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In this supplementary, we first provide more details on some con-
cepts mentioned in the main document, which are not only helpful
for understanding the main idea but also important in the algorith-
mic implementation. Then, we present another piece of evidence to
illustrate the effectiveness of our method. Finally, we present more
visualization results on SSRNO.

A ADDITIONAL TECHNICAL DETAILS
A.1 Layer grouping for dimensionality

matching
A group of layers refers to a collection of parameter matrices fol-
lowing the constraint of sharing the same dimensionality in the
channel dimension. For convolutional neural network (CNN) and
fully connected neural network (FCNN), the constraint can occur
between adjacent layers or within residual skip connections in
residual layers. For the transformer, the relationship can be found
in the Q/K/V multiplication calculations as well as the layer-norm
operations, etc. For an example of adjacent layers in CNN, the layers
can be formulated as:

𝑍0 = 𝑥

𝑍𝑛+1 (𝑥) = 𝜎 (𝐶𝑂𝑁𝑉𝑛+1 (𝑍𝑛 (𝑥)))
(1)

where𝜎 (·) refers to the nonlinear activation function and𝐶𝑂𝑁𝑉𝑛+1 (·)
refers to the convolutional operation whose kernel size is 𝑆 , input
channel number is 𝐶𝑛 and the output channel number is 𝐿𝑛 . As
in as Eq.1, there exists the constraint 𝐶𝑛+1 = 𝐿𝑛 . In this exam-
ple, there should be a layer group containing parameter matrix of
𝐶𝑂𝑁𝑉𝑛+1 and parameter matrix of 𝐶𝑂𝑁𝑉𝑛 with the relationship
of 𝐶𝑛+1 = 𝐿𝑛 . The operation of grouping is necessary because the
network’s connectivity determines that certain layers must have
consistent channel number for the network to function properly.
As parameter matrices in a same group might have different re-
dundancy rates, we analyze the group with the ACRE method to
estimate the compression range which will be shared by this group.

A.2 Sampled model and discrete model
When we fix the sample grids, there is a corresponding sampled
model parameterized by𝑇 (𝜆). We rewrite the equation of𝑇 (𝜆) base
on Eq.6 in the main document as:

𝑇 (𝜆)𝑥𝑖𝑛,𝑥𝑜𝑢𝑡 =
∑︁
𝑖 𝑗

𝜆𝑖 𝑗𝑢 (𝑥𝑜𝑢𝑡𝑚𝑜𝑢𝑡 − 𝑖)𝑢 (𝑥𝑖𝑛𝑚𝑖𝑛 − 𝑗) (2)

𝑇 (𝜆) is the result of sampling 𝐹𝑊 (see Eq.6 in the main document)
on the fixed sample grids.

The discrete model is generated from the sampled model by
converting the interpolated parameters𝑇 (𝜆) to parameter matrices.
The main difference between the sampled model and the discrete
model is that the sampled model calculates layer output based on
Eq.4, Eq.5 and Eq.9 in the main document using the trapezoidal
integration method, while the discrete one calculates layer output
based on matrix multiplications as in Eq.3 in the main document.

Figure 1: Example for four-dimensional tensor.

A.3 ACRE
The parameters of a convolutional layer is a four-dimensional tensor
y ∈ R𝐿×𝐶×𝑆×𝑆 , where 𝐿 refers to the output channel length, 𝐶 for
the input channel number and 𝑆 for the kernel size. As shown on
Fig.1 for example of reshape operation, where colors represent
the positions of entries rather than values, we sample from the
same position of each kernel and construct 𝑆 × 𝑆 matrices. The
new matrix in R𝐶×𝐿 represents the transformation relationship
between the input and output at a specific position. The coordinate
transformation is as follows:

ỹ(𝑢, 𝑣, 𝑗, 𝑖) = y(𝑖, 𝑗, 𝑢, 𝑣) (3)

where (𝑖, 𝑗, 𝑢, 𝑣) are the indices on the respective dimensions of y.
The parameter matrices of linear transformations in FCNNs and
transformers are considered as the 1 × 1 particular case of y. In
the ACRE method, we infer the redundancy of the convolution
operation at a specific position by analyzing the redundancy of
these matrices. We select the minimum redundancy among these
𝑆 × 𝑆 positions as an estimate of the overall redundancy and use it
to estimate the final compression rate range.
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Figure 2: Basis functions visualization for SRNO[5] and SSRNO-L . Z in the figure is formulated as Z = 𝑄 (𝐾𝑇𝑉 ).

B VISUALIZATION OF BASIS FUNCTIONS
To further explain our method and its effectiveness, we present the
visualization of the basis functions in SSRNO and compare it with
SRNO[5]. As can be observed in Fig.2, the basis functions in SRNO
are redundant. The basis functions in SSRNO are not only more
diverse but also contain richer textures than in SRNO. The spaces
spanned by SSRNO and SRNO are equivalent and this is one of the
fundamental reasons why we can achieve good compression results

in the Galerkin attention layers while maintaining the performance.

C ADDITIONAL VISUALIZATION RESULTS
To better showcase the performance of SSRNO, in this section, we
present more visualization results on image reconstruction in Fig.3.
We also provide the results by SRNO[5], LIIF[1] and LTE[3] for
comparisons.
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Figure 3: Visual comparison on more images[2, 4, 6]. The boxes in the LR image represents the area that we focus on in different
model results. All methods are trained with the scales of ×1-×4 and use EDSR as their encoder.
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