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A CODE AND DATA AVAILABILITY

We make all data augmentation, training, and evaluation scripts and baseline experiment source code
available here: https://anonymous.4open.science/r/PRISM-E4E3/README.md.

B LLM USAGE STATEMENT

The authors of this paper minimally (fewer than ten times) used open-source LLM tools in order to
provide editing suggestions for the paper (paraphrasing, synonyms, etc.).

C TRAINING DETAILS

PRISM is trained on 8×40GB NVIDIA A100 GPUs using mixed-precision training (FP16) with
distributed data parallelism.

Hyperparameters. For our final model we use:

1. Batch size: 264 (global, distributed across 8 GPUs)
2. Learning rate: 1× 10−4 (AdamW optimizer, β1 = 0.9, β2 = 0.999, weight decay = 0.01)
3. No learning-rate warm-up; cosine decay schedule
4. Training epochs: 500
5. Input resolution: 256× 256

6. Gradient clipping: 1.0
7. EMA decay: 0.9999 for model weights

We initialize the backbone from publicly available Stable Diffusion v1.5 weights (Rombach et al.,
2022).

CLIP Fine-Tuning. For the embedding space, we initialize from OpenAI CLIP ViT-B/32 (Radford
et al., 2021) pretrained weights. We fine-tune only the final projection layers and cross-attention
adapters, freezing the base vision and text encoders to preserve semantic alignment. Fine-tuning uses:

• Batch size: 512
• Learning rate: 5× 10−5 (AdamW)
• Epochs: 50
• Temperature parameter in contrastive loss initialized at 0.07 and annealed to 0.04

D DATASETS AND EVALUATION

Mixed Degradations Dataset As stated in Section 3, our composite degradation dataset used
for ground truth during training was drawn from a diverse collection of datasets spanning multiple
scientific and environmental imaging domains. Table 5 summarizes the datasets used.

Data Augmentation Pipeline Each clean image is transformed into a distorted counterpart using a
multi-step augmentation strategy designed to simulate diverse, compounding visual degradations.
First, for each image, the number of distortions to apply, N is sampled. To balance across simple
and complex cases, degradations are sampled according to a multinomial distribution: 50% single
distortions, 30% two-way mixtures, 20% three-way mixtures.

We found that N > 3 degraded the signal significantly and made the task of restoration too difficult,
so we limit N to a maximum of 3 distortions. Given the sampled number N , distinct distortion
types are drawn uniformly from a predefined library D of transformations. Our distortion set spans
14 categories: including geometric distortions (motion blur, warping, refraction, defocus blur),
photometric degradations (contrast, color shifts, brightness, low light), occlusions (clouds, haze, rain,

14

https://anonymous.4open.science/r/PRISM-E4E3/README.md


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: Summary of Training Datasets. PRISM is trained on a diverse set of natural and scientific
domains spanning ecological, medical, astronomical, and remote sensing imagery.

Dataset Description Size

ImageNet (Deng et al., 2009) 1000-class benchmark of natural images with visually diverse
scenes.

1.2M

Sen12MS (Sentinel-2) (Schmitt et al., 2019) RGB satellite image patches with and without clouds, used for
land-cover and cloud-removal tasks.

720K

iWildCam 2022 (JohnBeuving et al., 2022) Camera trap sequences for wildlife monitoring under challenging
lighting and environmental conditions.

28.8K

EUVP (Islam et al., 2020) Paired underwater photos with clear vs. distorted conditions (en-
hanced clean split).

3.7K

Cityscapes (Cordts et al., 2016) Urban street scenes captured from vehicle-mounted cameras (in-
cludes 5K labeled and 20K “extra”).

25K

BioSR (Gong et al., 2021) Fluorescence microscopy slides (wide-field vs. SIM ground truth)
for super-resolution and denoising tasks.

14K

Brain Tumor MRI (Nickparvar, 2021) Clinical MRI scans for tumor detection and segmentation with
paired clean/noisy modalities.

7K

AstroSR HSC Surveys (Miao et al., 2024) Wide-field sky survey images from the Hyper Suprime-Cam (HSC),
used for astrophysical source recovery.

2K

snow), and noise-based effects (additive noise, compression). Parameter ranges for each degradation
type are uniformly sampled within physically realistic bounds (e.g., haze density α ∼ U(0.1, 0.5);
Gaussian blur kernel size σ ∼ U(0.5, 3.0)). Further information on the implementation of this
distortion library is provided in the codebase. Finally, the selected distortions are randomly ordered
and sequentially applied to the clean image. Randomizing the application order reflects the non-
commutative nature of compound distortions and further increases the diversity and realism of the
visual outcomes. This data augmentation process is summarized in Fig. 7.

4. Randomize the order 

1. Sample the number of distortions to apply
N

2. Sample the N distortions

3. Sample the parameters per distortion

α β γ

Figure 7: An overview of the data augmentation
pipeline of diverse compound degradations.

Prompts p describing distortions are auto-
generated with GPT-4 (Hurst et al., 2024) to sim-
ulate the variability in natural-language queries
that may be provided as input. We sample mul-
tiple phrasings per distortion type to encour-
age robustness to linguistic variation (e.g., “re-
move haze,” “dehaze the image,” “clear atmo-
spheric fog”). In addition, we generate com-
pound prompts that explicitly describe multi-
ple simultaneous degradations (e.g., “remove
blur and color shift”), ensuring that the model is
trained on realistic mixtures rather than isolated
categories.

To improve controllability, we further incorpo-
rate:

• Partial prompts: instructing the
model to remove only a subset of degra-
dations present in Idist, requiring the
model to learn selective restoration
(e.g., input degraded with haze + rain +
blur, prompt: “remove haze and blur”).

• Negative prompts: instructing the
model to remove degradations that are
absent, which enforces that restoration
actions are conditional on both image
evidence and textual prompts. For in-
stance, if the input is degraded with haze + blur and the prompt is “remove snow,” the model
should leave the image unchanged with respect to snow.
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Derain this photo 
of a bird.

Remove the 
clouds here.

Can you unwarp 
this photo?

Adjust the color 
and contrast.

Remove the haze 
and snow.

Denoise and 
super-resolve this.

Remove the 
motion blur.

Could you denoise 
this?

Negative Prompt 
(no change)

Partial Prompt
(some change)

Cityscapes BioSR Brain Tumor MRI HSC

ImageNet Sen12MS iWildCam 2022 EUVP

Figure 8: MDB Examples. Samples from our compound degradation dataset, with paired "clean"
(top) and "distorted" (bottom) images, with corresponding prompts in between.

Approximately 20% of the training samples are partial prompts and 10% are negative prompts. The
inclusion of partial and negative prompts is critical for teaching PRISM to respect expert instructions.
Without them, the model tends to over-restore, indiscriminately removing all degradations it detects.
By explicitly training on examples where the correct action is not to remove a present or absent
degradation, PRISM learns to balance restoration fidelity with adherence to prompts.

The final training corpus consists of approximately 2.5M triplets, split 80/19/1 across training,
validation, and held-out test sets. For each clean image, multiple degraded variants and prompts
are generated, increasing coverage of both degradation mixtures and linguistic variability. Fig. 8
demonstrates our dataset diversity, with examples of clean, distorted, and prompt triplets.

E EVALUATION

As discussed in Section 3, we evaluate PRISM along three complementary axes: (1) restoration under
synthetic compound degradations, (2) downstream utility in real scientific datasets, and (3) zero-shot
robustness to unseen real-world distortions. A summary of each evaluation testbed is provided in
Table 6. Unless noted otherwise, all outputs are generated using a fixed random seed=42.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 6: We group evaluations into (1) synthetic compound degradations, (2) downstream utility in
real scientific datasets, and (3) zero-shot robustness to unseen real-world distortions.

Evaluation Setting Task / Dataset Dataset Size Metric

(1) Synthetic Compound Degradations

MDB Synthetic mixtures from clean datasets 25K PSNR, SSIM, FID, LPIPS

(3) Zero-Shot Robustness to Unseen Real-World Distortions

Underwater Imaging UIEB (Li et al., 2019) 890 PSNR, SSIM, LPIPS
Under-Display Cameras POLED (UDC) (Zhou et al., 2021) 512 PSNR, SSIM, LPIPS
Fluid Lensing ThapaSet 600 PSNR, SSIM, LPIPS

(2) Downstream Utility in Real Scientific Datasets

Land Cover Classification Sen12MS-CR (cloudy Sentinel-2 patches)
(Ebel et al., 2020; Schmitt et al., 2019)

200 Classification accuracy (ResNet50)

Wildlife Classification iWildCam 2022 (camera traps)
(JohnBeuving et al., 2022)

200 Classification accuracy (SpeciesNet)

Microscopy Segmentation BioSR (WF vs. SIM microscopy)
(Gong et al., 2021)

10K Instance Segmentation mIoU (MicroSAM)

Urban Scene Understanding Rooftop Cityscapes (haze/low-light) 5K Panoptic segmentation mIoU (RefineNet)

Downstream Utility. Here, we provide specific details about how we constructed our novel bench-
marking suite for evaluation over downstream utility. We re-purpose real datasets with distortions that
present known challenges for models across remote sensing, wildlife monitoring, microscopy and
weather, where ground truth labels are available not because the distorted images are annotated, but
because undistorted views exist at different points in time or are collected from a more sophisticated
sensor.

Rather than training task-specific models for each of these downstream tasks, we deliberately use
off-the-shelf pretrained models. This design choice reflects a realistic scenario: domain experts are
far more likely to apply widely available models for segmentation than to train bespoke models for
each experimental setup. Using off-the-shelf models therefore provides a conservative estimate of
restoration utility in practice and avoids confounding performance gains from joint training on dataset-
specific distributions. If restoration improves the outputs of a generic model, this strongly suggests
practical downstream utility beyond controlled benchmarks. In each of the four domains, we examine
restoration performance on a specified distortion against the default set of automatically-detected
distortions present in the input image. We do not compare against domain-specific restoration models
(e.g., dedicated cloud removal networks) because our goal is to evaluate generalist models that can
flexibly handle a wide variety of distortions; this broader applicability makes them more useful in
scientific imaging, where degradations are diverse, overlapping, and often domain-shifted.

1. Land Cover Classification: To assess performance on land cover classification over satellite
data, we select 200 cloudy satellite images degraded by cloud cover from the Sen12MS-CR
dataset Ebel et al. (2020), with land cover labels derived from temporally aligned, cloud-free
views in the Sen12MS dataset Schmitt et al. (2019). We evaluate using a ResNet50, trained
on satellite imagery that includes minimal cloud cover Papoutsis et al. (2023). It is important
to evaluate on land cover classification because accurate identification of surface types
(e.g., forests, croplands, urban areas) under degraded conditions like cloud cover directly
underpins large-scale monitoring of climate change, biodiversity, and resource management.

2. Wildlife Classification Camera trap classification is critical for ecological monitoring,
enabling large-scale biodiversity surveys without direct human observation. We evaluate
our model on the task of species identification using iWildCam 2022 Camera Trap dataset
(JohnBeuving et al., 2022). Specifically, we use 200 nighttime wildlife images, after filtering
out blank frames (no species) and sample frames with low confidence species predictions
(< 0.70). Ground truth annotations are sourced from expert labels of alternate frames in
the same camera trap sequence. Classification is evaluated using SpeciesNet (Gadot et al.,
2024), a classifier trained on over 6 million camera trap images.

3. Microscopy Segmentation Next, we evaluate our model on the task of microscopy image
segmentation, which informs the quantification of organelle morphology and dynamics,
which are central to understanding cell physiology and disease. We build on the BioSR
dataset (Gong et al., 2021) introduced by Qiao et al. This dataset was acquired using
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paired low resolution wide-field (WF, diffraction-limited) and super-resolved structured
illumination microscopy (SIM) images of cellular structures (clathrin-coated pits) across a
wide range of signal-to-noise ratios. In our setting, the WF images serve as noisy “distorted”
inputs, while the corresponding high-SNR SIM sensor data provide the undistorted refer-
ence. This setup allows us to evaluate restoration not against simulated degradations, but
against experimentally aligned ground truth. We measure performance by applying restored
images to the downstream task of segmentation, using the microscopy foundation model
MicroSAM model (Archit et al., 2025) to generate cell-structure masks, and report segmen-
tation accuracy compared to the high-quality SIM annotations. This mirrors real-world use,
where quantitative biological conclusions (e.g., about organelle morphology or cytoskeletal
organization) depend critically on reliable segmentation.

4. Urban Scene Understanding We also evaluate our model on the task of cityscape scene
understanding, which enables reliable monitoring of urban forests. To do so, we collected,
labeled, and processed a novel Rooftop Cityscapes dataset for an additional setting: and
haze in urban scenes. Specifically, we deployed fixed-position cameras on several building
rooftops across multiple days under varying weather and lighting conditions. From each
sequence, we manually identified and labeled frames with clear conditions to serve as the
ground truth. We applied an off-the-shelf panoptic segmentation model (pre-trained on
the original Cityscapes (Cordts et al., 2016) dataset) to each distorted and restored frame.
To ensure reliable comparison, we restricted evaluation to "stationary" classes (buildings,
vegetation, and sky) while ignoring dynamic objects such as cars or pedestrians, which may
change across frames and introduce label inconsistency. See Fig. 20 for qualitative examples
from this custom dataset.

Statistical Significance Evaluation To assess whether Selective Restoration provided a statistically
significant improvement over Full Restoration, we conducted paired hypothesis tests across repeated
experimental runs. Each model was trained and evaluated with multiple random seeds on the same
dataset splits (seeds 2, 42, and 420), yielding a distribution of results for each condition.

For every domain and downstream task, we computed paired differences between the two methods:

di = Selectivei − Fulli, i = 1, . . . , n

where n is the number of runs (seeds/splits). This controls for variability due to dataset sampling and
ensures that each comparison is made under identical conditions.

We then applied a two-tailed paired t-test to the differences di:

t =
d̄

sd/
√
n
, sd =

√√√√ 1

n− 1

n∑
i=1

(di − d̄)2,

with n− 1 degrees of freedom. The null hypothesis H0 is that Selective and Full Restoration perform
equally (µd = 0). The p-value is computed as:

p = 2 · P (Tn−1 ≥ |t|) ,

where Tn−1 is a Student’s t distribution with n− 1 degrees of freedom.

1. If p < 0.05, we reject H0 and conclude that Selective Restoration significantly outperforms
Full Restoration.

2. If p ≥ 0.05, we fail to reject H0, indicating that the observed difference may be due to
random variation.

In Table 4, we report mean ± standard deviation across runs for each method, alongside the resulting
p-values. The results show that Selective Restoration significantly outperforms Full Restoration
in three of four domains, with Remote Sensing being the sole case where the difference was not
statistically significant.
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F BASELINES

All baseline models were re-trained or fine-tuned on the same set of primitive distortions as PRISM to
ensure a fair comparison. This controls for training data bias and isolates differences in architecture
and supervision. Following their original training protocol, all baselines (with the exception of
OneRestore (Guo et al., 2019)) are trained on single distortions/primitives only, unlike PRISM which
is trained on the full combinatorial mixutre set. For evaluation, we predefined a set of primitive
degradations (e.g., blur, noise, haze, rain) and applied restoration pipelines consistently across models,
so that all methods operated under identical inputs whether they were trained to remove distortoins
independently or compositely. This avoids favoring baselines tailored to a specific distribution and
provides a controlled setting for compound restoration.

AirNet (Li et al., 2022a), Restormer (Zamir et al., 2022), and NAFNet (Chen et al., 2022a) represent
strong encoder–decoder backbones widely used for low-level vision tasks, but they operate in an
all-in-one setting without explicit modeling of compound effects. OneRestore (Guo et al., 2024)
and PromptIR (Potlapalli et al., 2023b) extend this to multi-degradation scenarios: OneRestore
introduces a one-to-composite mapping, while PromptIR conditions restoration on learned prompt
embeddings. DiffPlugin (Liu et al., 2024) and MPerceiver (Ai et al., 2024) adopt modular or token-
based conditioning, with DiffPlugin integrating contrastive prompt modules and MPerceiver encoding
multiple degradation tokens. AutoDIR (Jiang et al., 2024) represents a task-routing approach,
selecting subtasks adaptively during inference.

Among these, only PRISM employs a weighted contrastive loss to enforce compositional disentan-
glement in the embedding space. All other baselines use their standard supervision without this
contrastive component.

Together, these baselines span backbone, prompt-driven, and diffusion-based strategies. As shown in
Table 3, PRISM consistently outperforms all baselines across four downstream scientific datasets,
demonstrating the added benefit of compound-aware supervision and contrastive disentanglement.
Details for fine-tuning and re-training our baselines and access to their implementations are included
in the provided codebase linked above.

G ADDITIONAL ABLATIVE STUDIES

To better understand the contributions of individual design choices in PRISM, we conduct ablations
on the Mixed Degradations Benchmark (MDB) and report results in Table 7. Unless otherwise noted,
results are measured using PSNR, SSIM, and LPIPS, averaged across 5K held-out test samples.

Semantic Content Preservation Module (SCPM). While Stable Diffusion can capture rich low-
level attributes and generate content consistent with prompts, its inherent randomness often leads to
unintended content changes during restoration. For instance, instead of simply removing degradations,
vanilla diffusion may also alter unrelated scene elements (e.g., background textures or fine object
boundaries), which is problematic in scientific applications where pixel-level fidelity matters. SCPM
mitigates this by fusing encoder and decoder features through adaptive modulation, preserving fine
details and ensuring that restored images remain faithful to the original content. Quantitatively,
removing SCPM reduces MDB performance by up to 1.2 dB PSNR and increases LPIPS (see Table
7,) and qualitatively, SCPM prevents content drift while recovering edges, textures, and small objects
essential for downstream analysis (see 9.

Table 7 quantitatively demonstrates how the SCPM enables more faithful restoration of mixtures.

Contrastive Re-weighting. Our weighted contrastive objective encourages compound embeddings
to lie near their constituent primitives while maintaining separation across distortion types. Ablating
this re-weighting (using a standard InfoNCE-based loss) decreases both sequential and composite
prompting performance, with distortions often misaligned in latent space.

Partial and Negative Prompts. Training with partial prompts (requesting removal of only a subset
of degradations) and negative prompts (explicitly requesting removal of degradations not present)
enforces controllability. Without these cases, the model tends to over-restore, indiscriminately
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Ground Truth Before SCPM After SCPM

Figure 9: Effect of SCPM on restoration fidelity. Without SCPM (middle), restoration reduces
degradations but alters scene details, leading to blurred text/textures and distorted object boundaries.
With SCPM (right), fine structures are preserved, maintaining fidelity to the ground truth (left). By
reintroducing encoder features at the decoding stage, SCPM retains spatial cues that are often lost in
the bottleneck representation. This cross-scale fusion constrains the decoder to stay faithful to the
input structure, reducing hallucinations and over-smoothing while preserving fine details critical for
scientific fidelity.

removing everything it detects. To evaluate this, we compute prompt faithfulness: for each prompt,
we compare the predicted degradation labels before and after restoration against the degradations
specified in the prompt. A restoration is counted as faithful if all requested degradations are removed
while non-requested degradations are preserved. As shown in Table 8, including partial and negative
prompts during training improves prompt faithfulness by +6.3%.

Role of Prompt Diversity. We generate multiple natural-language variants for each distortion type
(e.g., “remove haze,” “clear atmospheric fog”). Limiting training to a fixed prompt format ("remove
the effects of haze") only improves performance by 0.2 dB PSNR. Considering the tradeoff between
accuracy and usability, we conclude that the benefits of linguistic variability outweigh this minor
change in performance.

Table 7: Ablation on PRISM design choices. Each component improves compound restoration fidelity
on MDB.

Model Variant PSNR ↑ SSIM ↑ LPIPS ↓

Full PRISM (ours) 23.8 0.913 0.141

w/o SCPM 22.6 0.892 0.162
w/o Contrastive Re-weighting 23.0 0.898 0.154
w/o Prompt Diversity 24.0 0.925 0.158

Table 8: Effect of partial and negative prompts. Including these improves prompt faithfulness
(measured as proportion of outputs correctly following instructions).

Training Setting Prompt Faithfulness ↑

w/o Partial or Negative Prompts 81.4%
With Partial Prompts Only 85.9%
With Partial + Negative Prompts (ours) 87.7%

Effect of Temperature τ We sweep τ ∈ {0.03, 0.07, 0.10, 0.20, 0.50} while keeping all other
hyperparameters fixed. For each τ , we train the embedding module and freeze it before training the
diffusion backbone. We report: the (1) mean cosine similarity between degraded and clean views
(pos. cos. ↑) and (2) mean gap between positive and hardest-negative cosine (neg. margin ↑). Results
are means ± standard error margin over 3 seeds.

We observe a sweet spot at τ ≈ 0.1, which maximizes separation. Very low temperatures (τ = 0.03)
over-emphasize hard negatives and reduce generalization; high temperatures (τ = 0.5) soften
negatives excessively, collapsing cluster structure and harming retrieval/accuracy. We therefore set
τ = 0.1 for all main results.
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Figure 10: Ablation on temperature τ for the contrastive objective. Means ± std. error margin over 3
seeds.

Cost and Latency Analysis In addition to restoration quality, practical deployment in scientific
settings depends critically on computational cost and inference latency. We benchmarked each model
on an NVIDIA A100 (40GB) GPU using a fixed input size of 256× 256, reporting both throughput
(images per second) and average inference latency per image. FLOPs were estimated using the thop
library, and memory footprints correspond to peak GPU allocation during evaluation. All models
were tested under identical batch size and mixed-precision settings.

Table 9: Efficiency comparison across baselines. We report floating point operations (FLOPs), GPU
memory usage, throughput (images/sec), and per-image latency (ms). PRISM achieves competitive
efficiency relative to strong baselines while offering greater controllability and robustness.

Method FLOPs (G) Memory (GB) Throughput (↑) Latency (ms ↓)

AirNet (Li et al., 2022a) 46 2.1 325 3.1
RestormerA (Zamir et al., 2022) 118 4.6 192 5.2
NAFNetA (Chen et al., 2022a) 104 4.2 210 4.7
OneRestore (Guo et al., 2024) 136 5.8 160 6.2
PromptIR (Potlapalli et al., 2023b) 128 5.4 174 5.8

DiffPlugin (Liu et al., 2024) 145 6.2 152 6.6
MPerceiver (Ai et al., 2024) 132 5.9 158 6.3
AutoDIR (Jiang et al., 2024) 138 6.0 155 6.4
PRISM (ours) 141 6.1 150 6.7

As expected, lightweight encoder–decoder backbones such as AirNet achieve the highest throughput
and lowest latency, but their restoration quality is limited (see Table 3). More advanced transformer-
based or prompt-driven models (Restormer, NAFNet, PromptIR) incur higher computational cost
due to deeper backbones and multi-branch conditioning, though they improve robustness to diverse
degradations. Diffusion-based models (DiffPlugin, MPerceiver, AutoDIR, PRISM) operate at higher
FLOPs and memory footprints, with inference latency around 6–7ms per image. Despite this added
cost, they offer significantly higher fidelity and controllability. Importantly, PRISM matches the
efficiency of other diffusion-based baselines while delivering superior accuracy across scientific
benchmarks, demonstrating that controllability and compound-awareness can be achieved without
sacrificing practical deployability.

H ADDITIONAL FIGURES
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Figure 11: Semantic Content Preservation Module (SCPM). Encoder features fenc are used to
generate adaptive affine parameters γ(fenc) and β(fenc), which modulate normalized decoder features
Norm(fdec). The refined features frefined are then processed by residual and attention blocks before
final decoding by DVAE. This adaptive fusion preserves fine structures such as edges, textures, and
small objects that are critical for scientific imaging tasks.

Figure 12: Contrastive disentanglement of distortion embeddings. UMAP projections of f(Idist)
from 10K samples in the Mixed Degradations Benchmark, across a subset of distortion classes. Left:
CLIP entangles distortions with semantics. Middle: Compound-aware contrastive learning misses
compositionality. Right: Our weighted contrastive loss achieves clear separation while aligning
compounds with their primitives. Overall, without contrastive disentanglement, embeddings of
compound degradations collapse into unrelated regions, forcing the model to treat them as unseen
categories. This can lead to artifacts or overcorrection.
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Figure 13: PRISM trained on composite examples scales best with the number of distortions. This
outperforms PRISM trained on each degradation separately as well as comparable baselines (MPer-
ceiver and AutoDIR), emphasized by the ∆ (change in performance across test images with 1 vs. 4
distortions) above each bar.

↑ ↓

Figure 14: Latent disentanglement of distortion types enables faithful stepwise and single-shot
restoration. The contrastive loss closes the gap between sequential and composite prompting.
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25.13 / 0.278 26.52 / 0.213 27.12 / 0.135

Sequential Restoration

Low Light

Low Light + Clouds

Clear

“remove the effect of clouds” “remove the effects of low light” “remove the effects of clouds and low light”

Composite RestorationGround Truth

27.34 / 0.244 28.88 / 0.175 29.39 / 0.127

No
Loss

Loss

Figure 15: Contrastive disentanglement of distortions helps separate distortions from each other and
from semantic content, enabling higher-fidelity sequential and composite restoration. Cross-attention
maps (left of each output) show how the model attends to distortions. Without PRISM’s contrastive
disentanglement (top), sequential restoration preserves artifacts and fails to isolate degradations. With
the loss (bottom), embeddings cleanly separate distortions (e.g., clouds vs. low light). This separation
not only prevents distortion types from interfering with one another, improving sequential restoration
by reducing error accumulation, but also enables the model to accurately target and remove multiple
degradations simultaneously, as seen in the composite restoration outputs. We report PSNR/LPIPS
metric values below each output.

Ground TruthPRISMAutoDIRMPerceiverDiffPlugin

OneRestoreRestormer PromptIRAirNet

16.31 / 0.17018.76 / 0.212 14.19 / 0.24415.12 / 0.24510.65 / 0.495

Low Light + Haze 
+ Snow

22.47 / 0.12017.78 / 0.13913.45 / 0.24415.25 / 0.153

Figure 16: Qualitative outputs on the Mixed Degradations Benchmark (MDB). Example of a low-light
+ haze + snow composite evaluated across baselines. We report (PSNR/LPIPS) below, with the best
results in bold. While prior methods reduce some degradations, they leave residual haze (AirNet,
PromptIR), oversmooth texture (Restormer, MPerceiver), or introduce artifacts from over-correction
(OneRestore, AutoDIR, DiffPlugin). PRISM produces the most faithful reconstruction, recovering
both sky and foreground with minimal artifacts, closely matching the ground truth. This illustrates
the strength of compositional latent disentanglement: PRISM not only removes multiple degradations
simultaneously but also resists the tendency to over-restore, yielding outputs that are both high fidelity
and scientifically faithful.
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Figure 17: PRISM best removes unseen compound degradations. PRISM restores real-world images
with degradations outside its training set in underwater imagery, under-display camera images, and
fluid lensing. In all cases, it produces faithful restorations that most closely match the ground
truth, showing strong single-shot generalization compared to similar diffusion baselines. We report
PSNR/LPIPS metric values below, with the best results in bold.
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Mixed Forests Mixed ForestsDeciduous Needleleaf

“remove the effect of 
clouds + low light” Cloudless SampleCloudy Sample

Closed Shrublands Closed ShrublandsUrban Lands

Grasslands

“remove the effect 
of clouds”

Open Shrublands

Figure 18: Remote sensing classification under cloud occlusions requires full composite restoration.
In this Sentinel-2 example, removing only clouds (middle-left) reveals incomplete information and
leads to a misclassification. Full composite restoration (middle-right), correcting both clouds and
low light, recovers the underlying landscape with high fidelity and matches the ground-truth class, in
bold.

“remove effects of contrast, low 
light, and motion blur”

Ocelot Ocelot

“remove the effects of haze, 
contrast, and low light”

Crab-Eating Racoon Short-Eared Dog

Low Quality Nighttime Data “improve contrast”

Margay

“improve contrast”

Northern Raccoon

Figure 19: Selective restoration helps with camera trap classification under compound nighttime
degradations. On the Rooftop Cityscapes dataset, frames suffer from haze and low-light conditions.
Only improving contrast aids recognition of nocturnal species, while over-restoration (e.g., removing
haze) can alter image content, obscure subtle texture cues, or introduce artifacts that mislead classi-
fication—sometimes even changing the perceived species. We bold the classification outputs that
matches expert-provided labels.
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mIOU: 0.6496

Clear-Weather Image“remove the effects 
of haze”Poor Weather Image
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haze and low light”
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Figure 20: Selective restoration helps with urban scene understanding under haze and low light.
Rooftop Cityscapes examples show how selective restoration affects scene understanding. Removing
haze alone improves mIoU, while attempting to also remove low light leads to over-correction and
lower segmentation accuracy.

Figure 21: Failure modes of PRISM on challenging degradations. Top-left: Extreme unseen distor-
tions cause incomplete restoration and overcorrection of color/contrast. Top-right: Overfitting to
synthetic distortions leaves lingering artifacts when applied to real data that diverges from training
augmentations. Bottom-left: Overfitting to common distortions partially reduces moire but fails to
fully restore fine details. Bottom-right: Ambiguous degradations (e.g., solar flares, glare) remain
difficult to generalize without explicit training examples.
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Distorted Input seed = 1234 seed = 42 Ground Truth

Figure 22: Qualitative impact of random seed and stochasticity on restoration outcomes. Different
seeds produce slightly varied outputs, reflecting both diffusion sampling variability and embedding
initialization. While global structure remains stable, fine details may differ, underscoring the impor-
tance of evaluating consistency across multiple runs.
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