503

504
505
506

507

508
509
510
511
512

513
514
515
516
517
518
519
520

521
522
523
524
525

526

527
528

530
531
532
533

535
536
537
538
539
540
541
542

543
544
545
546
547
548
549

A Simulation Benchmark for Bimanual Manipulation

We chose RLBench [14] as our choice of simulator since it is well-maintained by the research com-
munity and has been used in a number of prior works [13, 12, 67, 68, 69, 16], including PerAct [11],
which is a core component of VoxAct-B.

A.1 Additional Simulation and Task Details

We extend RLBench to support bimanual manipulation by incorporating an additional Franka Panda
arm into the RLBench’s training and evaluation pipelines. Importantly, we do not modify the under-
lying APIs of CoppeliaSim (the backend of RLbench) to control the additional arm; consequently,
the robot arms cannot operate simultaneously, resulting in a delay in their control. However, this
limitation is acceptable as our tasks do not require real-time, dual-arm collaboration.

Moreover, we modify Open Jar, Open Drawer, and Put Item in Drawer to support bimanual
manipulation: (1) adding an additional Franka Panda arm with a wrist camera; (2) adding new
waypoints for the additional arm; (3) adjusting the front camera’s position to capture the entire
workspace; (4) removing the left shoulder, right shoulder, and overhead cameras. The new tasks
use a three-camera setup: front, left wrist, and right wrist. We also modify the data generation
pipeline to use motion planning with the new waypoints, process RGB-D images and the new arm’s
proprioception data (joint position, joint velocities, gripper open state, gripper pose), and include
the [z, y, 2] position (world coordinates) of the object of interest.

The success conditions of these tasks have also been modified: for Open Jar, we define a proximity
sensor in the jar bottle to detect whether an arm has a firm grasp of the jar (the gripper’s opening
amount is between 0.5 and 0.93); for Open Drawer, we define a proximity sensor on the top of the
drawer to detect whether an arm is stabilizing the drawer. While a robot arm could still “open” the
drawer without the other arm’s stabilization, we would not classify it a success in Open Drawer.

B Real-World Experimental Details

Hardware Setup. An overview of the hardware setup is described in Section 5.3. Our perception
system utilizes the D415 camera to capture RGB and depth images at a resolution of 1280 x 720
pixels, where the depth images contain values in meters. We apply zero-padding to these images,
resulting in a resolution of 1280 x 1280 pixels. Hand-eye calibration is performed to determine the
transformation matrices between the camera frame and the left robot base frame, as well as between
the camera frame and the right robot base frame, using the Movelt Calibration package. We use the
python-urx library to control the robot arms. Additionally, I/O programming is employed to control
the Robotiq grippers, as CB2 URS robots do not support URCaps.

Data Collection. We utilize the GELLO teleoperation framework to collect real-world demon-
strations. Due to the lack of Real-Time Data Exchange (RTDE) protocol support in CB2 URSs,
a noticeable lag is present when operating the GELLO arms. For Open Jar, a dedicated function
controls the gripper’s counterclockwise rotations for unscrewing the lid and lifting it into the air, mit-
igating the instability caused by latency. This function is triggered when the operator activates the
GELLO arm’s trigger. Additionally, we found that fixing the stabilizing arm while the acting arm is
in motion is crucial for effective policy learning, as it eliminates noise introduced by unintentional,
slight movements of the stabilizing arm. Observations are recorded at a frequency of 2 Hz.

Training and Execution. For training, we use a higher value for stopped_buffer_timesteps,
a hyper-parameter that determines how frequently keyframes are extracted from the continuous ac-
tions based on how long the joint velocities have been near O and the gripper state has not been
changed, in PerAct’s keyframe extraction function to account for the slower movements of the robot
arms due to latency compared to simulation. We apply the inverse of the transformation matri-
ces obtained from hand-eye calibration to project each arm’s gripper position to the camera frame.
Using the camera’s intrinsics and an identity extrinsic matrix, we construct the point cloud in the

14

https://github.com/moveit/moveit_calibration
https://github.com/SintefManufacturing/python-urx
https://wuphilipp.github.io/gello_site/

550
551

553
554
555
556
557
558

559

560

561

563
564
565
566

568
569
570
571
572
573
574
575
576
577

Hyperparameter ACT Value Diffusion Policy Value

learning rate 3e-5 le-4
weight decay (for transformer only) - le-3
encoder layers 4 -
decoder layers 7 -
layers - 8
feedforward dimension 3200 -
hidden dimension 512 -
embedding dimension - 256
heads 8 4
chunk size 100 100
beta 10 -
dropout 0.1 -
attention dropout probability - 0.3
train diffusion steps - 100
test diffusion steps - 100
ema power - 0.75

Table 3: Combined hyperparameters of ACT and Diffusion Policy. A dash (“-”) indicates the absence of a
hyperparameter for a given method.

camera frame, allowing both arms’ gripper positions and the voxel grid to reside in the same ref-
erence frame. For evaluation, we multiply the transformation matrices from hand-eye calibration
by the policy’s predicted left and right gripper positions to obtain the tool center point positions
in their respective robot base frames. We visualize each robot arm’s predicted gripper position in
Open3D before executing it on the robot. Additionally, we conduct real-world experiments using a
Ubuntu laptop without a GPU, resulting in significantly slower policy inference and robot execution
times—from capturing an image observation to moving the robot arms—compared to a GPU setup.
Consequently, this results in longer pauses between each robot execution and extended real-world
videos, as demonstrated on our website.

C Additional Implementation Details

C.1 Baselines

We carefully tune the baselines and include the hyperparameters used in Table 3. We report the
results of the best-tuned baselines in Table 1. For our three tasks, we found that for ACT, a chunk size
of 100 worked well, consistent with the findings reported in [3]. The temporal aggregation technique
did not improve performance in our tasks, so we disabled this feature. For Diffusion Policy, lower
values (e.g., 16) of the action prediction horizon were inadequate, leading to agents getting stuck
at certain poses and failing to complete the tasks, so we used an action prediction horizon of 100.
We found the Time-series Diffusion Transformer to outperform the CNN-based Diffusion Policy on
Open Drawer and Open Jar, while both of them achieved comparable success rates on Put Item
in Drawer. We use a batch size of 32 for both methods, and the observation resolution is 128 x 128
(same as VoxAct-B). For Diffusion Policy, we use the same image augmentation techniques as in [3].
As shown in Table 4, the performance of ACT and Diffusion Policy progressively improves as more
environment variations are removed. For VoxPoser, we modified the LLM prompts to work with
our bimanual manipulation tasks. See our VoxPoser prompts for details. For Bimanual PerActs, we
deliberately chose to use 100 voxels instead of the 50% voxels used in VoxAct-B. The increased
number of voxels provides higher voxel resolution, which is essential for fine-grained bimanual
manipulation. This is demonstrated in the VoxAct-B w/o VLM ablation, which only utilizes 503
voxels and shows a huge drop in performance compared to VoxAct-B.

15

https://voxact-b.github.io/static/files/voxposer_prompts.txt

Method

Open Open Put Item
Jar Drawer in Drawer

FAS FAS+NSV FAS FAS+NSV FAS FAS+NSV

Diffusion Policy
ACT w/Transformers

21.3 46.7 28.0 56.0 14.7 22.7
30.7 57.3 32.0 37.3 36.0 82.7

Table 4: Ablation results of ACT and Diffusion Policy trained on 100 demonstrations. “FAS” refers to the
demonstrations with fixed acting and stabilizing arms (i.e., right acting and left stabilizing), while “FAS+NSV”
refers to fixed acting and stabilizing and without size variation in the environment. We use the same validation
and test data as the baseline comparison.

16

	Introduction
	Related Work
	Problem Statement
	Method
	Extending PerAct for Bimanual Manipulation
	VoxAct-B: Voxel Representations and PerAct for Bimanual Manipulation
	Additional Implementation Details

	Experiments
	Tasks
	Baselines and Ablations
	Experiment Protocol and Evaluation

	Results
	Simulation Results
	Physical Results
	Limitations and Failure Cases

	Conclusion
	Simulation Benchmark for Bimanual Manipulation
	Additional Simulation and Task Details

	Real-World Experimental Details
	Additional Implementation Details
	Baselines

