
A Simulation Benchmark for Bimanual Manipulation503

We chose RLBench [14] as our choice of simulator since it is well-maintained by the research com-504

munity and has been used in a number of prior works [13, 12, 67, 68, 69, 16], including PerAct [11],505

which is a core component of VoxAct-B.506

A.1 Additional Simulation and Task Details507

We extend RLBench to support bimanual manipulation by incorporating an additional Franka Panda508

arm into the RLBench’s training and evaluation pipelines. Importantly, we do not modify the under-509

lying APIs of CoppeliaSim (the backend of RLbench) to control the additional arm; consequently,510

the robot arms cannot operate simultaneously, resulting in a delay in their control. However, this511

limitation is acceptable as our tasks do not require real-time, dual-arm collaboration.512

Moreover, we modify Open Jar, Open Drawer, and Put Item in Drawer to support bimanual513

manipulation: (1) adding an additional Franka Panda arm with a wrist camera; (2) adding new514

waypoints for the additional arm; (3) adjusting the front camera’s position to capture the entire515

workspace; (4) removing the left shoulder, right shoulder, and overhead cameras. The new tasks516

use a three-camera setup: front, left wrist, and right wrist. We also modify the data generation517

pipeline to use motion planning with the new waypoints, process RGB-D images and the new arm’s518

proprioception data (joint position, joint velocities, gripper open state, gripper pose), and include519

the [x, y, z] position (world coordinates) of the object of interest.520

The success conditions of these tasks have also been modified: for Open Jar, we define a proximity521

sensor in the jar bottle to detect whether an arm has a firm grasp of the jar (the gripper’s opening522

amount is between 0.5 and 0.93); for Open Drawer, we define a proximity sensor on the top of the523

drawer to detect whether an arm is stabilizing the drawer. While a robot arm could still “open” the524

drawer without the other arm’s stabilization, we would not classify it a success in Open Drawer.525

B Real-World Experimental Details526

Hardware Setup. An overview of the hardware setup is described in Section 5.3. Our perception527

system utilizes the D415 camera to capture RGB and depth images at a resolution of 1280 ⇥ 720528

pixels, where the depth images contain values in meters. We apply zero-padding to these images,529

resulting in a resolution of 1280⇥ 1280 pixels. Hand-eye calibration is performed to determine the530

transformation matrices between the camera frame and the left robot base frame, as well as between531

the camera frame and the right robot base frame, using the MoveIt Calibration package. We use the532

python-urx library to control the robot arms. Additionally, I/O programming is employed to control533

the Robotiq grippers, as CB2 UR5 robots do not support URCaps.534

Data Collection. We utilize the GELLO teleoperation framework to collect real-world demon-535

strations. Due to the lack of Real-Time Data Exchange (RTDE) protocol support in CB2 UR5s,536

a noticeable lag is present when operating the GELLO arms. For Open Jar, a dedicated function537

controls the gripper’s counterclockwise rotations for unscrewing the lid and lifting it into the air, mit-538

igating the instability caused by latency. This function is triggered when the operator activates the539

GELLO arm’s trigger. Additionally, we found that fixing the stabilizing arm while the acting arm is540

in motion is crucial for effective policy learning, as it eliminates noise introduced by unintentional,541

slight movements of the stabilizing arm. Observations are recorded at a frequency of 2 Hz.542

Training and Execution. For training, we use a higher value for stopped_buffer_timesteps,543

a hyper-parameter that determines how frequently keyframes are extracted from the continuous ac-544

tions based on how long the joint velocities have been near 0 and the gripper state has not been545

changed, in PerAct’s keyframe extraction function to account for the slower movements of the robot546

arms due to latency compared to simulation. We apply the inverse of the transformation matri-547

ces obtained from hand-eye calibration to project each arm’s gripper position to the camera frame.548

Using the camera’s intrinsics and an identity extrinsic matrix, we construct the point cloud in the549

14

https://github.com/moveit/moveit_calibration
https://github.com/SintefManufacturing/python-urx
https://wuphilipp.github.io/gello_site/

Hyperparameter ACT Value Diffusion Policy Value

learning rate 3e-5 1e-4
weight decay (for transformer only) - 1e-3
encoder layers 4 -
decoder layers 7 -
layers - 8
feedforward dimension 3200 -
hidden dimension 512 -
embedding dimension - 256
heads 8 4
chunk size 100 100
beta 10 -
dropout 0.1 -
attention dropout probability - 0.3
train diffusion steps - 100
test diffusion steps - 100
ema power - 0.75

Table 3: Combined hyperparameters of ACT and Diffusion Policy. A dash (“-”) indicates the absence of a
hyperparameter for a given method.

camera frame, allowing both arms’ gripper positions and the voxel grid to reside in the same ref-550

erence frame. For evaluation, we multiply the transformation matrices from hand-eye calibration551

by the policy’s predicted left and right gripper positions to obtain the tool center point positions552

in their respective robot base frames. We visualize each robot arm’s predicted gripper position in553

Open3D before executing it on the robot. Additionally, we conduct real-world experiments using a554

Ubuntu laptop without a GPU, resulting in significantly slower policy inference and robot execution555

times—from capturing an image observation to moving the robot arms—compared to a GPU setup.556

Consequently, this results in longer pauses between each robot execution and extended real-world557

videos, as demonstrated on our website.558

C Additional Implementation Details559

C.1 Baselines560

We carefully tune the baselines and include the hyperparameters used in Table 3. We report the561

results of the best-tuned baselines in Table 1. For our three tasks, we found that for ACT, a chunk size562

of 100 worked well, consistent with the findings reported in [3]. The temporal aggregation technique563

did not improve performance in our tasks, so we disabled this feature. For Diffusion Policy, lower564

values (e.g., 16) of the action prediction horizon were inadequate, leading to agents getting stuck565

at certain poses and failing to complete the tasks, so we used an action prediction horizon of 100.566

We found the Time-series Diffusion Transformer to outperform the CNN-based Diffusion Policy on567

Open Drawer and Open Jar, while both of them achieved comparable success rates on Put Item568

in Drawer. We use a batch size of 32 for both methods, and the observation resolution is 128⇥128569

(same as VoxAct-B). For Diffusion Policy, we use the same image augmentation techniques as in [3].570

As shown in Table 4, the performance of ACT and Diffusion Policy progressively improves as more571

environment variations are removed. For VoxPoser, we modified the LLM prompts to work with572

our bimanual manipulation tasks. See our VoxPoser prompts for details. For Bimanual PerActs, we573

deliberately chose to use 1003 voxels instead of the 503 voxels used in VoxAct-B. The increased574

number of voxels provides higher voxel resolution, which is essential for fine-grained bimanual575

manipulation. This is demonstrated in the VoxAct-B w/o VLM ablation, which only utilizes 503576

voxels and shows a huge drop in performance compared to VoxAct-B.577

15

https://voxact-b.github.io/static/files/voxposer_prompts.txt

Open Open Put Item
Jar Drawer in Drawer

Method FAS FAS+NSV FAS FAS+NSV FAS FAS+NSV

Diffusion Policy 21.3 46.7 28.0 56.0 14.7 22.7
ACT w/Transformers 30.7 57.3 32.0 37.3 36.0 82.7

Table 4: Ablation results of ACT and Diffusion Policy trained on 100 demonstrations. “FAS” refers to the
demonstrations with fixed acting and stabilizing arms (i.e., right acting and left stabilizing), while “FAS+NSV”
refers to fixed acting and stabilizing and without size variation in the environment. We use the same validation
and test data as the baseline comparison.

16

	Introduction
	Related Work
	Problem Statement
	Method
	Extending PerAct for Bimanual Manipulation
	VoxAct-B: Voxel Representations and PerAct for Bimanual Manipulation
	Additional Implementation Details

	Experiments
	Tasks
	Baselines and Ablations
	Experiment Protocol and Evaluation

	Results
	Simulation Results
	Physical Results
	Limitations and Failure Cases

	Conclusion
	Simulation Benchmark for Bimanual Manipulation
	Additional Simulation and Task Details

	Real-World Experimental Details
	Additional Implementation Details
	Baselines

