
Supplementary Material

A Additional background on differential privacy 15

A.1 Preliminaries on zero-concentrated differential privacy (zCDP) 16

B Proofs omitted from Section 2.1 16

C Proofs omitted from Section 2.2 18

C.1 Proof sketch of Theorem 1.5 . 20

D Event-level privacy lower bound 20

D.1 Reduction from InnerProducts . 20

D.2 From the reduction to the accuracy lower bound 22

E Item-level privacy lower bound 23

E.1 Reduction from Marginals . 23

E.2 From the reduction to the accuracy lower bound 25

F A concentration inequality for Gaussian random variables 26

G General lower bound reduction for small " 26

A Additional background on differential privacy

In this section, we describe basic results on differential privacy used to obtain our theorems.

We denote by N (µ,�
2
) the Gaussian distribution with mean µ and standard deviation �. The Laplace

distribution with mean 0 and standard deviation
p
2b is denoted by Lap(b).

Definition A.1 ((", �)-indistinguishability). Two random-variables R1, R2 over the same outcome
space Y (and �-algebra ⌃Y) are (", �)-indistinguishable, denoted R1 ⇡(",�) R2, if for all events
S 2 ⌃Y , the following hold:

Pr[R1 2 S]  e
"
Pr[R2 2 S] + �;

Pr[R2 2 S]  e
"
Pr[R1 2 S] + �.

Definition A.2 (k-Neighboring streams). Let x, x0 2 UT
± be two streams of length T . For any

natural number k, streams x and x
0 are k-event-neighbors if one can be obtained from the other

in k operations, where each operation involves replacing a stream entry with ? or vice-versa. For
any natural number k, streams x and x

0 are k-item-neighbors if one can be obtained from the other
in k operations, where each operation involves replacing a subset of stream entries pertaining to
one specific element of U with symbol ?, or vice versa. 1-item-neighbors and 1-event-neighbors are
called item-neighbors and event-neighbors, respectively.

Lemma A.3 (Group privacy [27]). Every (", �)-event-level (or item-level) DP mechanism M is
(`", �

0
)-event-level (or item-level) DP for groups of size `, where �

0
= �

e`"�1
e"�1 ; that is, for all `-event

(or `-item) neighboring data streams x, x0, it holds that M(x) ⇡`",�0 M(x
0
).

15

A.1 Preliminaries on zero-concentrated differential privacy (zCDP)

This section describes zero-concentrated differential privacy (zCDP), a variant of differential privacy
that is less stringent than pure differential privacy, but more stringent than approximate differential
privacy. Using this notion of privacy, one can show tight bounds for the Gaussian mechanism and
cleaner and tighter bounds for composition. In contrast to (", �)-differential privacy, zCDP requires
output distributions on all pairs of neighboring datasets to be ⇢-close (Definition A.5) instead of
(", �)-indistinguishable.
Definition A.4 (Rényi divergence [53]). Let Q and Q

0 be distributions on Y . For ⇠ 2 (1,1), the
Rényi divergence of order ⇠ between Q and Q

0(also called the ⇠-Rényi Divergence) is defined as

D⇠(QkQ0
) =

1

⇠ � 1
log

Er⇠Q0

"✓
Q(r)

Q0(r)

◆⇠�1
#!

. (1)

Here Q(·) and Q
0
(·) denote either probability masses (in the discrete case) or probability densities

(when they exist). More generally, one can replace Q(.)
Q0(.) with the the Radon-Nikodym derivative of Q

with respect to Q
0.

Definition A.5 (⇢-Closeness). Random variables R1 and R2 over the same outcome space Y are
⇢-close (denoted R1 '⇢ R2) if for all ⇠ 2 (1,1),

D⇠(R1kR2)  ⇠⇢ and D⇠(R2kR1)  ⇠⇢,

where D⇠(R1kR2) is the ⇠-Rényi divergence between the distributions of R1 and R2.
Definition A.6 (zCDP in batch model [11]). A randomized batch algorithm A : Xn ! Y is
⇢-zero-concentrated differentially private (⇢-zCDP), if, for all neighboring datasets y, y0 2 Xn,

A(y) '⇢ A(y
0
).

One major benefit of using zCDP is that this definition of privacy admits a clean composition result.
We use it when analysing the privacy of the algorithms in Section 2.
Lemma A.7 (Composition [11]). Let A : Xn ! Y and A0

: Xn ⇥ Y ! Z be batch algorithms.
Suppose A is ⇢-zCDP and A0 is ⇢0-zCDP. Define batch algorithm A00

: Xn ! Y ⇥ Z by A00
(y) =

A0
(y,A(y)). Then A00 is (⇢+ ⇢

0
)-zCDP.

Lemma A.8 (Post-processing [27, 11]). If A : Y ! Rk is (", �)-DP and B : Rk ! Z is any
randomized function, then the algorithm B � A is (", �)-DP. Similarly, if A is ⇢-zCDP then the
algorithm B �A is ⇢-zCDP.

The Gaussian mechanism, defined next, is used in Section 2. It privately estimates a real-valued
function on a database by adding Gaussian noise to the value of the function.
Definition A.9 (Sensitivity). Let f : Y ! Rk be a function. Its `2-sensitivity is defined as

max
neighbors y,y02Y

kf(y)� f(y
0
)k2.

To define `1-sensitivity, we replace the `2 norm with the `1 norm.
Lemma A.10 (Gaussian mechanism [11]). Let f : Xn ! R be a function with `2-sensitivity at most
�2. Let A be the batch algorithm that, on input y, releases a sample from N (f(y),�

2
). Then A is

(�
2
2/(2�

2
))-zCDP.

The final lemma in this section relates zero-concentrated differential privacy to (", �)-differential
privacy.
Lemma A.11 (Conversion from zCDP to DP [11]). For all ⇢, � > 0, if batch algorithm A is ⇢-zCDP,
then A is (⇢+ 2

p
⇢ log(1/�), �)-DP. Conversely, if A is "-DP, then A is (12"

2
)-zCDP.

B Proofs omitted from Section 2.1

In this section, we prove Theorem 2.2 by formalizing the ideas described at the start of Section 2.1.

16

Proof of Theorem 2.2. We start by reasoning about the privacy of Algorithm 1. It is helpful to think
about Algorithm 1 more explicitly in terms of the binary tree mechanism. We define a mechanism
M0 that returns noisy values for all nodes of the binary tree from Definition 2.4 and show that the
output of Algorithm 1 can be obtained by post-processing the output of M0.

Assume w.l.o.g. that T is a power of 2; otherwise, consider the value 2
dlog2 Te instead. Fix a stream

x as the input to Algorithm 1. For all t 2 [T], let F [t] =
P

u2U f̃u[t], where the vector f̃u is
obtained by the end of running Algorithm 1 with input x. (If u /2 Ux, set f̃u = 0T . Set F [0] = 0).
Define M0 so that on input x, for each node (t1, t2] of the binary tree with T leaves, it outputs
F [t2]� F [t1] + Z(t1,t2].

We show how to obtain the outputs of Algorithm 1 from the outputs of M0. For each time step t 2 [T]

consider the dyadic decomposition of the interval (0, t] into k intervals (t0, t1], (t1, t2], . . . , (tk�1, tk],
corresponding to nodes in the binary tree, where t0 = 0, tk = t, and k  log T + 1. Add the outputs
corresponding to the nodes in the dyadic decomposition of (0, t] to obtain

X

i2[k]

F [ti]� F [ti�1] + Z(ti�1,ti] = F [tk]� F [0] +

X

i2[k]

Z(ti�1,ti] = F [t] + Z[t],

where the last equality holds because Z is a binary-tree random variable (see Definition 2.4). The
right-hand side is exactly the t-th output of Algorithm 1.

We now show that M0 is ⇢-item-level-zCDP, which implies that Algorithm 1 is ⇢-item-level-zCDP.
For each level ` 2 [0, log T] of the binary tree, define a vector G` of length T

2` at that level as follows:

G`[i] = F [i · 2`]� F [(i� 1) · 2`] for all i 2 [T/2
`
].

The random variable G`[i] + Z(2`·(i�1),2`·i] equals the output of M0 for node (2
` · (i� 1), 2

` · i] in
the binary tree. Let G = (G0, G1 . . . , Glog T). Mechanism M0 corresponds to applying the Gaussian
mechanism (Lemma A.10) to the output vector G, since the variables Z(t1,t2] corresponding to the
nodes (t1, t2] of the binary tree are independent. We now bound the `2-sensitivity of G. Let x0 be an
item-neighboring stream of x, and let u 2 U be the universe element on which the two streams differ.
Define f̃ 0

u, F 0, G0
`, and G

0 for the stream x
0 analogously to the definitions of f̃u, F , G`, and G for

stream x.

Lemma B.1 (`2-sensitivity of G). For all item-neighboring streams x and x
0,

kG�G
0k2 

p
8w(log T + 1). (2)

Proof. We first show that for all levels ` 2 [0, log T],

kG` �G
0
`k2 

p
8w.

Fix some ` 2 [0, log T] and i 2 [
T
2`]. Define i1 = (i � 1) · 2` and i2 = i · 2`. Since the streams x

and x
0 only differ in the occurrences of element u, the values G`[i] and G

0
`[i] differ by at most 2:

|G`[i]�G
0
`[i]| = |f̃u[i2]� f̃u[i1]� f̃ 0

u[i2] + f̃ 0
u[i1]|  2, (3)

where the inequality follows from the fact that f̃u, f̃ 0
u 2 {0, 1}T .

Observe that G`[i] � G
0
`[i] 6= 0 only if at least one of the following hold: f̃u[i1] 6= f̃u[i2] or

f̃ 0
u[i1] 6= f̃ 0

u[i2]. Define the flippancy of a vector a 2 RT , denoted flip(a), as the number of pairs of
adjacent entries of a with different values. The condition f̃u[i1] 6= f̃u[i2] implies that a “flip” occurs
in the vector f̃u between indices i1 and i2. The same holds for f̃ 0

u. By the design of Algorithm 1 (and
consequently M0), flip(f̃u)  w and flip(f̃ 0

u)  w. Additionally, all intervals (i1, i2] for a fixed ` are
disjoint. Hence, the number of intervals i 2 [

T
2`] such that G`[i] 6= G

0
`[i] is at most 2w. Combining

this fact with Equation (3), we obtain the following upper bound on the `2-sensitivity of G` for all
levels ` 2 [0, log T]:

kG` �G
0
`k22 =

X

i2[T/2`]

(G`[i]�G
0
`[i])

2  2w · 22 = 8w.

17

Combining the equalities for all levels, we obtain

kG�G
0k22 =

X

`2[0,log T]

kG` �G
0
`k22  8w(log T + 1).

This concludes the proof of Lemma B.1. ⌅

Recall that mechanism M0 corresponds to applying the Gaussian mechanism to the output vector
G. By the `2-sensitivity bound for G (Lemma B.1), and the privacy of the Gaussian mechanism
(Lemma A.10), we obtain that M0 is (8w(log T + 1)⇢

0
/2)-zCDP, where ⇢

0 is chosen in Step 1 of
Algorithm 1. By the choice of ⇢0, mechanism M0 (and hence, Algorithm 1) is ⇢-item-level-zCDP.

Next, we analyze the accuracy of Algorithm 1. Suppose the input stream x has maximum flippancy
at most w. Then the variables f̃u from Algorithm 1 with input stream x satisfy f̃u = fu(x). Recall
that CountDistinct(x) 2 RT denotes the vector of distinct counts for x. Then CountDistinct(x) =P

i2U fu(x) =
P

i2U f̃u(x) = s � Z, where s is the vector of outputs of Algorithm 1 defined
in Step 10. As a result, ERRCountDistinct(x, s) = maxi2[T] |Z[t]|. Each Z[t] is the sum of at most
log T + 1 independent Gaussian random variables distributed as N (0,

1
⇢0). Therefore, Z[t] is also

Gaussian with mean 0 and variance at most log T+1
⇢0 . We bound the error of our algorithm by standard

concentration inequalities for Gaussian random variables. Set m =
p
16w(log T + 1)2/⇢. By

Lemma F.2,

Pr[ERRCountDistinct(x, s) � m] = Pr

h
max
t2[T]

Z[t] � m

i
 2Te

� m2⇢0
2(log T+1) = 2Te

�2(log T+1)
=

2

e2T
.

Note that 2
e2T 

1
100 for large enough T , which concludes the proof of Theorem 2.2. ⌅

C Proofs omitted from Section 2.2

In this section, we prove Theorem 2.1 by formalizing the ideas described at the start of Section 2.2.
Then, in Section C.1, we prove Theorem 1.5 using Theorem 2.1.

The accuracy and privacy guarantees of the sparse vector technique (Algorithm 2) are stated in
Theorem C.2.
Definition C.1 (�-accuracy [24]). Let (a1, . . . , ak) 2 {Above,Below}k be a vector of answers in
response to k queries q1, . . . , qk on a dataset x. We say (a1, . . . , ak) is �-accurate if qt(x) � �� for
all at = Above and qt(x)  � for all at = Below.
Theorem C.2 ([24, 48]). Algorithm 2 is ⇢-zCDP. Let k be the index of the last “Above” query
answered by Algorithm 2 (before cutoff c has been crossed). For all � 2 (0, 1), with probability at
least 1� �, the vector of answers to the queries q1, . . . , qk is �-accurate for � =

8c(ln k+ln(2c/�))p
2⇢

.

To prove Theorem 2.1, we use a slightly stronger result (Corollary C.3) on the accuracy of Algorithm 1.
Corollary C.3. Fix ⇢ > 0, sufficiently large T 2 N, and a flippancy bound w  T . Algorithm 1
satisfies the following accuracy guarantee for all streams x 2 UT

± and t 2 [T]: if at most ` elements
in the prefix x[1 : t] of the stream x have flippancy greater than w, then, with probability at least

1� 1
T , Algorithm 1 has error O(`+

q
w log2 T

⇢) over all time steps from 1 to t.

Proof. The proof is similar to the accuracy analysis in Theorem 2.2, once we observe that
CountDistinct(x)  ` · 1T +

P
u2U f̃i(x), where 1T is a vector of length T . ⌅

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. We start by showing that Algorithm 3 is ⇢-item-level-zCDP. Algorithm 3
accesses the stream x via Algorithm 2 and the algorithms Bi for i 2 [0, log T] (instantiations of
Algorithm 1). By Theorem 2.2, Algorithm 1 with privacy parameter ⇢

0 is ⇢
0-item-level-zCDP.

Since we use (log T + 1) instantiations of Algorithm 1, each with privacy parameter ⇢
2(log T+1) , by

18

composition, the aggregate of the calls to Algorithm 1 is (⇢2)-item-level-zCDP. We now show that
the aggregate of the calls to Algorithm 2 is (⇢2)-item-level-zCDP. Note that the queries qt for t 2 [T]

considered in Step 11 of Algorithm 3 have sensitivity 1 for item-neighboring streams (the number
of items with flippancy above a certain threshold can change by at most 1 for item-neighboring
streams). By Theorem C.2, the aggregate of the calls to Algorithm 2 is (⇢2)-item-level-zCDP. Another
invocation of the composition lemma gives that Algorithm 3 is ⇢-item-level-zCDP.

We now analyze the accuracy of Algorithm 3. Set �SVT = 0.005, k = T , c = log T , and �SVT =
8 log T (log T+log(400 log T))p

2⇢
. Let E be the event that the vector of answers output by the sparse

vector algorithm (Algorithm 2) until the cutoff point log T is �SVT-accurate. By Theorem C.2,
Pr[E] � 0.996. We condition on E for most of the following proof.

Set t⇤�1 = 1. Let t⇤i be the last time step at which the output of instance Bi is used as the output of
Algorithm 3. Instance Bi of Algorithm 1 is run with parameter w = 2

i. Conditioned on event E, its
outputs are used only at times t⇤i�1 < t  t

⇤
i when at most `i = O

⇣
log2 Tp

⇢

⌘
+

q
2i

⇢ elements have

flippancy greater than 2
i. By Corollary C.3, with probability at least 1� 1

T , the error of Bi over time
steps t⇤i�1, . . . , t

⇤
i is

O

log

2
T +

p
2i log

2
T

p
⇢

!
.

Since exactly (log T + 1) instances of Algorithm 1 are run within Algorithm 3, a union bound over
the failure probability of each of those instances gives us the following: Conditioned on event E,
with probability at least 1� log T+1

T , the error of Algorithm 3 over time steps t 2 [T] is

O

0

@
log

2
T +

q
wmax[t] log

2
T

p
⇢

1

A . (4)

This bound on the error holds with probability 1� log T+1
T � 0.995 for sufficiently large T .

Claim C.4. Let wt be the (true) maximum flippancy of the sub-stream x[1 : t], consisting of the first t
entries of the input stream x 2 UT

± to Algorithm 3. Then, for all t 2 [T], when the algorithm reaches
Step 14,

wmax[t]  max(2wt, 2⇢�
2
SVT).

Proof. We consider two cases.

(Case 1) t 2 [T] during which count < c for Algorithm 2.

Let z be the value of wmax[t] when Algorithm 3 reaches Step 14. If z = 1 then z = wmax[t]  2�
2
SVT

since T > 1, ⇢ < 1. So, instead assume that z � 2. Let t⇤  t be the time step where wmax[t
⇤
]

is doubled from z
2 to z during an execution of Step 13 of the while loop. This only happens if

Algorithm 2 outputs “Above” for the following query:
���
n
u 2 U : flip(u, x[1 : t

⇤
]) � z

2

o����
r

z

2⇢
.

If at this point z
2  wt⇤ , then z

2  wt (because wt � wt⇤ .) Otherwise z
2 > wt⇤ and therefore

|{u 2 U | flip(u, x[1 : t
⇤
]) � z

2}| = 0. In this case, by applying Theorem C.2, we get that
0�

q
z
2⇢ � ��SVT, which implies that z  2⇢�

2
SVT.

(Case 2) t 2 [T] during which count � c for Algorithm 2.

Suppose there is some t 2 [T] during which count � c. Consider the last time step t
⇤ 2 [T]

when Step 7 of Algorithm 2 is run (for this time step, count = c� 1). At this time step, wmax[t
⇤
]

doubles from T
2 to T , after which it never changes again. By case (1), we have that wmax[t

⇤
] =

T  max(2wt⇤ , 2�
2
SVT). Since for all t � t

⇤ it holds wt⇤  wt and wmax[t] = wmax[t
⇤
], then

wmax[t]  max(2wt, 2⇢�
2
SVT) for all t � t

⇤. This concludes the proof of Claim C.4. ⌅

19

Now we substitute the upper bound on wmax[t] from Claim C.4 into Equation (4) and apply wt  w.
We get that, for sufficiently large T , conditioned on event E, with probability at least 0.995, the
maximum error of Algorithm 3 over time steps t 2 [T] is

O

0

@
log

2
T +

q
max(w, 2⇢�2

SVT) log
2
T

p
⇢

1

A = O

0

@

q
max

�
log

6
T, 2w log

2
T
�

p
⇢

1

A . (5)

Finally, by a union bound over the event E and the event that the error of Algorithm 3 is greater than
Equation (5) we obtain: For sufficiently large T , the maximum error of Algorithm 3 over time steps
t 2 [T] is bounded by Equation (5) with probability at least 0.99. ⌅

C.1 Proof sketch of Theorem 1.5

In this section, we sketch how to complete the proof of Theorem 1.5 using Theorem 2.1 together
with a result of Jain et al. [44] on mechanisms for estimating functions of sensitivity at most 1 in the
continual release model.
Theorem C.5 (Mechanism for sensitivity-1 functions [44]). Let f : U⇤

± ! R be a function of `2-
sensitivity at most 1. Define F : UT

± ! RT so that F (x) = [f(x[1 : 1]), . . . , f(x[1 : T])]. Fix
⇢ 2 (0, 1] and sufficiently large T 2 N . Then, there exists a ⇢-item-level-zCDP mechanism for
estimating F in the continual release model that is ↵-accurate where ↵ = O

⇣
min

n
3

q
T log T

⇢ , T

o⌘
.

Note that CountDistinct(x)[t] has `2-sensitivity one for item-neighboring streams for all t 2 [T].
Let M0 be the mechanism from Theorem C.5. Then M0 can be used for estimating CountDistinct
under continual release for turnstile streams with the error guarantee stated in Theorem C.5. When
the maximum flippancy of the stream is larger than roughly ⇢

1/3
T

2/3, the mechanism M0 achieves
better error than that of Theorem 2.1 (and it achieves worse error when the maximum flippancy of
the stream is smaller than this threshold). A simple modification of Algorithm 3 can get the best
of both worlds—instead of having base mechanisms B0, . . . ,Blog T that each run Algorithm 1 with
different flippancy parameters as input, we only have k + 2 = min(⇢1/3T 2/3

, T) base mechanisms
B0, . . . ,Bk+1. Out of these, B0, . . . ,Bk run Algorithm 1, whereas Bk+1 runs M0. This modified
algorithm has error O

⇣
min

⇣q
w
⇢ polylog T, 3

q
T log T

⇢ , T

⌘⌘
. The proof is similar to the proof of

Theorem 2.1, with the only difference that for analyzing the error of base mechanism Bk+1 we use
the error guarantee of the recompute-mechanism M0.

Finally, Theorem 1.5 follows by invoking the conversion from zCDP to approximate DP
(Lemma A.11), and setting ⇢ =

"2

16 log(1/�) .

D Event-level privacy lower bound

In this section, we prove Theorem 1.6, providing a strong lower bound on the parameter ↵ for every
↵-accurate, event-level differentially private mechanism for CountDistinct in the continual release
model for turnstile streams. This lower bound is parameterized by w, the maximum flippancy of the
input stream.

D.1 Reduction from InnerProducts

We obtain our lower bound by showing that every mechanism for CountDistinct for turnstile streams
can be used to obtain an algorithm with similar accuracy guarantees for InnerProducts, the problem
of estimating answers to inner product queries in the batch model. The reduction from InnerProducts
to CountDistinct combines two ideas: one is the sequential embedding technique introduced by Jain
et al. [44] to prove lower bounds in the continual release model and the other is a connection between
the inner product of two vectors and the number of distinct elements in the concatenation of two
corresponding streams. The latter idea was used by Mir et al. [50] to give lower bounds for pan-private
algorithms for counting the number of distinct elements. The reduction is presented in Algorithm 4.
With this reduction, we then use previously established lower bounds on accuracy for InnerProducts
[21, 23, 50, 17] to obtain our lower bound on CountDistinct. We start by proving Lemma D.4 (the

20

reduction from InnerProducts to CountDistinct). In Section D.2, we use Lemma D.4 to complete
the proof of Theorem 1.6.

Algorithm 4 crucially uses the following connection between the inner product of two vectors and the
number of distinct elements in the concatenation of two corresponding streams.
Definition D.1 (Stream indicator). For a stream x 2 UT

± , let hx represent the 0/1 vector of length
|U|, where a component hx[u] = 1 iff element u 2 U has a positive count at the end of the stream.
Remark D.2. For every pair of insertion-only streams x and x

0,
hhx, hx0i = khxk0 + khx0k0 � khx�x0k0,

where � denotes concatenation and k.k0 is the `0 norm. Note that khxk0 is equal to the number of
distinct elements in the stream x.

Algorithm 4 Reduction A from InnerProducts to CountDistinct

Input: Dataset y = (y[1], . . . , y[n]) 2 {0, 1}n, black-box access to mechanism M for
CountDistinct in turnstile streams, and query vectors q(1), . . . , q(k) 2 {0, 1}n
Output: Estimates of inner products b = (b[1], . . . , b[k]) 2 Rk

1: Define the universe U = [n]

2: Initialize stream z
(0)

= ?n

3: for all i 2 [n] do

4: If y[i] = 1 set z(0)[i] = +i

5: Intialize streams z(1) =?2n
, . . . , z

(k)
=?2n and a vector r of length (2k + 1)n

6: for all (i, j) 2 [n]⇥ [k] such that q(j)[i] = 1 do

7: Set z(j)[i] = +i and z
(j)

[n+ i] = �i
8: Run M on the stream x z

(0) � z(1) � z(2) � · · · � z(k) and record the answers as vector r
9: for all j 2 [k] do

10: Compute kq(j)k0 and let b[j] = kq(j)k0 + r[n]� r[2jn]

11: Return the estimates (b[1], . . . , b[k])

Definition D.3 (Accuracy of a batch algorithm for inner products). Let k, n 2 N. A randomized
algorithm A is ↵-accurate for InnerProductsk,n if, for all queries q(1), . . . , q(k) 2 {0, 1}n, and all
datasets y 2 {0, 1}n, it outputs b = (b[1], . . . , b[k]) such that

Pr
coins of A

h
max
j2[k]

|b[j]� hq(j), yi|  ↵

i
� 0.99.

We now show that if the input mechanism M to Algorithm 4 is accurate for CountDistinct, then
Algorithm 4 is accurate for InnerProducts.
Lemma D.4. Let A be Algorithm 4. For all " > 0, � � 0,↵ 2 R+ and n, T, k 2 N, where
T � (2k + 1)n, if mechanism M is (", �)-event-level-DP and ↵-accurate for CountDistinct for
streams of length T with maximum flippancy at most 2k, then batch algorithm A is (", �)-DP and
2↵-accurate for InnerProductsk,n.

Proof of Lemma D.4. Algorithm A is (", �)-event-level-DP because M is (", �)-event-level-DP and
changing a record of the dataset y corresponds to changing a single entry of the stream x, and more
specifically, an entry of the stream z

(0) constructed in Step 4 of Algorithm 4.

We are left to prove the accuracy of A. Fix queries q(1), . . . , q(k) 2 {0, 1}n. First, observe that z(0) is
constructed so that y is its stream indicator vector. Similarly, observe that for all j 2 [k] , the stream
z
(j) is constructed so that q(j) is the indicator vector for z(j)[1 : n], namely, the first half of z(j).

Next, since at time 2jn, all of the stream entries pertaining to earlier queries q(1), . . . , q(j�1) have
been deleted and those pertaining to q

(j) have been inserted, khx[1:2jn]k0 = khz(0)�z(j)[1:n]k0 for
j 2 [k].

The streams z(0) and z
(j)

[1 : n] for j 2 [k] are all insertion-only streams. By Remark D.2,
hhz(0) , hz(j)[1:n]i = khz(0)k0 + khz(j)[1:n]k0 � khz(0)�z(j)[1:n]k0.

21

As observed earlier, hz(0) = y, hz(j)[1:n] = q
(j), and khx[1:2jn]k0 = khz(0)�z(j)[1:n]k0. Thus,

hy, q(j)i = khz(0)k0 + kq(j)k0 � khx[1:2jn]k0. (6)

Finally, the constructed stream x has maximum flippancy at most 2k. To see this, note that the universe
elements i 2 [n] such that y[i] = 1 always have count at least 1 in x[1 : t] for all t 2 [(2k+1)n]. The
elements i 2 [n] such that y[i] = 0 are inserted and deleted at most once for each stream z

(j)
, j 2 [k],

and thus have flippancy at most 2k in the stream x.

Since the mechanism M for CountDistinct is ↵-accurate on the constructed stream then, with
probability at least 0.99, the answers of M are within additive error ↵ of the distinct counts of the
corresponding stream prefixes. Condition on this event for the rest of this proof. Then, |r[n] �
khz(0)k0|  ↵. Similarly, |r[2jn] � khx[1:2jn]k0|  ↵ for all j 2 [k]. Additionally, kq(j)k0 is
computed exactly by A. Hence, by the triangle inequality, Equation 6, and the setting of b[j] in
Step 10, we have that |b[j] � hy, q(j)i|  2↵ for all j 2 [k]. Hence, with probability at least 0.99,
all of the estimates b[j] returned by A are within 2↵ of the inner products hq(j), yi, and so A is
2↵-accurate for InnerProductsk,n. ⌅

D.2 From the reduction to the accuracy lower bound

In this section, we use Lemma D.4 together with a known lower bound on the accuracy of private
mechanisms for answering inner-product queries to complete the proof of Theorem 1.6.

We use the following lower bound on inner product queries. Like a similar lower bound of Mir et al.
[50], the proof of this theorem uses the reconstruction attacks of Dinur and Nissim [21] and Dwork
et al. [23], together with the argument of De [17] that rules out reconstruction from the outputs of
(", �)-differentially private algorithms.
Theorem D.5 (Inner product queries lower bound (based on [21, 23, 50, 17]). There are constants
c1, c2 > 0 such that, for sufficiently large n > 0: if A is ↵-accurate for InnerProductsk,n (Defini-
tion D.3) with k = c1n and ↵ = c2

p
n, then A is not (1, 1

3)-differentially private.

We first prove Theorem 1.6 for " = 1 and then boost it to arbitrary " < 1 using the reduction in
Theorem G.1.
Lemma D.6. Let � 2 (0, 1] and sufficiently large w, T 2 N such that w  T . For all (1, �)-event-
level-DP mechanisms that are ↵-accurate for CountDistinct on turnstile streams of length T with
maximum flippancy at most w, if � = o(

1
T), then

↵ = ⌦(min(
p
w, T

1/4
)).

Proof of Lemma D.6. Fix sufficiently large w such that w 
p
T . Let c1, c2 > 0 be the constants

from Theorem D.5. Assume that M is a
�
1, o(

1
T)
�
-event-level-DP, (c22

p
w) -accurate mechanism for

CountDistinct for turnstile streams of length T with maximum flippancy at most w. Then, set k =
w
2

and n =
k
c1

=
w
2c1

. This choice of k and n satisfies the conditions of Lemma D.4 since the flippancy
of the stream is at most w = 2k and for w 

p
T we have that (2k + 1)n = (w + 1)

w
2c1
 w

2  T .
Therefore, A (Algorithm 4) is

�
1, o(

1
T)
�
-DP and (c2

p
w)-accurate for InnerProductsk,n. Since

1
T 

1
n and w = O(n), we get that A is (1, o(

1
n))-DP and c2

p
n-accurate for InnerProductsk,n,

where k = c1n.

However, by Theorem D.5, A cannot be (1, 1
3)-differentially private. We have obtained a contradiction.

Thus, the mechanism M with the desired accuracy of O(
p
w) does not exist. When w =

p
T , this

argument gives a lower bound of T 1/4 on the accuracy of M, and this lower bound applies to all
larger w, since a mechanism that is ↵-accurate for streams with maximum flippancy at most w > w

0

is also ↵-accurate for streams with maximum flippancy at most w0. ⌅

Finally, we invoke the reduction in Theorem G.1 to improve the dependence on " and complete the
proof of Theorem 1.6.

22

Proof of Theorem 1.6. Suppose " <
2
T . For these values of ", we prove an error lower bound of

⌦(T), via a group privacy argument. Suppose for the sake of contradiction that ↵  T/4. Consider
universe U = [T]. Let x = ?T and x

0 be a stream of length T such that x[t] = t for all t 2 [T].
These data streams differ in T entries. Let r[T] and r

0
[T] be the final outputs of M on input streams x

and x
0, respectively. By the accuracy of M, we have Pr[r[T]  T/4] � 0.99. Applying Lemma A.3

on group privacy with "  2/T and group size ` = T , we get Pr[r0[T] > T/4]  e
2 · Pr[r[T] >

T/4] +
2�
"  e

2 · 0.01+ o(
1
T) < 0.99 for sufficiently large T . But CountDistinct(x0

) = T , so M is
not T/4-accurate for x0, a contradiction. Hence, ↵ = ⌦(T).

Next, suppose " � 2
T . Lemma D.6 provides a lower bound of ↵

0
= ⌦

⇣
min

�p
w, T

1/4
� ⌘

for
("0 = 1,�0 = o(1/T))-event-level-DP, ↵0-accurate mechanisms for CountDistinct on turnstile streams
of length T with maximum flippancy at most w. By invoking Theorem G.1, we obtain the following
lower bound on accuracy for (", �)-DP mechanisms where � =

�0"
10 = o(

"
T):

↵ =
1

"
⌦

⇣p
w, ("T)

1/4
)

⌘
= ⌦

✓
min

✓p
w

"
,
T

1/4

"3/4

◆◆
.

Overall, since for different parameter regimes, we get lower bounds ⌦(T) and ⌦

⇣
min

⇣p
w
" ,

T 1/4

"3/4

⌘⌘
,

our final result is a lower bound of ⌦
⇣
min

⇣p
w
" ,

T 1/4

"3/4
, T

⌘⌘
. ⌅

E Item-level privacy lower bound

In this section, we prove Theorem 1.7 that provides strong lower bounds on the accuracy of any
item-level differentially private mechanism for CountDistinct in the continual release model for
turnstile streams. This lower bound is parameterized by w, the maximum flippancy of the input
stream.

E.1 Reduction from Marginals

To prove our lower bounds for CountDistinct, we reduce from the problem of approximating
marginals in the batch model.
Definition E.1 (Marginals). The function Marginalsn,d : {0, 1}n⇥d ! [0, 1]

d maps a dataset y of n
records and d attributes to a vector (q1(y), . . . , qd(y)), where qj , called the j

th marginal, is defined
as qj(y) = 1

n

Pn
i=1 y[i][j].

The reduction is presented in Algorithm 5. The privacy and accuracy guarantees of our reduction are
stated in Lemma E.3. In Section E.2, we use Lemma E.3 to complete the proof of Theorem 1.7.

Overview of the reduction. Let M be an (", �)-DP and ↵-accurate mechanism for CountDistinct
in the continual release model. We use M to construct a (O("), O(�))-DP batch algorithm A that
is (↵n)-accurate for Marginalsn,d. Consider a universe U = [n] [{?} for CountDistinct : UT

± ! N.
The main idea in the construction (presented in Algorithm 5) is to force M to output an estimate of
the marginals, one attribute at a time. Given a dataset y 2 {0, 1}n⇥d, the estimation of each marginal
proceeds in two phases:

• In phase one, A sends element i to M for each record y[i] with a 1 in the first attribute. The
answer produced by M at the end of phase one is an estimate of the sum of the first attribute
of all records y[1], . . . , y[n]. This can be divided by n to estimate the first marginal.

• In phase two, A ‘clears the slate’ by sending �i to M for each y[i] with a 1 in the first
attribute.

It repeats this for each attribute, collecting the answers from M, and then outputs its estimates for
the marginals. In actuality, in both phases of estimating the j

th marginal, A inputs ? for each y[i]

that has a 0 in the j
th attribute. This algorithm is (O("), O(�))-DP for Marginalsn,d since changing

one record y[i] in the input to the algorithm A will only change occurrences of a single element i (to
some other element j) in the input to the mechanism M. Additionally, note that this reduction works

23

Algorithm 5 Reduction A from Marginals to CountDistinct

Input: Dataset y = (y[1], . . . , y[n]) 2 {0, 1}n⇥d and black-box access to mechanism M for
CountDistinct in turnstile streams
Output: Estimates of marginals b = (b[1], . . . , b[d]) 2 Rd

1: Define the universe U = [n] [{?}
2: Initialize streams z(1) =?2n

, . . . , z
(d)

=?2n and a vector r of length 2nd

3: for all (i, j) 2 [n]⇥ [d] such that y[i][j] = 1 do

4: Set z(j)[i] = +i. . phase one
5: Set z(j)[n+ i] = �i. . phase two
6: Run M on the stream x z

(1) � z(2) � · · · � z(d) and record the answers as vector r
7: for all j 2 [d] do

8: b[j] = r[(2j � 1)n]/n

9: Return estimates (b[1], . . . , b[d])

equally well in the “likes” model where items can only be inserted when absent and deleted when
present, since the stream produced in the reduction has this structure.
Definition E.2 (Accuracy of an algorithm for marginals). Let � 2 [0, 1] and n, d 2 N. The error
ERRMarginals is defined as in Section 1. A batch algorithm A is �-accurate for Marginalsn,d if for all
datasets y 2 {0, 1}n⇥d,

Pr
coins of A

⇥
ERRMarginals(y,A(y))  �

⇤
� 0.99.

Lemma E.3. Let A be Algorithm 5. For all " 2 (0, 1], � � 0,↵ 2 R+ and d, n, w, T 2 N, where
T � 2dn and w � 2d, if mechanism M is (", �)-item-level-DP and ↵-accurate for CountDistinct
for streams of length T with maximum flippancy at most w in the continual release model, then batch
algorithm A is (2", 4�)-DP and ↵

n -accurate for Marginalsn,d.

Proof. We start by reasoning about privacy. Fix neighboring datasets y and y
0 that are inputs to

batch algorithm A (Algorithm 5). (Datasets y and y
0 differ in one row.) Let x and x

0 be the streams
constructed in Step 6 of A when it is run on y and y

0, respectively. By construction, x and x
0 are

2-item-neighbors. Since M is (", �)-item-level-DP, and A only post-processes the outputs received
from M, closure under post-processing (Lemma A.8) and group privacy (Lemma A.3) implies that
A is (2", 4�)-DP (where we use the fact that e2"�1

e"�1  4 for all " 2 (0, 1]).

Now we reason about accuracy. Let x = (x[1], . . . , x[2dn]) be the input stream provided to M when
A is run on dataset y. Recall that CountDistinct(x)[t] is the number of distinct elements in stream
x at time t. By construction, for all j 2 [d], the j

th marginal qj(y) of the dataset y is related to
CountDistinct(x)[(2j � 1)n] as follows

q
(j)

(y) =
1

n

X

i2[n]

y[i][j] =
1

n
· CountDistinct(x)[(2j � 1)n]. (7)

Notice that: (1) The coins of A are the same as the coins of M (since the transformation from M to
A is deterministic). (2) The marginals are computed in Step 8 of Algorithm 5 using the relationship
described by Equation (7). (3) The maximum flippancy of the stream constructed in Algorithm 5 is
at most 2d, since each item i 2 U is inserted and deleted at most once in each z

(j) for j 2 [d]. We
obtain that A inherits its probability of success from M:

Pr
coins of A

h
ERRMarginalsn,d

(y,A(y))  ↵

n

i
= Pr

coins of A


max
j2[d]

|qj(y)� b[j]|  ↵

n

�

= Pr
coins of M


max

t2{n,...,(2j�1)n}
|CountDistinct(x)[t]� r[t]|  ↵

�

� Pr
coins of M


max
t2[T]

|CountDistinct(x)[t]� r[t]|  ↵

�

= Pr
coins of M

[ERRCountDistinct(x, r)  ↵] � 0.99,

24

where we used that M is ↵-accurate for CountDistinct for streams of length T with maximum
flippancy at most w  2d. Thus, Algorithm 5 is (↵n)-accurate for Marginalsn,d, completing the proof
of Lemma E.3. ⌅

E.2 From the reduction to the accuracy lower bound

In this section, we use Lemma E.3 (the reduction from Marginals to CountDistinct) together with
previously established lower bounds for Marginals to complete the proof of Theorem D.5. The lower
bounds on the accuracy of private algorithms for Marginals are stated in Items 1 and 2 of Lemma E.4
for approximate differential privacy and pure differential privacy, respectively. Item 2 in Lemma E.4
is a slight modification of the lower bound from Hardt and Talwar [38] and follows from a simple
packing argument.

Lemma E.4 (Lower bounds for Marginals [12, 38]). For all " 2 (0, 2] , � 2 [0, 1], � 2 (0, 1),
d, n 2 N, and algorithms that are (", �)-differentially private and �-accurate for Marginalsn,d, the
following statements hold.

1 [12]. If � > 0 and � = o(1/n), then n = ⌦

⇣ p
d

�" log d

⌘
.

2 [38]. If � = 0, then n = ⌦

⇣
d
�"

⌘
.

To prove Theorem 1.7, we show that the lower bound holds for " = 1, and use Theorem G.1 to
extend it to all " < 1. The approximate-DP lower bound (on the error term ↵) in Theorem 1.7 is the
minimum of two terms. To prove this bound, we need to establish that, for every possible range of
parameters, at least one term serves as a lower bound for ↵.

Lemma E.5. Let � 2 (0, 1], and sufficiently large w, T 2 N such that w  T . For all (1, �)-item-
level-DP mechanisms that are ↵-accurate for CountDistinct on turnstile streams of length T with
maximum flippancy at most w,

1 If � > 0 and � = o(1/T), then ↵ = ⌦

⇣
min

⇣ p
w

logw ,
T 1/3

log T

⌘⌘
.

2 If � = 0, then ↵ = ⌦

⇣
min

⇣
w,
p
T

⌘⌘
.

Proof. Let A be the algorithm for Marginalsn,d with black-box access to an ↵-accurate mechanism
M for CountDistinct, as defined in Algorithm 5. If T � 2dn and w � 2d, then by Lemma E.3,
algorithm A is (2, 4�)-differentially private and (

↵
n)-accurate for Marginalsn,d. We use Lemma E.4

to lower bound ↵.

Case 1 (Approximate DP, � > 0, � = o(1/n)) : Suppose w  T
2/3. Pick number of dimensions

d = w/2 and number of records n =
T
w (so that T = 2dn). If ↵

n < 1, then by Item 1 of Lemma E.4,

n = ⌦

⇣
n
p
d

↵ log d

⌘
which means that ↵ = ⌦

⇣ p
d

log d

⌘
= ⌦

⇣ p
w

logw

⌘
. Otherwise, ↵ � n =) ↵ � T

w �

T
1/3 � T 1/3

logw �
p
w

logw .

Now suppose w = T
2/3. The above argument gives a lower bound of ⌦

⇣ p
T 2/3

log T 2/3

⌘
on the accuracy

of M. This lower bound applies to all w > T
2/3, since a mechanism that is ↵-accurate for streams

with maximum flippancy at most w > w
0 is also ↵-accurate for streams with maximum flippancy at

most w0.

Case 2 (Pure DP, � = 0): The proof for � = 0 is similar, except that we consider the cases w 
p
T

and w >
p
T and use Item 2 from Lemma E.4 instead of Item 1: Suppose w 

p
T . Pick a dimension

d = w/2, and number of entries n =
T
w . If ↵

n < 1, then by Lemma E.3 and Item 1 of Lemma E.4,
n = ⌦

�
n·d
↵·"
�

which means that ↵ = ⌦
�
d
"

�
= ⌦(w). Otherwise, if ↵ � n, then ↵ � T

w �
p
T � w.

Now, suppose w �
p
T . Since M is also ↵-accurate for streams of length T with maximum flippancy

w
0
=
p
T , the bound for w 

p
T still applies: That is ↵ = ⌦(w

0
) =) ↵ = ⌦(

p
T).

This concludes the proof of Lemma E.5. ⌅

25

Finally, we extend the lower bounds for " = 1 from Lemma E.5 to the general case of " < 0.5 using
Theorem G.1.

Proof of Theorem 1.7. Suppose " <
2
T . For these values of ", we prove an error lower bound of

⌦(T), via a group privacy argument that is exactly the same as in the item-level lower bound (we
direct the reader to the proof of Theorem 1.6 for more details).

Now suppose " � 2
T . For � > 0, Lemma E.5 provides a lower bound of ↵0

= ⌦

⇣
min

⇣ p
w

logw ,
T 1/3

log T

⌘⌘

on accuracy for ("0 = 1,�0 = o(1/T))-item-level-DP, ↵0-accurate mechanisms for CountDistinct on
turnstile streams of length T with maximum flippancy at most w. By invoking Theorem G.1, we can
extend this to the following lower bound for (", �)-DP mechanisms where � =

�0"
10 = o(

"
T):

↵ =
1

"
⌦

✓
min

✓ p
w

logw
,
("T)

1/3

log "T

◆◆
= ⌦

✓
min

✓ p
w

" logw
,

T
1/3

"2/3 log "T

◆◆
.

In different parameter regimes, we get lower bounds ⌦(T) and ⌦

⇣
min

⇣ p
w

" logw ,
T 1/3

"2/3 log "T

⌘⌘
. Over-

all, we get a lower bound of ⌦
⇣
min

⇣ p
w

" logw ,
T 1/3

"2/3 log "T
, T

⌘⌘
. A similar proof works for � = 0. ⌅

F A concentration inequality for Gaussian random variables

Lemma F.1. For all random variables R ⇠ N (0,�
2
),

Pr[|R| > �]  2e
� �2

2�2 .

Lemma F.2. Consider m random variables R1, . . . , Rm ⇠ N (0,�
2
). Then

Pr[max
j2[m]

|Rj | > �]  2me
� �2

2�2 .

Proof. By a union bound and Lemma F.1,

Pr[max
j2[m]

|Ri| > �] = Pr[9i 2 [m] such that |Ri| > �]


mX

j=1

Pr[|Ri| > �] 
mX

j=1

2e
� �2

2�2 = 2me
� �2

2�2 . ⌅

G General lower bound reduction for small "

We describe an adaptation of a folklore reduction to our problem of interest that allows us to extend a
lower bound for " = 1 to any " < 1. The theorem is stated for item-level differential privacy, but
applies to event-level differential privacy as well.
Theorem G.1. Let ↵ : R ! R be an increasing function. Let T 2 N, and ", � 2 [0, 1] such that
" � 1

T . If for all T 2 N, every mechanism for CountDistinct that is (1, �)-item-level DP for streams
of length T has error parameter at least ↵(T), then every mechanism for CountDistinct that is
(", �"/10)-item-level DP for streams of length T

0 has error parameter at least ↵("T 0)
2" .

Proof. Let T 0 2 N, ", � 2 [0, 1]. Let ` = b1/"c. We prove the contrapositive. Namely, let M0

be a mechanism for CountDistinct that is ↵("T 0)
2" -accurate and (",

�"
10)-item-level-DP for streams of

length T
0. We will use M0 to construct a mechanism M for CountDistinct that is ↵(T)-accurate

and (1, �)-item-level-DP for streams of length T = dT 0
/`e.

Given a stream x 2 UT
± of length T = dT 0

/`e, we create a new stream x
0 of length T

0 with insertions
and deletions from a larger universe U 0

= [`]⇥ U (so every item in U corresponds to ` distinct items
in U 0), as follows: Initialize x

0 to be empty. For t 2 [T], if x[t] = +i, append +(i, 1), . . . ,+(i, `) to
x
0. Similarly, if x[t] = �i, append �(i, 1), . . . ,�(i, `). If x[t] =? then, append ` stream entries ?

26

to x
0. Finally, define the output of M as follows: run M0 on x

0 and, for each time step t 2 T , output
M(x)[t] =

1
` · M

0
(x

0
)[t · `].

Changing a single item of x changes at most ` items of x0. Therefore, by the privacy guarantee of
M0 and by group privacy, M is (1, �)-item-level DP, for streams of length T = dT 0

/`e. Finally, the
accuracy guarantee of M follows from the accuracy guarantee of M0 : By the construction of x0, it
holds CountDistinct(x0

)[t · `] = ` ·CountDistinct(x)[t], and by the accuracy of M0, with probability
0.99, the maximum error of M0 on every input stream x

0 of length T 0 is at most ↵("T 0
)/2". Therefore,

with probability at least 0.99, the error of M is at most 1
` · ↵("T

0
)/2"  1

2"` · ↵(" · ` · T)  ↵(T),
as desired. This concludes the proof of Theorem G.1. ⌅

27

	Introduction
	Our results
	Our techniques
	Related work
	Broader impact, limitations, and open questions
	Organization

	Item-level private mechanisms for CountDistinct
	Enforcing a given flippancy bound w
	Adaptively estimating a good flippancy bound w

	Additional background on differential privacy
	Preliminaries on zero-concentrated differential privacy (zCDP)

	Proofs omitted from Section 2.1
	Proofs omitted from Section 2.2
	Proof sketch of Theorem 1.5

	Event-level privacy lower bound
	Reduction from InnerProducts
	From the reduction to the accuracy lower bound

	Item-level privacy lower bound
	Reduction from Marginals
	From the reduction to the accuracy lower bound

	A concentration inequality for Gaussian random variables
	General lower bound reduction for small

