storage.
As usually 𝑛 ≫ 𝑑 in super-resolution problems, galerkin attention
is more time and memory-efficient. Furthermore, the elimination of
the soft-max operation in Galerkin-type Attention reduces the GPU
memory access latency, which in turn contributes to improvement
on the running speed[13, 14].

2.3 Integral Neural Network
INN proposes the continuous parameterization method for the
convolution layers as well as fully-connected layers. For the convo-
lution layer, the integral representation is formulated as follows:

𝐹𝑂 (𝑥𝑜𝑢𝑡 , 𝑥𝑠
′
) =

∫
Ω
𝐹𝑊 (𝜆, 𝑥𝑜𝑢𝑡 , 𝑥𝑖𝑛, 𝑥𝑠 )𝐹𝐼 (𝑥𝑖𝑛, 𝑥𝑠 + 𝑥𝑠

′
)𝑑𝑥𝑖𝑛𝑑𝑥𝑠

(4)

where 𝐹𝐼 (·, ·), 𝐹𝑂 (·, ·) are integrable functions representing the
input and output images, 𝑥𝑠 represents the spatial dimension corre-
sponding to the convolution operation, while 𝑥𝑖𝑛 represents chan-
nel dimension. Just as how convolutional neural networks work in
practice, INN uses Eq.4 to perform simultaneous integration over
both spatial and channel dimensions, where the trainable parame-
ters 𝜆 get optimized during training. For the fully-connected layer,
the integral representation is formulated as follows:

𝐹𝑂 (𝑥𝑜𝑢𝑡 ) =
∫
Ω
𝐹𝑊 (𝜆, 𝑥𝑜𝑢𝑡 , 𝑥𝑖𝑛)𝐹𝐼 (𝑥𝑖𝑛)𝑑𝑥𝑖𝑛 (5)

where the integral is performed along the channel dimension. The
parametric kernel function 𝐹𝑊 in the integral representation is

formulated as:

𝐹𝑊 (𝜆, 𝑥𝑜𝑢𝑡 , 𝑥𝑖𝑛) =
∑︁
𝑖, 𝑗

𝜆𝑖 𝑗𝑢 (𝑥𝑜𝑢𝑡𝑚𝑜𝑢𝑡 − 𝑖)𝑢 (𝑥𝑖𝑛𝑚𝑖𝑛 − 𝑗) (6)

where 𝑢 (·) is the cubic convolutional kernel. Via Eq.6, INN con-
structs a continuous neural network, meaning that the shape of neu-
ral network can be modified by appointing a different discretization
of the integral kernel. For the typical neural operator, the integral
form is as:

𝑢 (𝑥) = 𝜎 (𝑣 (𝑥) +
∫
𝐷

K𝑣 (𝑥,𝑦, 𝑣 (𝑥), 𝑣 (𝑦))𝑣 (𝑦)𝑑𝑦)

K𝑣 (𝑣 (𝑥), 𝑣 (𝑦)) =
∫
𝐷

𝑒𝑥𝑝 (
∫
Ω 𝑄𝑡𝑣 (𝑥, 𝑡)𝐾𝑡𝑣 (𝑦, 𝑡)𝑑𝑡)∫

𝐷
𝑒𝑥𝑝 (

∫
Ω 𝑄𝑡𝑣 (𝑠, 𝑡)𝐾𝑡𝑣 (𝑦, 𝑡)𝑑𝑡)𝑑𝑠

𝑉𝑣 (𝑦)𝑑𝑦

(7)

where 𝑣 (·) refers to the continuous input, Q/K/V are both the
trainable parameters. Due to the use of soft-max in integral kernel,
the denominator of the kernel involves the integration of both
channel and spatial dimensions, which are both suffering from the
sampling error of the INN method, leading to the accumulation of
errors. Furthermore, the exponential form also amplifies the impact
of sampling errors on the original data distribution. Therefore, the
nested integral form included in Eq.7 makes the error in the integral
calculation uncontrollable and it is challenging to convert the this
into continuous format with a good preference.

3 METHOD
We first present the integral representation for the Galerkin at-
tention, then propose an adaptive compression rate estimation
algorithm for layer width determination, paving the way for the
continuous parameterization of SRNO.

3.1 Scalable Galerkin-type Attention
Galerkin-type attention utilizes layer normalization operation in-
stead of soft-max, which can be formulated as:

𝐿𝑁 (𝑥)𝑖 𝑗 =
𝑥𝑖 𝑗 − 𝜇
𝜎

× 𝛾 + 𝛽 (8)

where 𝜇 is the mean value ,𝜎 is the standard deviation and 𝛾, 𝛽 are
trainable parameters. Unlike the softmax operation, the sampling
error of 𝑥𝑖 𝑗 only makes particular influence on its own output but
contributes equally to other output items of the LN operation, indi-
cating the continuity and stability. It is straightforward to convert
the LN operation into the integral formulation.

In the word of MHSA, the Q/K/V transformations as integral
transform as follows:

𝐹⋄ (𝑥𝑑𝑜 , 𝑥
𝑝
𝑜 ) =

∫
Ω
𝐹𝑊⋄ (𝜆, 𝑥

𝑑
𝑜 , 𝑥

𝑝
𝑜 , 𝑥

𝑝

𝑖
)𝐹𝑥 (𝑥𝑝𝑖 , 𝑥

𝑑
𝑖 )𝑑𝑥

𝑝

𝑖
𝑑𝑥𝑑𝑖 (9)

where ⋄ ∈ {𝑄,𝐾,𝑉 }, 𝜆 is the trainable parameters which can be
initialized by the𝑊𝑄/𝑊𝐾/𝑊𝑉 parameter matrices, 𝑥𝑝 ∈ R𝑛𝑥×𝑛𝑦
refers to the spatial coordinate, 𝑥𝑑 ∈ R𝑑 refers to the feature co-
ordinate and 𝐹𝑥 (·) represents the continuous input signal. For the
𝑥𝑑𝑜 -th head of MHSA, the integral in Eq.9 map the continuous input
signal 𝐹𝑥 (·) to Q/K/V hidden spaces 𝐹𝑄 (𝐾𝑉 ) (𝑥𝑑𝑜 , ·). The scalable
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Galerkin attention part can be written as:

sga(𝑥𝑑 , 𝑥𝑝 ) =
∫
𝑦𝑑 ∈Ω

𝐹𝑄 (𝑥𝑝 , 𝑦𝑑 )
∫
𝑦𝑝 ∈𝐷

˜𝐹𝐾 (𝑦𝑝 , 𝑦𝑑 ) ˜𝐹𝑉 (𝑦𝑝 , 𝑥𝑑 )𝑑𝑦𝑝𝑑𝑦𝑑

(10)

where the 𝐹♦ refers to the layer normalization on 𝐹♦ with ♦ ∈
{𝐾,𝑉 }, which can be computed with Eq.8.

3.2 Adaptive Compression Rate Estimation
A commonway for setting the channel dimension hyper-parameters
is to follow the configurations in standard transformer models[24,
31, 40, 42], which often set the same value to all layers. However,
as different model compression tasks are faced with different com-
putational resource budget, the model compression settings should
be able to change accordingly. Furthermore, the parameter require-
ments of network capacities vary across different layers[16, 32]. To
address this issue, we propose an adaptive layer-wise compression
rate estimation mechanism summarized in Algorithm 1.

Algorithm 1: Adaptive Compression Rate Estimation
(ACRE)
input :network 𝐺
hyperparameter : threshold 𝜖
required functions : function 𝑆𝑉𝐷 (·) return the singular

values, descending sort algorithm
𝑠𝑜𝑟𝑡 (·)

1 for layer group 𝐿𝐺 in 𝐺 do
2 for layer 𝑙 in 𝐿𝐺 do
3 First step: get the dispersed matrices
4 for parameter matrix 𝑋 in 𝑙 do
5 //X is a four dimensional tensor shape of (n,m,k,k)
6 //m for the input channel, n for the output channel

and k for the kernel size
7 if 𝑙 is attention-type layer then
8 𝑚𝑎𝑡𝑠 ←𝑚𝑎𝑡𝑠 + 𝑋 [:, :, 0, 0]
9 else
10 for 𝑖 ← 0 to 𝑘 do
11 for 𝑗 ← 0 to 𝑘 do
12 𝑚𝑎𝑡𝑠 ←𝑚𝑎𝑡𝑠 + 𝑋 [:, :, 𝑖, 𝑗]

13 Second step: estimate the ranks
14 for matrix 𝑌 in mats do
15 𝑣 ← 𝑠𝑜𝑟𝑡 (𝑆𝑉𝐷 (𝑌 ))
16 foreach singular value 𝑒 in v do𝑚 ←𝑚 + 𝑒2;
17 for 𝑖 in 𝑣 do
18 𝑠 ← 𝑖2 + 𝑠
19 if 𝑠/𝑚 > 𝜖 then 𝑌 .𝑟 ← 𝑖 ,break;

20 Third step: estimate the compression rate
21 for matrix 𝑌 in mats do
22 𝐿𝐺.𝑟𝑎𝑡𝑒 =𝑚𝑖𝑛(𝐿.𝑟𝑎𝑡𝑒, 𝑌 .𝑟 )

Noticed that small singular value represent the compression of
space by matrix transformations, the singular value can be used to

Figure 3: The visualization of modified Galerkin-type atten-
tion architecture.

represent the significance or importance of a space, referring to the
potential redundancy of the space. So we utilize a method based
on the Frobenius norm to estimate the redundancy of the matrix
based on its singular values. For any parameter matrix 𝐴 ∈ R𝑚×𝑛 ,
the Frobenius norm of 𝐴 is defined as

∥𝐴∥𝐹 =

√√√ 𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1
|𝐴𝑖 𝑗 |2 =

√√√
𝑚𝑖𝑛 (𝑚,𝑛)∑︁

𝑖=1
𝜎2
𝑖

(11)

where 𝜎 refers to the singular value of 𝐴. We define the estimation
quality M as follow:

𝑀 =

∑
𝜎∈𝑅 𝜎

2

∥𝐴∥2
𝐹

𝑅 ⊂ {𝜎 |𝜎 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑎𝑙𝑢𝑒 𝑜 𝑓 𝐴}
(12)

With the definition of the estimation quality, we can choose a
threshold 𝜖 manually and define the estimated rank. The estimated
rank r of matrix A can be represented as:

𝑟𝜖 = |𝑅 |,min
𝑟
𝑀 > 𝜖 (13)

So, the redundancy of A can be defined as 𝑟
𝑚𝑖𝑛 (𝑚,𝑛) .

For the three-order tensor y ∈ R𝑚×𝑛×𝑡 , which corresponds to
the case of multichannel convolution we adopt the same operation
as the two-dimensional case, which corresponds to FFN layers.. We
expand the tensor y along dimension 𝑡 and treat the result matrices
as two-dimensional matrix to compute their redundancy respec-
tively. We choose the minimum redundancy of these 𝑡 matrices as
the redundancy of tensor y. We adopt this approach because we
consider that the same relative positions across different convo-
lutional kernels should have the same level of redundancy, while
different relative positions may exhibit variations in redundancy.

3.3 Scalable Super-Resolution Neural Operator
Fig.2 depicts the workflows of SSRNO. There are two main cycles
in the training process. The purple lines represent the cycle that
updates the compression ranges during training, while the green
lines denote the process of optimizing the model parameters 𝜆.
The continuous model is initialized with the weights in SRNO. We
generate some partitions by calculating the parameter functions
using Eq.6 with the number of sampling point in the corresponding
compression range. The computation of these sampled models is
treated as integral operation as Eq.4, Eq.5 and Eq.10. The train-
ing parameters 𝜆 get optimized through the back propagation the
supervision loss gradient. After 25 epochs of sampling and back
propagating which are represented as green lines, we sample the
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Table 1: Comparison on DIV2K validation set (PSNR).

Method Params In-distribution Out-of-distribution
×2 ×3 ×4 ×6 ×12 ×18 ×24 ×30

Bicubic - 31.01 28.22 26.66 24.82 22.27 21.00 20.19 19.59
EDSR-baseline [28] 1.52M(×4),1.37M(×2) 34.55 30.90 28.94 - - - - -
EDSR-SRNO [42] 2.02M(1.22+0.80) 34.85 31.11 29.16 26.90 23.84 22.29 21.24 20.56

EDSR-baseline-MetaSR [10, 20] 1.69M 34.64 30.93 28.92 26.61 23.55 22.03 21.06 20.37
EDSR-baseline-LIIF [10] 1.60M 34.67 30.96 29.00 26.75 23.71 22.17 21.18 20.48
EDSR-baseline-LTE [24] 1.71M 34.72 31.02 29.04 26.81 23.78 22.23 21.24 20.53
EDSR-baseline-DLTE[17] 1.56M 34.74 31.04 29.07 26.82 23.79 22.23 21.24 20.53
EDSR-baseline-CiaoSR[7] 2.65M 34.91 31.15 29.23 26.95 23.88 22.32 21.32 20.59
SRNO-INN-Attention 1.50M(1.22+0.28) 34.77 31.05 29.10 26.84 23.79 22.25 21.24 20.54

SSRNO-S(Ours) 0.77M(0.60+0.17) 34.38 30.70 28.78 26.56 23.58 22.08 21.10 20.42
SSRNO-M(Ours) 1.02M(0.74+0.28) 34.55 30.84 28.90 26.66 23.66 22.14 21.16 20.47
SSRNO-L(Ours) 1.35M(1.22+0.13) 34.74 31.00 29.06 26.81 23.77 22.22 21.23 20.53
SSRNO-X(Ours) 1.48M(1.22+0.26) 34.79 31.06 29.10 26.85 23.80 22.25 21.25 20.54

The parentheses indicate the parameter distribution over the EDSR encoder and the Galerkin attention parts. SSRNO-L/M
have outstanding performances when considering both model size and runtime efficiency comprehensively. The SRNO-INN-
Attention refers to modify the attention part of SRNO [42] with 0.5 compression rate instead of the proposed ACRE method.
Note that SSRNO-X with the same amount of parameters performs better than simply using INN’s fixed compression rate.

continuous model to the maximum model size (corresponding to
no compression) to update the compression range of each layer. We
firstly compute the layer groups based on the relationship of their
channel length to ensure the correctness of the compressed net-
work structure. Then, we adopt the ACRE method with a threshold
of 𝜖 to estimate the maximum compression rate of these N groups
respectively. Finally, we update the compression range for each
layer based on its corresponding maximum compression rate. At
the inference time, we sample the SSRNO with the setting of model
size or threshold. We choose the results of the parameter function
as the parameter matrices of discrete SSRNO.

With the definitions and analysis above, we propose the scalable
super-resolution neural operator architecture as an example to
utilize our methods following by the three-phase neural operator
architecture:

𝑧0 (𝑥) = L(𝑥, 𝑎(𝑥))

𝑧𝑡+1 (𝑥) = 𝜎 (
∫
Ω
𝐹𝑊𝑡+1 (𝜆, 𝑥,𝑦)𝑧𝑡 (𝑦)𝑑𝑦 + (𝑠𝑔𝑎𝑡+1 (𝑥

𝑝 , 𝑥𝑑 ))

𝑢 (𝑥) = P(𝑧𝑇 (𝑥)),

(14)

For the scalable galerkin attention part, we modified the origi-
nal galerkin-type attention architecture as Fig. 3. We add a lin-
ear operation after the QKV transformation to decouple the input
and the output of the attention part so that it is not necessary for
𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 to be square matrices. After this modification, the At-
tention module accepts input signals of dimension 𝑑 and maps them
to a 𝑑′-dimensional latent space through the QKV transformation.
Although it brings the additional linear layer parameter, this will
help ACRE method to find the optional compression rates in dif-
ferent QKV transformation parts, resulting in reducing the overall
parameter count and improving computation speed.

Table 2: Thresholds chosen for evaluation for each model.

Model name encoder part attention part

SSRNO-S 0.92 0.92
SSRNO-M 0.97 0.92
SSRNO-L 1.00 0.92
SSRNO-X 1.00 0.97

We choose different threshold for evaluation. We select
thresholds in this way to test themodel’s ability to adjust
its magnitude.

4 EXPERIMENT
4.1 Datasets and Implementation Details
We utilize the DIV2K dataset [2] for training, while the DIV2K
validation set [2], Urban100 [21], B100 [34], Set5 [5] and Set14 [44]
for evaluation. Peak signal-to-noise ratio (PSNR) is used as the
evaluation metric.

The models are trained for 1000 epochs with batch size 64 us-
ing the L1 loss [29]. The Adam optimizer [23] employs an initial
learning rate of 3 × 10−5 and a warm-up strategy for 50 epochs
following with cosine learning rate scheduler. We use the same
training strategy as SRNO[42].

We train SSRNO with a threshold of 𝜖 = 0.92, and specify differ-
ent thresholds during evaluation. Specifically, we train SSRNO-S
and SSRNO-M for both the encoder part and the attention part,
while SSRNO-L and SSRNO-X compress the attention part only.
We sample the final continuous model with high compression rate
and low compression rate to demonstrate the scalability of the
model. The evaluation thresholds are chosen as Table 2. Our model
is implemented using the PyTorch framework and trained on a
platform with two NVIDIA 4090 GPUs and Intel Xeon 8336C CPU.
We set the competition models[10, 20, 24, 28, 42] with the same
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Table 3: comparison on benchmark datasets (PSNR (dB)).

Method
In-distribution Out-of-distribution In-distribution Out-of-distribution
×2 ×3 ×4 ×6 ×8 ×2 ×3 ×4 ×6 ×8

Set5 Set14
EDSR-SRNO[42] 38.15 34.53 32.39 29.06 27.06 33.83 30.50 29.79 26.55 25.05
EDSR-LTE[24] 38.03 34.48 32.27 28.96 27.04 33.71 30.41 28.67 26.49 24.98
EDSR-CiaoSR[7] 38.13 34.49 32.43 29.12 27.16 33.91 30.47 28.79 26.60 25.09

SRNO-INN-Attention 38.09 34.48 32.34 28.94 27.04 33.74 30.43 28.71 25.88 24.96
SSRNO-S(Ours) 37.76 34.09 31.93 28.58 26.68 33.40 30.15 28.42 26.25 24.76
SSRNO-M(Ours) 37.91 34.26 32.12 28.72 26.86 33.55 30.16 28.53 26.35 24.86
SSRNO-L(Ours) 38.05 34.43 32.27 28.81 26.98 33.70 30.40 28.69 26.48 24.96
SSRNO-X(Ours) 38.11 34.52 32.33 28.87 27.03 33.75 30.45 28.72 26.51 24.99

B100 Urban100
EDSR-SRNO [42] 32.27 29.20 27.67 25.91 24.88 32.60 28.56 26.50 24.08 22.70
EDSR-LTE[24] 32.22 29.15 27.63 25.87 24.83 32.29 28.32 26.25 23.84 22.52
EDSR-CiaoSR[7] 32.27 29.19 27.70 25.94 24.88 32.78 28.67 26.68 24.23 22.83

SRNO-INN-Attention 32.21 29.16 27.64 25.88 24.84 32.44 28.41 26.37 23.95 22.61
SSRNO-S(Ours) 32.04 28.98 27.46 25.73 24.68 31.65 27.79 25.79 23.52 22.26
SSRNO-M(Ours) 32.13 29.06 27.54 25.79 24.74 31.95 28.00 25.97 23.65 22.36
SSRNO-L(Ours) 32.21 29.13 27.62 25.87 24.83 32.33 28.31 26.30 23.90 22.57
SSRNO-X(Ours) 32.24 29.16 27.64 25.89 24.84 32.44 28.42 26.36 23.94 22.60

SSRNO performs better than SRNO-INN-Attention and close to SRNO[42]. It can be observed that as the model
size increases, there is a significant improvement in the model’s performance. In addition, our models maintain
good generalization ability.

Figure 4: Visual comparison on other zero-shot SR. We compared the performance of our method with LIIF[10], LTE[24],
and SRNO[42]. Despite our model being smaller and faster, it outperforms LIIF and LTE in terms of better reconstruction of
the texture integrity, thanks to the global feature capturing capability of Galerkin attention. All methods are trained with
continuous random scales in ×1 − ×4 and tested on ×5.5/×7 to evaluate the generalization capability to unknown scaling
factors.The EDSR-baseline is used as the encoder.

configurations as their original paper suggested and initialize them
with the provided pre-trained model.

4.2 Quantitative Result
Table 1 presents a quantitative comparison with other continuous
super-resolution models[7, 10, 17, 20, 24, 28, 42] on the DIV2K vali-
dation dataset. It is shown that our model has the minimum amount
of parameters while it performs well. The SSRNO-L achieves a total

compression rate of 0.86 on the galerkin-attention layer and has a
parameter count of only 1.35 millions maintaining a performance
gap within 0.1db compared with SRNOmodel. We outperform other
SR models[10, 20, 24] with lower and flexible model size. We further
compare our model with other efficient arbitrary SR models[7, 17].
Our largest model performs better than DLTE although our model
size is smaller. CiaoSR performs slightly better than our models but
CiaoSR is almost 1.8 times large in parameter count and consumes
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Table 4: Speed comparison on 100 image in ×4 Urban100 (256×161).

Method #Params. #FLOPs Runtime(s)
ONNX GPU GPU_InplaceGelu CPU

EDSR-SRNO [42] 2.02M 571.03G 517.26 15.23 14.25 848.82
EDSR-LTE [24] 1.71M 583.685G 690.23 29.80 - 894.23
EDSR-LIIF [10] 1.57M 962.52G 582.32 19.00 - 798.00
EDSR-CiaoSR [7] 2.65M 1885.98G - 146.16 - 4209.60

SRNO-INN-Attention 1.50M 202.83G 314.94 11.74 8.02 758.40
SSRNO-S(Ours) 0.77M 136.52G 228.09 10.20 6.93 715.50
SSRNO-L(Ours) 1.35M 134.07G 233.88 9.75 6.16 685.14
SSRNO-X(Ours) 1.48M 222.07G 289.02 11.43 8.39 871.38

In order to mitigate the impact of file loading on the runtime, we performed 100 iterations on a same image
of the Urban100 dataset (256×161 for the low resolution image as input) so as to eliminate any potential
discrepancies. As to the GPU_InplaceGelu version, we replace the gelu action function with the InplaceGelu
[3] to further improve the speed of model.

Figure 5: Visual comparison on other pictures on high-frequency. We choose the img092 from Ubran100[21] and zebra from
Set14[44].

8.5 times FLOPS compared with the largest model SSRNO-X (see
Table 4 for details).

We also test the through-put of our model shown in Table 4.
Our model has the minimum FLOPs while running 2× faster than
SRNO on both Nvidia RTX 4090 GPU and Intel Xeon CPU. We also
convert the models to the ONNX format. Ourmodel also runs nearly
2× faster than SRNO[42] in the ONNX versions. Employing the
inplace-gelu method[3] to overcome the performance limitations
of GELU[18], our model runs 2.3× faster than SRNO. According to
table 4, our model is more sensitive to the performance change of
GELU which indicates that our performance bottleneck primarily
lies in GELU rather than the attention computations.

We further test our model on the evaluation datasets of Urban100,
B100, Set5 and Set14. As shown in table 3, SSRNO performs better
than EDSR-baseline-LTE[24] and closer to SRNO[42] on both in-
distribution and out-of-distribution tests.

4.3 Qualitative result
Fig 4 illustrates the visualization results of two images from Ur-
ban100 dataset[21]. Both of the pictures are rich in high-frequency
contents. All models perform well in recovering low-frequency
information such as sunlight and buildings. However, SRNO and
SSRNO demonstrate superior performance when it comes to higher-
frequency features such as railings and texts. One can clearly ob-
serve that LIIF and LTE exhibit distortions in the railings, while
SSRNO and SRNO are close to the ground truth in better preserving
the railing’s integrity.

Fig 5 shows two reconstruction comparisons on the high-frequency
images patches from Urban100 and Set14 respectively. LIIF[10] and
LTE[24] yield noticeable Moiré patterns on the zebra stripes, while
SRNO and SSRNO produce clearer and less distorted textures. These
results demonstrate that SSRNO still maintain the appealing perfor-
mance of SRNO, even undergone significant compressions across
different ratios.
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Figure 6: Visual comparison on different model sizes.

Table 5: Encoder compression comparisons (PSNR (dB)).

Method
In-distribution Out-of-distribution
×2 ×4 ×6

Set5
SRNO-INN-Encoder 38.00 32.25 28.83
SSRNO-Encoder 38.03 32.24 28.87

Set14
SRNO-INN-Encoder 33.67 28.64 26.46
SSRNO-Encoder 33.69 28.64 26.48

B100
SRNO-INN-Encoder 32.18 27.59 25.84
SSRNO-Encoder 32.19 27.60 25.85

Urban100
SRNO-INN-Encoder 32.17 26.19 23.83
SSRNO-Encoder 32.25 26.23 23.87

SSRNO-Encoder refers to change the encoder part with ACRE
method. We adjust SSRNO-Encoder with the same model size
as SSRNO-INN-Encoder and compare their performance.

In order to verify the merit of model scalability, we show in Fig.6
comparisons of results from four compressed models, where one
can observe the noticeable improvement in visual quality as the
model size increases. This experiment clearly demonstrates the
benefits SSRNO can bring when deployed on devices by virtue of
its scalability and adaptability.

4.4 Ablation Study
As shown in Table 1 and Table 3 in SRNO-INN-Attention version,
we remove the ACREmethod and the modification of Galerkin-type
attention to examine the effectiveness of our method. Compared
with the SRNO-INN-Attention version, SSRNO-X performs better
and achieves a better compression on the attention part. Further-
more, SRNO-INN-Attention version is slower than the SSRNO-X
according to Table 4. These improvements show that our method
is effective and better than simply using INN.

As the original INN can only be applied in convolutional and
fully connected layers, for the sake of fair comparison, we test the
ACRE method on the encoder part to provide a further verification
of the effectiveness of it. Specifically, we use a compression rate
as is recommended in the original INN paper. As results shown in
Table 5, SSRNO-Encoder model using ACRE performs better than
SRNO-INN-Encoder on all datasets and all output scales. This can
demonstrate that, under the same model size, ACRE can allocate
the parameters more reasonably, rather than blindly assigning the
same amount of parameters to each layer.

5 CONCLUSION
In this paper, we propose an INN[39] representation for theGalerkin-
type attention and anAdaptive Compression Rate Estimation (ACRE)
algorithm which can help us to allocate model parameters more
reasonably and determine the appropriate compression rates for
each layer. With these two techniques we successfully demonstrate
the continuous parameterization of SRNO, which allows for model
scalability at inference time to adapt to different tasks and device
resource constraints.
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