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Abstract
The contextual linear bandit is an important online learning problem where given1

arm features, a learning agent selects an arm at each round to maximize the cu-2

mulative rewards in the long run. A line of works, called the clustering of bandits3

(CB), utilize the collaborative effect over user preferences and have shown signifi-4

cant improvements over classic linear bandit algorithms. However, existing CB5

algorithms require well-specified linear user models and can fail when this critical6

assumption does not hold. Whether robust CB algorithms can be designed for more7

practical scenarios with misspecified user models remains an open problem. In this8

paper, we are the first to present the important problem of clustering of bandits with9

misspecified user models (CBMUM), where the expected rewards in user models10

can be perturbed away from perfect linear models. We devise two robust CB algo-11

rithms, RCLUMB and RSCLUMB (representing the learned clustering structure12

with dynamic graph and sets, respectively), that can accommodate the inaccurate13

user preference estimations and erroneous clustering caused by model misspecifi-14

cations. We prove regret upper bounds of O(ϵ∗T
√
md log T + d

√
mT log T ) for15

our algorithms under milder assumptions than previous CB works, which match16

the lower bound asymptotically in T up to logarithmic factors, and also match the17

state-of-the-art results in several degenerate cases. Our regret analysis is novel18

and different from the typical proof flow of previous CB works. The techniques in19

proving the regret caused by misclustering users are quite general and may be of20

independent interest. Experiments on both synthetic and real-world data show our21

outperformance over previous algorithms.22

1 Introduction23

Stochastic multi-armed bandit (MAB) [2, 4, 20] is an online sequential decision-making problem,24

where the learning agent selects an action and receives a corresponding reward at each round, so as25

to maximize the cumulative reward in the long run. MAB algorithms have been widely applied in26

recommendation systems to handle the exploration and exploitation trade-off [19, 36].27

To deal with large-scale applications, the contextual linear bandits [22, 8, 1] have been studied, where28

the expected reward of each arm is assumed to be perfectly linear in their features. Leveraging the29

contextual side information about the user and arms, linear bandits can provide more personalized30

recommendations [15]. Classical linear bandit approaches, however, ignore the often useful tool of31

collaborative filtering. To utilize the relationships among users, the problem of clustering of bandits32

(CB) has been proposed [11]. Specifically, CB algorithms adaptively partition users into clusters and33

utilize the collaborative effect of users to enhance learning performance.34

Although existing CB algorithms have shown great success in improving recommendation qualities,35

there exist two major limitations. First, all previous works on CB [11, 23, 25] assume that for each36

user, the expected rewards follow a perfectly linear model with respect to the user preference vector37

and arms’ feature vectors. In many real-world scenarios, due to feature noises or uncertainty [14], the38

reward may not necessarily conform to a perfectly linear function, or even deviates a lot from linearity39
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[13]. Second, previous CB works assume that for users within the same cluster, their preferences are40

exactly the same. Due to the heterogeneity in users’ personalities and interests, similar users may not41

have identical preferences, invalidating this strong assumption.42

To address these issues, we propose a novel problem of clustering of bandits with misspecified user43

models (CBMUM). In CBMUM, the expected reward model of each user does not follow a perfectly44

linear function but with possible additive deviations. We assume users in the same underlying cluster45

share a common preference vector, meaning they have the same linear part in reward models, but the46

deviation parts are allowed to be different, better reflecting the varieties of user personalities.47

The relaxation of perfect linearity and the reward homogeneity within the same cluster bring many48

challenges to the CBMUM problem. In CBMUM, we not only need to handle the uncertainty49

from the unknown user preference vectors, but also have to tackle the additional uncertainty from50

model misspecifications. Due to such uncertainties, it becomes highly challenging to design a robust51

algorithm that can cluster the users appropriately and utilize the clustered information judiciously.52

On the one hand, the algorithm needs to be more tolerant in the face of misspecifications so that more53

similar users can be clustered together to utilize the collaborative effect. On the other hand, it has to54

be more selective to rule out the possibility of misclustering users with large preference gaps.55

1.1 Our Contributions56

This paper makes the following four contributions.57

New Model Formulation. We are the first to formulate the clustering of bandits with misspecified58

user models (CBMUM) problem, which is more practical by removing the perfect linearity assumption59

in previous CB works.60

Novel Algorithm Designs. We design two novel algorithms, RCLUMB and RSCLUMB, which61

robustly learn the clustering structure and utilize this collaborative information for faster user prefer-62

ence elicitation. Specifically, RCLUMB keeps updating a dynamic graph over all users, where users63

connected directly by edges are supposed to be in the same cluster. RCLUMB adaptively removes64

edges and recommends items based on historical interactions. RSCLUMB represents the clustering65

structure with sets, which are dynamicly merged and split during the learning process. Due to the66

page limit, we only illustrate the RCLUMB algorithm in the main paper. We leave the exposition,67

illustration, and regret analysis of the RSCLUMB algorithm in Appendix K.68

To overcome the challenges brought by model misspecifications, we do the following key steps69

in the RCLUMB algorithm. (i) To ensure that with high probability, similar users will not be70

partitioned apart, we design a more tolerant edge deletion rule by taking model misspecifications into71

consideration. (ii) Due to inaccurate user preference estimations caused by model misspecifications,72

trivially following previous CB works [11, 23, 26] to directly use connected components in the73

maintained graph as clusters would miscluster users with big preference gaps, causing a large regret.74

To be discriminative in cluster assignments, we filter users directly linked with the current user75

in the graph to form the cluster used in this round. With these careful designs of (i) and (ii), we76

can guarantee that with high probability, information of all similar users can be leveraged, and77

only users with close enough preferences might be misclustered, which will only mildly impair the78

learning accuracy. Additionally: (iii) we design an enlarged confidence radius to incorporate both the79

exploration bonus and the additional uncertainty from misspecifications when recommending arms.80

The design of RSCLUMB follows similar ideas, which we leave in the Appendix K due to page limit.81

Theoretical Analysis with Milder Assumptions. We prove regret upper bounds for our algorithms82

of O(ϵ∗T
√
md log T + d

√
mT log T ) in CBMUM under much milder and practical assumptions83

(in arm generation distribution) than previous CB works, which match the state-of-the-art results84

in degenerate cases. Our proof is quite different from the typical proof flow of previous CB works85

(details in Appendix C). One key challenge is to bound the regret caused by misclustering users86

with close but not the same preference vectors and use the inaccurate cluster-based information to87

recommend arms. To handle the challenge, we prove a key lemma (Lemma 5.7) to bound this part of88

regret. We defer its details in Section 5 and Appendix G. The techniques and results for bounding89

this part are quite general and may be of independent interest. We also give a regret lower bound of90

Ω(ϵ∗T
√
d) for CBMUM, showing that our upper bounds are asymptotically tight with respect to T91

up to logarithmic factors. We leave proving a tighter lower bound for CBMUM as an open problem.92

Good Experimental Performance. Extensive experiments on both synthetic and real-world data93

show the advantages of our proposed algorithms over the existing algorithms.94
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2 Related Work95

Our work is closely related to two lines of research: online clustering of bandits (CB) and misspecified96

linear bandits (MLB). More discussions on related works can be found in Appendix A.97

The paper [11] first formulates the CB problem and proposes a graph-based algorithm. The work [24]98

further considers leveraging the collaborative effects on items to guide the clustering of users. The99

work [23] considers the CB problem in the cascading bandits setting with random prefix feedback.100

The paper [25] also considers users with different arrival frequencies. A recent work [26] proposes101

the setting of clustering of federated bandits, considering both privacy protection and communication102

requirements. However, all these works assume that the reward model for each user follows a perfectly103

linear model, which is unrealistic in many real-world applications. To the best of our knowledge, this104

paper is the first work to consider user model misspecifications in the CB problem.105

The work [13] first proposes the misspecified linear bandits (MLB) problem, shows the vulnerability106

of linear bandit algorithms under deviations, and designs an algorithm RLB that is only robust to107

non-sparse deviations. The work [21] proposes two algorithms to handle general deviations, which108

are modifications of the phased elimination algorithm [20] and LinUCB [1]. Some recent works109

[27, 10] use model selection methods to deal with unknown exact maximum model misspecification110

level. Note that the work [10] has an additional assumption on the access to an online regression111

oracle, and the paper [27] still needs to know an upper bound of the unknown exact maximum model112

deviation level. None of them consider the CB setting with multiple users, thus differing from ours.113

We are the first to initialize the study of the important CBMUM problem, and propose a general114

framework for dealing with model misspecifications in CB problems. Our study is based on funda-115

mental models on CB [11, 25] and MLB [21], the algorithm design ideas and theoretical analysis are116

pretty general. We leave incorporating the model selection methods [27, 10] into our framework to117

address the unknown exact maximum model misspecification level as an interesting future work.118

3 Problem Setup119

This section formulates the problem of “clustering of bandits with misspecified user models" (CB-120

MUM). We use boldface lowercase and boldface CAPITALIZED letters for vectors and matrices. We121

use |A| to denote the number of elements in A, [m] to denote {1, . . . ,m}, and ∥x∥M =
√
x⊤Mx122

to denote the matrix norm of vector x regarding the positive semi-definite (PSD) matrix M .123

In CBMUM, there are u users denoted by U = {1, 2, . . . , u}. Each user i ∈ U is associated with an124

unknown preference vector θi ∈ Rd, with ∥θi∥2 ≤ 1. We assume there is an unknown underlying125

clustering structure over users representing the similarity of their behaviors. Specifically, U can be126

partitioned into a small number m (i.e., m ≪ u) clusters, V1, V2, . . . Vm, where ∪j∈[m]Vj = U , and127

Vj ∩ Vj′ = ∅, for j ̸= j′. We call these clusters ground-truth clusters and use V = {V1, V2, . . . , Vm}128

to denote the set of these clusters. Users in the same ground-truth cluster share the same preference129

vector, while users from different ground-truth clusters have different preference vectors. Let θj
130

denote the common preference vector for Vj and j(i) ∈ [m] denote the index of the ground-truth131

cluster that user i belongs to. For any ℓ ∈ U , if ℓ ∈ Vj(i), then θℓ = θi = θj(i).132

At each round t ∈ [T ], a user it ∈ U comes to be served. The learning agent receives a finite133

arm set At ⊆ A to choose from (with |At| ≤ C, ∀t), where each arm a ∈ A is associated with a134

feature vector xa ∈ Rd, and ∥xa∥2 ≤ 1. The agent assigns an appropriate cluster V t for user it and135

recommends an item at ∈ At based on the aggregated historical information gathered from cluster136

V t. After receiving the recommended item at, user it gives a random reward rt ∈ [0, 1] to the agent.137

To better model real-world scenarios, we assume that the reward rt follows a misspecified linear138

function of the item feature vector xat and the unknown user preference vector θit . Formally,139

rt = x⊤
at
θit + ϵit,tat

+ ηt , (1)

where ϵit,t = [ϵit,t1 , ϵit,t2 , . . . , ϵit,t|At|]
⊤ ∈ R|At| denotes the unknown deviation in the expected140

rewards of arms in At from linearity for user it at t, and ηt is the 1-sub-Gaussian noise. We allow the141

deviation vectors for users in the same ground-truth cluster to be different.142

We assume the clusters, users, items, and model misspecifications satisfy the following assumptions.143

Assumption 3.1 (Gap between different clusters). The gap between any two preference vectors for144

different ground-truth clusters is at least an unknown positive constant γ145 ∥∥∥θj − θj′
∥∥∥
2
≥ γ > 0 ,∀j, j′ ∈ [m] , j ̸= j′ .
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Assumption 3.2 (Uniform arrival of users). At each round t, a user it comes uniformly at random146

from U with probability 1/u, independent of the past rounds.147

Assumption 3.3 (Item regularity). At each time step t, the feature vector xa of each arm a ∈ At148

is drawn independently from a fixed but unknown distribution ρ over {x ∈ Rd : ∥x∥2 ≤ 1}, where149

Ex∼ρ[xx
⊤] is full rank with minimal eigenvalue λx > 0. Additionally, at any time t, for any fixed150

unit vector θ ∈ Rd, (θ⊤x)2 has sub-Gaussian tail with variance upper bounded by σ2.151

Assumption 3.4 (Bounded misspecification level). We assume that there is a pre-specified maximum152

misspecification level parameter ϵ∗ such that
∥∥ϵi,t∥∥∞ ≤ ϵ∗, ∀i ∈ U , t ∈ [T ].153

Remark 1. All these assumptions basically follow previous works on CB [11, 12, 23, 3, 26] and MLB154

[21]. Note that Assumption 3.3 is less stringent and more practical than previous CB works which also155

put restrictions on the variance upper bound σ2. For Assumption 3.2, our results can easily generalize156

to the case where the user arrival follows any distributions with minimum arrival probability greater157

than pmin. For Assumption 3.4, note that ϵ∗ can be an upper bound on the maximum misspecification158

level, not the exact maximum itself. In real-world applications, the deviations are usually small [13],159

and we can set a relatively big ϵ∗ as an upper bound. For more discussions please refer to Appendix B160

Let a∗t ∈ argmaxa∈At
x⊤
a θit + ϵit,ta denote an optimal arm which gives the highest expected reward161

at t. The goal of the agent is to minimize the expected cumulative regret162

R(T ) = E[
∑T

t=1(x
⊤
a∗
t
θit + ϵit,ta∗

t
− x⊤

at
θit − ϵit,tat

)] . (2)

4 Algorithm163

Algorithm 1 Robust Clustering of Misspecified Bandits Algorithm (RCLUMB)

1: Input: Deletion parameter α1, α2 > 0, f(T ) =
√

1+ln(1+T )
1+T , λ, β, ϵ∗ > 0.

2: Initialization: M i,0 = 0d×d, bi,0 = 0d×1, Ti,0 = 0 , ∀i ∈ U ; a complete Graph G0 = (U , E0)
over U .

3: for all t = 1, 2, . . . , T do
4: Receive the index of the current user it ∈ U , and the current feasible arm set At;
5: Filter user it and users i ∈ U that are directly connected with user it via edge (i, it) ∈ Et−1,

to form the cluster V t;
6: Compute the estimated statistics for cluster V t

MV t,t−1 = λI +
∑

i∈V t
M i,t−1 , bV t,t−1 =

∑
i∈V t

bi,t−1 , θ̂V t,t−1 = M
−1

V t,t−1bV t,t−1;

7: Recommend an arm at with the largest UCB index (Eq.(5)), and receive the reward rt ∈ [0, 1];

8: Update the statistics for user it M it,t = M it,t−1 +xat
x⊤
at
, bit,t = bit,t−1 + rtxat

, Tit,t =

Tit,t−1 + 1 , θ̂it,t = (λI +M it,t)
−1bit,t;

9: Keep the statistics of other users unchanged
M ℓ,t = M ℓ,t−1, bℓ,t = bℓ,t−1, Tℓ,t = Tℓ,t−1, θ̂ℓ,t = θ̂ℓ,t−1, for all ℓ ∈ U , ℓ ̸= it;

10: Delete the edge (it, ℓ) ∈ Et−1, if∥∥∥θ̂it,t − θ̂ℓ,t

∥∥∥
2
≥ α1

(
f(Tit,t) + f(Tℓ,t)

)
+ α2ϵ∗ ,

and get an updated graph Gt = (U , Et);

This section introduces our algorithm called “Robust CLUstering of Misspecified Bandits"164

(RCLUMB) (Algo.1). RCLUMB is a graph-based algorithm. The ideas and techniques of RCLUMB165

can be easily generalized to set-based algorithms. To illustrate this generalizability, we also design a166

set-based algorithm RSCLUMB. We leave the exposition and analysis of RSCLUMB in Appendix K.167

For ease of interpretation, we define the coefficient168

ζ ≜ 2ϵ∗

√
2

λ̃x

, (3)

where λ̃x ≜
∫ λx

0
(1 − e−

(λx−x)2

2σ2 )Cdx. ζ is theoretically the minimum gap between two users’169

preference vectors that an algorithm can distinguish with high probability, as supported by Eq.(50) in170
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the proof of Lemma H.1 in Appendix H. Note that the algorithm does not require knowledge of ζ.171

We also make the following definition for illustration.172

Definition 4.1 (ζ-close users and ζ-good clusters). Two users i, i′ ∈ U are ζ-close if ∥θi − θi′∥2 ≤ ζ .173

Cluster V is a ζ-good cluster at time t, if ∀ i ∈ V , user i and the coming user it are ζ-close.174

We also say that two ground-truth clusters are “ζ-close" if their preference vectors’ gap is less than ζ .175

Now we introduce the process and intuitions of RCLUMB (Algo.1). The algorithm maintains an176

undirected user graph Gt = (U , Et), where users are connected with edges if they are inferred to be177

in the same cluster. We denote the connected component in Gt−1 containing user it at round t as Ṽt.178

Cluster Detection. G0 is initialized to be a complete graph, and will be updated adaptively based179

on the interactive information. At round t, user it ∈ U comes to be served with a feasible arm180

set At (Line 4). Due to model misspecifications, it is impossible to cluster users with exactly the181

same preference vector θ, but similar users whose preference vectors are within the distance of ζ.182

According to the proof of Lemma H.1, after a sufficient time, with high probability, any pair of users183

directly connected by an edge in Et−1 are ζ-close. However, if we trivially follow previous CB works184

[11, 23, 26] to directly use the connected component Ṽt as the inferred cluster for user it at round t, it185

will cause a large regret. The reason is that in the worst case, the preference vector θ of the user in Ṽt186

who is h-hop away from user it could deviate by hζ from θit , where h can be as large as |Ṽt|. Based187

on this reasoning, our key point is to select the cluster V t as the users at most 1-hop away from it in188

the graph. In other words, after some interactions, V t forms a ζ-good cluster with high probability;189

thus, RCLUMB can avoid using misleading information from dissimilar users for recommendations.190

Cluster-based Recommendation. After finding the appropriate cluster V t for it, the agent estimates191

the common user preference vector based on the historical information associated with cluster V t by192

θ̂V t,t−1 = argmin
θ∈Rd

∑
s∈[t−1]

is∈V t

(rs − x⊤
as
θ)2 + λ ∥θ∥22 , (4)

where λ > 0 is a regularization coefficient. Its closed-form solution is θ̂V t,t−1 = M
−1

V t,t−1bV t,t−1,193

where MV t,t−1 = λI +
∑

s∈[t−1]

is∈V t

xasx
⊤
as

, bV t,t−1 =
∑

s∈[t−1]

is∈V t

rasxas .194

Based on this estimation, in Line 7, the agent recommends an arm using the UCB strategy195

at = argmaxa∈At
min{1,x⊤

a θ̂V t,t−1︸ ︷︷ ︸
R̂a,t

+β ∥xa∥M−1

V t,t−1

+ ϵ∗
∑

s∈[t−1]

is∈V t

∣∣∣x⊤
a M

−1

V t,t−1xas

∣∣∣︸ ︷︷ ︸
Ca,t

} ,
(5)

where β =
√
λ +

√
2 log( 1

δ
) + d log(1 + T

λd
), R̂a,t denotes the estimated reward of arm a at t, Ca,t196

denotes the confidence radius of arm a at round t.197

Due to deviations from linearity, the estimation R̂a,t computed by a linear function is no longer198

accurate. To handle the estimation uncertainty of model misspecifications, we design an enlarged199

confidence radius Ca,t. The first term of Ca,t in Eq.(5) captures the uncertainty of online learning for200

the linear part, and the second term related to ϵ∗ reflects the additional uncertainty from deviations201

from linearity. The design of Ca,t theoretically relies on Lemma 5.6 which will be given in Section 5.202

Update User Statistics. Based the feedback rt, in Line 8 and 9, the agent updates the statistics for203

user it. Specifically, the agent estimates the preference vector θit by204

θ̂it,t = argmin
θ∈Rd

∑
s∈[t]
is=it

(rs − x⊤
as
θ)2 + λ ∥θ∥22 , (6)

with solution θ̂it,t = (λI +M it,t)
−1bit,t , where M it,t =

∑
s∈[t]
is=it

xasx
⊤
as

, bit,t =
∑

s∈[t]
is=it

rasxas .205

Update the Graph Gt. Finally, in Line 10, the agent verifies whether the similarities between user it206

and other users are still true based on the updated estimation θ̂it,t. For every user ℓ ∈ U connected207

with user it via edge (it, ℓ) ∈ Et−1, if the gap between her estimated preference vector θ̂ℓ,t and208

θ̂it,t is larger than a threshold supported by Lemma H.1, the agent will delete the edge (it, ℓ) to split209

them apart. The threshold in Line 10 is carefully designed, taking both estimation uncertainty in210

a linear model and deviations from linearity into consideration. As shown in the proof of Lemma211
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H.1 (in Appendix H), using this threshold, with high probability, edges between users in the same212

ground-truth clusters will not be deleted, and edges between users that are not ζ-close will always be213

deleted. Together with the filtering step in Line 5, with high probability, the algorithm will leverage214

all the collaborative information of similar users and avoid misusing the information of dissimilar215

users. The updated graph Gt will be used in the next round.216

5 Theoretical Analysis217

In this section, we theoretically analyze the performance of the RCLUMB algorithm by giving an218

upper bound of the expected regret defined in Eq.(2). Due to the space limitation, we only show the219

main result (Theorem 5.3), key lemmas, and a sketched proof for Theorem 5.3. Detailed proofs, other220

technical lemmas, and the regret analysis of the RSLUMB algorithm can be found in the Appendix.221

To state our main result, we first give two definitions as follows. The first definition is about the222

minimum separable gap constant γ1 of a CBMUM problem instance.223

Definition 5.1 (Minimum separable gap γ1). The minimum separable gap constant γ1 of a CBMUM224

problem instance is the minimum gap over the gaps among users that are greater than ζ (Eq. (3))225

γ1 = min{∥θi − θℓ∥2 : ∥θi − θℓ∥2 > ζ,∀i, ℓ ∈ U} ,withmin ∅ = ∞.

Remark 2. In CBMUM, the role of γ1 − ζ is similar to that of γ (given in Assumption 3.1) in the226

previous CB problem with perfectly linear models, quantifying the hardness of performing clustering227

on the problem instance. Intuitively, users are easier to cluster if γ1 is larger, and the deduction228

of ζ shows the additional difficulty due to model diviations. If there are no misspecifications, i.e.,229

ζ = 2ϵ∗

√
2
λx

= 0, then γ1 = γ, recovering the minimum separable gap between clusters in the230

classic CB problem [11, 23] without model misspecifications.231

The second definition is about the number of “hard-to-cluster users" ũ.232

Definition 5.2 (Number of “hard-to-cluster users" ũ). The number of “hard-to-cluster users" ũ is the233

number of users in the ground-truth clusters which are ζ-close to some other ground-truth clusters234

ũ =
∑
j∈[m]

|Vj | × I{∃j′ ∈ [m], j′ ̸= j :
∥∥∥θj′ − θj

∥∥∥
2
≤ ζ} ,

where I{·} denotes the indicator function of the argument, |Vj | denotes the number of users in Vj .235

Remark 3. ũ captures the number of users who belong to different ground-truth clusters but their236

gaps are less than ζ. These users may be merged into one cluster by mistake and cause certain regret.237

The following theorem gives an upper bound on the expected regret achieved by RCLUMB.238

Theorem 5.3 (Main result on regret bound). Suppose that the assumptions in Section 3 are satisfied.239

Then the expected regret of the RCLUMB algorithm for T rounds satisfies240

R(T ) ≤ O

(
u

(
d

λ̃x(γ1 − ζ)2
+

1

λ̃2
x

)
log T +

ũ

u

ϵ∗
√
dT

λ̃1.5
x

+ ϵ∗T
√

md log T + d
√
mT log T

)
(7)

≤ O(ϵ∗T
√

md log T + d
√
mT log T ) , (8)

where γ1 is defined in Definition 5.1, and ũ is defined in Definition 5.2).241

Discussion and Comparison. The bound in Eq.(7) has four terms. The first term is the time needed242

to gather enough information to assign appropriate clusters for users. The second term is the regret243

caused by misclustering ζ-close but not precisely similar users together, which is unavoidable with244

model misspecifications. The third term is from the preference estimation errors caused by model245

deviations. The last term is the usual term in CB with perfectly linear models [11, 23, 25].246

Let us discuss how the parameters affect this regret bound.247

• If γ1 − ζ is large, the gaps between clusters that are not “ζ-close" are much greater than the248

minimum gap ζ for the algorithm to distinguish, the first term in Eq.(7) will be small as it is easy to249

identify their dissimilarities. The role of γ1 − ζ in CBMUM is similar to that of γ in the previous CB.250

• If ũ is small, indicating that few ground-truth clusters are “ζ-close", RCLUMB will hardly251

miscluster different ground-truth clusters together thus the second term in Eq.(7) will be small.252

• If the deviation level ϵ∗ is small, the user models are close to linearity and the misspecifications253

will not affect the estimations much, then both the second and third term in Eq.(7) will be small.254

The following theorem gives a regret lower bound of the CBMUM problem.255
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Theorem 5.4 (Regret lower bound for CBMUM). There exists a problem instance for the CBMUM256

problem such that for any algorithm R(T ) ≥ Ω(ϵ∗T
√
d) .257

The proof can be found in Appendix F. The upper bounds in Theorem 5.3 asymptotically match this258

lower bound with respect to T up to logarithmic factors (and a constant factor of
√
m where m is259

typically small in real-applications), showing the tightness of our theoretical results. Additionally, we260

conjecture the gap for the m factor is due to the strong assumption that cluster structures are known261

to prove this lower bound, and whether there exists a tighter lower bound is left for future work.262

We then compare our results with two degenerate cases. First, when m = 1 (indicating ũ = 0), our263

setting degenerates to the MLB problem where all users share the same preference vector. In this264

case, our regret bound is O(ϵ∗T
√
d log T + d

√
T log T ), exactly matching the current best bound of265

MLB [21]. Second, when ϵ∗ = 0, our setting reduces to the CB problem with perfectly linear user266

models and our bounds become O(d
√
mT log T ), also perfectly match the existing best bound of267

the CB problem [23, 25]. The above discussions and comparisons show the tightness of our regret268

bounds. Additionally, we also provide detailed discussions on why trivially combining existing works269

on CB and MLB would not get any non-vacuous regret upper bound in Appendix D.270

We define the following “good partition" for ease of interpretation.271

Definition 5.5 (Good partition). RCLUMB does a “good partition" at t, if the cluster V t assigned to272

it is a ζ-good cluster, and it contains all the users in the same ground-truth cluster as it, i.e.,273

∥θit − θℓ∥2 ≤ ζ,∀ℓ ∈ V t , andVj(it) ⊆ V t . (9)

Note that when the algorithm does a “good partition" at t, V t will contain all the users in the same274

ground-truth cluster as it and may only contain some other ζ-close users with respect to it, which275

means the gathered information associated with V t can be used to infer user it’s preference with high276

accuracy. Also, it is obvious that under a “good partition", if V t ∈ V , then V t = Vj(it) by definition.277

Next, we give a sketched proof for Theorem 5.3.278

Proof. [Sketch for Theorem 5.3] The proof mainly contains two parts. First, we prove there is a279

sufficient time T0 for RCLUMB to get a “good partition" with high probability. Second, we prove the280

regret upper bound for RCLUMB after maintaining a “good partition". The most challenging part is281

to bound the regret caused by misclustering ζ-close users after getting a “good partition".282

1. Sufficient time to maintain a “good partition". With the item regularity (Assumption 3.3),283

we can prove after some T0 (defined in Lemma H.1 in Appendix H), RCLUMB will always have a284

“good partition". Specifically, after t ≥ O
(
u
(

d
λ̃x(γ1−ζ)2

+ 1
λ̃2
x

)
log T

)
, for any user i ∈ U , the gap285

between the estimated θ̂i,t and the ground-truth θj(i) is less than γ1

4 with high probability. With this,286

we can get: for any two users i and ℓ, if their gap is greater than ζ, it will trigger the deletion of the287

edge (i, ℓ) (Line 10 of Algo.1) with high probability; on the other hand, when the deletion condition288

of the edge (i, ℓ) is satisfied, then
∥∥∥θj(i) − θj(ℓ)

∥∥∥
2
> 0 , which means user i and ℓ belong to different289

ground-truth clusters by Assumption 3.1 with high probability. Therefore, we can get that with high290

probability, all those users in the same ground-truth cluster as it will be directly connected with it,291

and users directly connected with it must be ζ-close to it. By filtering users directly linked with it as292

the cluster V t (Algo.1 Line 5) and the definition of “good partition", we can ensure that RCLUMB293

will keep a “good partition" afterward with high probability.294

2. Bounding the regret after getting a “good partition". After T0, with the “good partition", we295

can prove the following lemma that gives a bound of the difference between θ̂V t,t−1 and ground-truth296

θit in direction of action vector xa, and supports the design of the confidence radius Ca,t in Eq.(5).297

Lemma 5.6. With probability at least 1− 5δ for some δ ∈ (0, 1
5 ), ∀t ≥ T0298 ∣∣∣x⊤

a (θit − θ̂V t,t−1)
∣∣∣ ≤ ϵ∗

√
2d

λ̃
3
2
x

I{V t /∈ V}+ ϵ∗
∑

s∈[t−1]

is∈V t

∣∣∣x⊤
a M

−1

V t,t−1xas

∣∣∣+ β ∥xa∥M−1

V t,t−1

.

To prove this lemma, we consider the following two situations.299

(i) Assigning a perfect cluster for it. In this case, V t ∈ V , meaning the cluster assigned for user it300

is the same as her ground-truth cluster, i.e., V t = Vj(it). Therefore, we have that ∀ℓ ∈ V t,θℓ = θit .301

With careful analysis, we can bound
∣∣∣x⊤

a (θit − θ̂V t,t−1)
∣∣∣ by Ca,t (defined in Eq.(5)).302
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(ii) Bounding the term of misclustering it’s ζ-close users. In this case, V t /∈ V , meaning the303

algorithm misclusters user it, i.e., V t ̸= Vj(it). Thus, we do not have ∀ℓ ∈ V t,θℓ = θit anymore, but304

we have all the users in V t are ζ-close to it (by “good partition"), i.e., ∥θis − θit∥2 ≤ ζ , ∀ℓ ∈ V t.305

Then an additional term can be caused by using the information of it’s ζ-close users in V t lying in306

different ground-truth clusters from it to estimate θit . It is highly challenging to bound this part.307

We will get an extra term
∣∣∣∣x⊤

a M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xasx
⊤
as
(θis − θit)

∣∣∣∣ when bounding the regret in308

this case, where ∥θℓ − θit∥2 ≤ ζ , ∀ℓ ∈ V t. It is an easy-to-be-made mistake to directly drag309

∥θis − θit∥2 out to bound it by
∥∥∥∥x⊤

a M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xasx
⊤
as

∥∥∥∥
2

× ζ . With subtle analysis, we310

propose the following lemma to bound the above term.311

Lemma 5.7 (Bound of error caused by misclustering). ∀t ≥ T0, if the current partition by RCLUMB312

is a “good partition", and V t /∈ V , then for all xa ∈ Rd, ∥xa∥2 ≤ 1, with probability at least 1− δ:313 ∣∣∣∣x⊤
a M

−1

V t,t−1

∑
s∈[t−1]

is∈V t

xasx
⊤
as
(θis − θit)

∣∣∣∣ ≤ ϵ∗
√
2d

λ̃
3
2
x

.

This lemma is quite general. Please see Appendix G for details about its proof.314

The expected occurrences of {V t /∈ V} is bounded by ũ
uT with Assumption 3.2, Definition 5.2 and315

5.5. The result follows by bounding the expected sum of the bounds for the instantaneous regret using316

Lemma 5.6 with delicate analysis due to the time-varying clustering structure kept by RCLUMB.317

6 Experiments318

This section compares RCLUMB and RSCLUMB with CLUB [11], SCLUB [25], LinUCB with319

a single estimated vector for all users, LinUCB-Ind with separate estimated vectors for each user,320

and two modifications of LinUCB in [21] which we name as RLinUCB and RLinUCB-Ind. We use321

averaged reward as the evaluation metric, where the average is taken over ten independent trials.
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(a) Synthetic
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(b) Yelp Case 1
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(c) Yelp Case 2
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(d) Movielens Case 1
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(e) Movielens Case 2

Figure 1: The figures compare RCLUMB and RSCLUMB with the baselines. (a) shows the result on
synthetic data, (b) and (c) show the results on Yelp dataset, (d) and (e) show the results on Movielens
dataset. All experiments are under the setting of u = 1, 000 users, m = 10 clusters, and d = 50. All
results are averaged under 10 random trials. The error bars are standard deviations divided by

√
10.

322 6.1 Synthetic Experiments323

We consider a setting with u = 1, 000 users, m = 10 clusters and T = 106 rounds. The preference324

and feature vectors are in d = 50 dimension with each entry drawn from a standard Gaussian325

distribution, and are normalized to vectors with ∥.∥2 = 1 [25]. We fix an arm set with |A| = 1000326

items, at each round t, 20 items are randomly selected to form a set At for the user to choose from.327

We construct a matrix ϵ ∈ R1,000×1,000 in which each element ϵ(i, j) is drawn uniformly from the328

range (−0.2, 0.2) to represent the deviation. At t, for user it and the item at, ϵ(it, at) will be added329

to the feedback as the deviation, which corresponds to the ϵit,tat
defined in Eq.(1).330
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The result is provided in Figure 1(a), showing that our algorithms have clear advantages: RCLUMB331

improves over CLUB by 21.9%, LinUCB by 194.8%, LinUCB-Ind by 20.1%, SCLUB by 12.0%,332

RLinUCB by 185.2% and RLinUCB-Ind by 10.6%. The performance difference between RCLUMB333

and RSCLUMB is very small as expected. RLinUCB performs better than LinUCB; RLinUCB-Ind334

performs better than LinUCB-Ind and CLUB, showing that the modification of the recommendation335

policy is effective. The set-based RSCLUMB and SCLUB can separate clusters quicker and have336

advantages in the early period, but eventually RCLUMB catches up with RSCLUMB, and SCLUB337

is surpassed by RLinUCB-Ind because it does not consider misspecifications. RCLUMB and338

RSCLUMB perform better than RLinUCB-Ind, which shows the advantage of the clustering. So339

it can be concluded that both the modification for misspecification and the clustering structure are340

critical to improving the algorithm’s performance. We also have done some ablation experiments341

on different scales of ϵ∗ in Appendix P , and we can notice that under different ϵ∗ , our algorithms342

always outperform the baselines, and some baselines will perform worse as ϵ∗ increases.343

6.2 Experiments on Real-world Datasets344

We conduct experiments on the Yelp data and the 20m MovieLens data [16]. For both data, we have345

two cases due to the different methods for generating feedback. For case 1, we extract 1,000 items346

with most ratings and 1,000 users who rate most; then we construct a binary matrix H1,000×1,000
347

based on the user rating [34, 37]: if the user rating is greater than 3, the feedback is 1; otherwise,348

the feedback is 0. Then we use this binary matrix to generate the preference and feature vectors by349

singular-value decomposition (SVD) [25, 23, 34]. Similar to the synthetic experiment, we construct350

a matrix ϵ ∈ R1,000×1,000 in which each element is drawn uniformly from the range (−0.2, 0.2).351

For case 2, we extract 1,100 users who rate most and 1000 items with most ratings. We construct a352

binary feedback matrix H1,100×1,000 based on the same rule as case 1. Then we select the first 100353

rows H100×1,000
1 to generate the feature vectors by SVD. The remaining 1,000 rows F 1,000×1,000

354

is used as the feedback matrix, meaning user i receives F (i, j) as feedback while choosing item j.355

In both cases, at time t, we randomly select 20 items for the algorithms to choose from. In case 1,356

the feedback is computed by the preference and feature vector with misspecification, in case 2, the357

feedback is from the feedback matrix.358

The results on Yelp are shown in Fig 1(b) and Fig 1(c). In case 1, RCLUMB improves CLUB by359

45.1%, SCLUB by 53.4%, LinUCB-One by 170.1% , LinUCB-Ind by 46.2%, RLinUCB by 171.0%360

and RLinUCB-Ind by 21.5%. In case 2, RCLUMB improves over CLUB by 13.9%, SCLUB by 5.1%,361

LinUCB-One by 135.6% , LinUCB-Ind by 10.1%, RLinUCB by 138.6% and RLinUCB by 8.5%. It362

is notable that our modeling assumption 3.4 is violated in case 2 since the misspecification range is363

unknown. We set ϵ∗ = 0.2 following our synthetic dataset and it can still perform better than other364

algorithms. When the misspecification level is known as in case 1, our algorithms’ improvement is365

significantly enlarged, e.g., RCLUMB improves over SCLUB from 5.1% to 53.4%.366

The results on Movielens are shown in Fig 1(d) and 1(e). In case 1, RCLUMB improves CLUB by367

58.8%, SCLUB by 92.1%, LinUCB-One by 107.7%, LinUCB-Ind by 61.5 %, RLinUCB by 109.5%,368

and RLinUCB-Ind by 21.3%. In case 2, RCLUMB improves over CLUB by 5.5%, SCLUB by 2.9%,369

LinUCB-One by 28.5%, LinUCB-Ind by 6.1%, RLinUCB by 29.3% and RLinUCB-Ind by 5.8%.370

The results are consistent with the Yelp data, confirming our superior performance.371

7 Conclusion372

We present a new problem of clustering of bandits with misspecified user models (CBMUM), where373

the agent has to adaptively assign appropriate clusters for users under the disturbance of model374

misspecifications. We propose two robust CB algorithms, RCLUMB and RSCLUMB. We prove the375

regret bounds of our algorithms, which match the lower bound asymptotically in T up to logarithmic376

factors, and match the state-of-the-art results in several degenerate cases. It is highly challenging377

to bound the regret caused by misclustering users with close but not the same preference vectors378

and use inaccurate cluster-based information to select arms. Our analysis to bound this part of379

the regret is quite general and may be of independent interest. Experiments on synthetic and real-380

world data demonstrate the advantage of our algorithms. We would like to state that there are381

some interesting future works: (1) Prove a tighter regret lower bound for CBMUM, (2) Incorporate382

recent model selection methods into our fundamental framework to design robust algorithms for383

CBMUM with unknown exact maximum model misspecification level, and (3) Consider the setting384

with misspecifications in the underlying user clustering structure rather than user models.385
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Appendix482

A More Discussions on Related Work483

In this section, we will give more comparisions and discussions on some previous works that are484

related to our work to some extent.485

There are some other works on bandits leveraging user (or task) relations, which have some relations486

with the clustering of bandits (CB) works to some extent, but are in different lines of research from487

CB, and are quite different from our work. First, besides CB, the work [35] also leverages user488

relations. Specifically, it utilizes a known user adjacency graph to share context and payoffs among489

neighbors, whereas in CB, the user relations are unknown and need to be learnt, thus the setting490

differs a lot from CB. Second, there are lines of works on multi-task learning [5, 9, 29, 7, 33, 32],491

meta-learning [31, 17, 6] and federated learning [28, 18], where multiple different tasks are solved492

jointly and share information. Note that all of these works do not assume an underlying unknown493

user clustering structure which needs to be inferred by the agent to speed up learning. For works494

on multi-task learning [5, 9, 29, 7, 33, 32], they assume the tasks are related but no user clustering495

structures, and to the best of our knowledge, none of them consider model misspefications, thus496

differing a lot from ours. For some recent works on meta-learning [31, 17, 30], they propose general497

Bayesian hierarchical models to share knowledge across tasks, and design Thompson-Sampling-498

based algorithms to optimize the Bayes regret, which are quite different from the line of CB works,499

and differ a lot from ours. And additionally, as supported by the discussions in the works [6, 32],500

multi-task learning and meta-learning are different lines of research from CB. For the works on501

federated learning [28, 18], they consider the privacy and communication costs among multiple502

servers, whose setting is also very different from the previous CB works and our work.503

Remark. Again, we emphasize that the goal of this work is to initialize the study of the important504

CBMUM problem, and propose general design ideas for dealing with model misspecifications in505

CB problems. Therefore, our study is based on fundamental models on CB [11, 25] and MLB [21],506

and the algorithm design ideas and theoretical analysis are pretty general. We leave incorporating507

the more recent model selection methods [27, 10] into our framework to address the unknown exact508

maximum model misspecification level as an interesting future work. It would also be interesting to509

consider incorporating our methods and ideas of tackling model misspecifications into the studies of510

multi-task learning, meta learning and federated learning.511

B More Discussions on Assumptions512

All the assumptions (Assumptions 3.1,3.2,3.3,3.4)in this work are natural and basically follow (or513

less strigent than) previous works on CB and MLB [11, 23, 25, 26, 21].514

B.1 Less Strigent Assumption on on the Generating Distribution of Arm Vectors515

We also make some contributions to relax a widely-used but stringent assumption on the generating516

distribution of arm vectors. Specifically, our Assumption 3.3 on item regularity relaxes the previous517

one used in previous CB works [11, 23, 25, 26] by removing the condition that the variance should518

be upper bounded by λ2

8 log(4|At|) . For technical details on this, please refer to the theoretical analysis519

and discussions in Appendix J.520

B.2 Discussions on Assumption 3.4 about Bounded Misspecification Level521

This assumption follows [21]. Note that this ϵ∗ can be an upper bound on the maximum misspeci-522

fication level, not the exact maximum itself. In real-world applications, the deviations are usually523

small [13], and we can set a relatively big ϵ∗ (e.g., 0.2) to be the upper bound. Our experimental524

results support this claim. As shown in our experimental results on real-data case 2, even when ϵ∗ is525

unknown, our algorithms still perform well by setting ϵ∗ = 0.2. Some recent studies [27, 10] use526

model selection methods to theoretically deal with unknown exact maximum misspecification level in527

the single-user case, which is not the emphasis of this work. Additionally, the work [10] assumes that528

the learning agent has access to a regression oracle. And for the work [27], though their regret bound529
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is dependent on the exact maximum misspecification level that needs not to be known by the agent,530

an upper bound of the exact maximum misspecification level is still needed. We leave incorporating531

their methods to deal with unknown exact maximum misspecification level as an interesting future532

work.533

B.3 Discussions on Assumption 3.2 about the Theoretical Results under General User Arrival534

Distributions535

The uniform arrival in Assumption 3.2 follows previous CB works [11, 23, 26], it only affects the T0536

term, which is the time after which the algorithm maintains a “good partition” and is of O(u log T ).537

For an arbitrary arrival distribution, T0 becomes O(1/pmin log T ), where pmin is the minimal arrival538

probability of a user. And since it is a lower-order term (of O(log T )), it will not affect the main order539

of our regret upper bound which is of O(ϵ∗T
√
md log T + d

√
mT log T ). The work [25] studies540

arbitrary arrivals and aims to remove the 1/pmin factor in this term, but their setting is different.541

They make an additional assumption that users in the same cluster not only have the same preference542

vector, but also the same arrival probability, which is different from our setting and other classic CB543

works [11, 23, 26] where we only assume users in the same cluster share the same preference vector.544

C Highlight of the Theoretical Analysis545

Our proof flow and methodologies are novel in clustering of bandits (CB), which are expected to546

inspire future works on model misspecifications and CB. The main challenge of the regret analysis547

in CBMUM is that due to the estimation inaccuracy caused by misspecifications, it is impossible548

to cluster all users exactly correctly, and it is highly non-trivial to bound the regret caused by549

“misclustering" ζ-close users.550

To the best of our knowledge, the common proof flow of previous CB works (e.g., [11, 23, 26]) can551

be summarized in two steps: The first is to prove a sufficient time T ′
0 after which the algorithms can552

cluster all users exactly correctly with high probability. Note that the inferred clustering structure553

remains static after T ′
0, making the analysis easy. Second, after the correct static clustering, the554

regret can be trivially bounded by bounding m (number of underlying clusters) independent linear555

bandit algorithms, resulting in a O(d
√
mT log T ) regret.556

The above common proof flow is straightforward in CB with perfectly linear models, but it would557

fail to get a non-vacuous regret bound for CBMUM. In CBMUM, it is impossible to learn an exactly558

correct static clustering structure with model misspecifications. In particular, we prove that we559

can only expect the algorithm to cluster ζ-close users together rather than cluster all users exactly560

correctly. Therefore, the previous flow can not be applied to the more challenging CBMUM problem.561

We do the following to address the challenges in obtaining a tight regret bound for CBMUM. With562

the carefully-designed novel key components of RCLUMB, we can prove a sufficient time T0 after563

which RCLUMB can get a “good partition" (Definition 5.5) with high probability, which means564

the cluster Vt assigned to it contains all users in the same ground-truth cluster as it, and possibly565

some other it’s ζ-close users. Intuitively, after T0, the algorithm can leverage all the information566

from the users’ ground-truth clusters but may misuse some information from other ζ-close users with567

preference gaps up to ζ, causing a regret of “misclustering" ζ-close users. It is highly non-trivial568

to bound this part of regret, and the proof methods would be beneficial for future studies in CB in569

challenging cases when it is impossible to cluster all users exactly correctly. For details, please refer570

to the discussions “(ii) Bounding the term of misclustering it’s ζ-close users" in Section 5, the key571

Lemma 5.7 (Bound of error caused by misclustering), its proof and tightness discussion in Appendix572

G. Also, a more subtle analysis is needed to handle the time-varying inferred clustering structure573

since the “good partition" may change over time, whereas in the previous CB works, the clustering574

structure remains static after T ′
0. For theoretical details on this, please refer to Appendix E.575

D Discussions on why Trivially Combining Existing CB and MLB Works576

Could Not Achieve a Non-vacuous Regret Upper Bound577

We consider discussing regret upper bounds for CB without considering misspecifications for three578

cases: (1) neither the clustering process nor the decision process considers misspecifications (previous579
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CB algorithms); (2) the decision process does not consider misspecifications; (3) the clustering process580

does not consider misspecifications.581

For cases (1) and (2), the decision process could contribute to the leading regret. We consider the case582

where there are m underlying clusters, with each cluster’s arrival being T/m, and the agent knows the583

underlying clustering structure. For this case, there exist some instances where the regret upper bound584

R(T ) is strictly larger than ϵ∗T
√
m log T asymptotically in T . Formally, in the discussion of “Failure585

of unmodified algorithm" in Appendix E in [21], they give an example to show that in the single-user586

case, the regret R1(T ) of the classic linear bandit algorithms without considering misspecifications587

will have: lim
T→+∞

R1(T )

ϵ∗T
√
m log T

= +∞. In our problem with multiple users and m underlying588

clusters, even if we know the underlying clustering structure and keep m independent linear bandit589

algorithms with Ti for the cluster i ∈ [m] to leverage the common information of clusters, the best we590

can get is R2(T ) =
∑

i∈[m] R1(Ti). By the above results, if the decision process does not consider591

misspecifications, we have lim
T→+∞

R2(T )

ϵ∗T
√
m log T

= lim
T→+∞

mR1(T/m)

ϵ∗T
√
m log T

= +∞. Recall that the592

regret upper bound R(T ) of our proposed algorithms is of O(ϵ∗T
√
md log T + d

√
mT log T ) (thus,593

we have lim
T→+∞

R(T )

ϵ∗T
√
m log T

< +∞), which gives a proof that that the regret upper bound of our594

proposed algorithms is asymptotically much better than CB algorithms in cases (1)(2).595

For case (3), if the clustering process does not use the more tolerant deletion rule in Line 10 of Algo.1,596

the gap between users linked by edges would possibly exceed ζ (ζ = 2ϵ∗
√

2
λ̃x

) even after T0, which597

will result in a regret upper bound no better than O(ϵ∗u
√
dT ). As the number of users u is usually598

huge in practice, this result is vacuous. The reasons for getting the above claim are as follows. Even599

if the clustering process further uses our deletion rule considering misspecifications, and the users600

linked by edges are within ζ distance, failing to extract 1-hop users (Line 5 in Algo.1) would cause601

the leading O(ϵ∗u
√
dT ) regret term, as in the worst case, the preference vector θ of the user in Ṽt602

who is h-hop away from user it could deviate by hζ from θit , where h can be as large as u, and it603

would make the second term in Eq.(8) a O(ϵ∗u
√
dT ) term. If we completely do not consider the604

misspecifications in the clustering process, the above user gap between users linked by edges would605

possibly exceed ζ, which will cause a regret upper bound worse than O(ϵ∗u
√
dT ).606

E Proof of Theorem 5.3607

We first prove the result in the case when γ1 defined in Definition 5.1 is not infinity, i.e., 4ϵ∗
√

2
λ̃x

<608

γ1 < ∞. The proof of the special case when γ1 = ∞ will directly follow the proof of this case.609

For the instantaneous regret Rt at round t, with probability at least 1 − 5δ for some δ ∈ (0, 1
5 ), at610

∀t ≥ T0:611

Rt = (x⊤
a∗
t
θit + ϵit,ta∗

t
)− (x⊤

at
θit + ϵit,tat

)

= x⊤
a∗
t
(θit − θ̂V t,t−1) + (x⊤

a∗
t
θ̂V t,t−1 + Ca∗

t ,t
)− (x⊤

at
θ̂V t,t−1 + Cat,t)

+ x⊤
at
(θ̂V t,t−1 − θit) + Cat,t − Ca∗

t ,t
+ (ϵit,ta∗

t
− ϵit,tat

)

≤ 2Cat,t +
2ϵ∗

√
2d

λ̃
3
2
x

I{V t /∈ V}+ 2ϵ∗ ,

(10)

where the last inequality holds by the UCB arm selection strategy in Eq.(5), the concentration bound612

given in Lemma 5.6, and the fact that
∥∥ϵi,t∥∥∞ ≤ ϵ∗,∀i ∈ U ,∀t.613

We define the following events. Let614

E0 = {Rt ≤ 2Cat,t +
2ϵ∗

√
2d

λ̃
3
2
x

I{V t /∈ V}+ 2ϵ∗, for all {t : t ≥ T0, and the algorithm maintains a “good partition" at t}} ,

E1 = {the algorithm maintains a “good partition" for all t ≥ T0} ,
E = E0 ∩ E1 .
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P(E0) ≥ 1 − 2δ. According to Lemma H.1, P(E1) ≥ 1 − 3δ. Thus, P(E) ≥ 1 − 5δ for some615

δ ∈ (0, 1
5 ). Take δ = 1

T , we can get that616

E[R(T )] = P(E)I{E}R(T ) + P(E)I{E}R(T )

≤ I{E}R(T ) + 5× 1

T
× T

= I{E}R(T ) + 5 ,

(11)

where E denotes the complementary event of E , I{E}R(T ) denotes R(T ) under event E , I{E}R(T )617

denotes R(T ) under event E , and we use R(T ) ≤ T to bound R(T ) under event E .618

Then it remains to bound I{E}R(T ):619

I{E}R(T ) ≤ R(T0) + E[I{E}
T∑

t=T0+1

Rt]

≤ T0 + 2E[I{E}
T∑

t=T0+1

Cat,t] +
2ϵ∗

√
2d

λ̃
3
2
x

T∑
t=T0+1

E[I{E , V t /∈ V}] + 2ϵ∗T (12)

= T0 + 2E[I{E}
T∑

t=T0+1

Cat,t] +
2ϵ∗

√
2d

λ̃
3
2
x

T∑
t=T0+1

P(I{E , V t /∈ V}) + 2ϵ∗T

≤ T0 + 2E[I{E}
T∑

t=T0+1

Cat,t] +
2ϵ∗

√
2d

λ̃
3
2
x

× ũ

u
T + 2ϵ∗T , (13)

where Eq.(12) follows from Eq.(10). Eq.(13) holds since under Assumption 3.2 about user arrival620

uniformness and by Definition 5.5 of “good partition", P(I{E , V t /∈ V}) ≤ ũ
u ,∀t ≥ T0, where ũ is621

defined in Definition 5.2.622

Then we need to bound E[I{E}
∑T

t=T0+1 Cat,t]:623

I{E}
T∑

t=T0+1

Cat,t =
(√

λ+

√
2 log(

1

δ
) + d log(1 +

T

λd
)
)
I{E}

T∑
t=T0+1

∥xat∥M−1

V t,t−1

+ I{E}ϵ∗
T∑

t=T0+1

∑
s∈[t−1]

is∈V t

∣∣∣x⊤
at
M

−1

V t,t−1xas

∣∣∣ . (14)

Next, we bound the I{E}
∑T

t=T0+1 ∥xat∥M−1

V t,t−1

term in Eq.(14):624

I{E}
T∑

t=T0+1

∥xat
∥
M

−1

V t,t−1

= I{E}
T∑

t=T0+1

mt∑
k=1

I{it ∈ Ṽ ′
t,k} ∥xat

∥
M

−1

V ′
t,k,t−1

≤ I{E}
T∑

t=T0+1

m∑
j=1

I{it ∈ Vj} ∥xat
∥
M

−1
Vj,t−1

(15)

≤ I{E}
m∑
j=1

√√√√ T∑
t=T0+1

I{it ∈ Vj}
T∑

t=T0+1

I{it ∈ Vj} ∥xat∥
2

M
−1
Vj,t−1

(16)

≤ I{E}
m∑
j=1

√
2TVj ,T d log(1 +

T

λd
) (17)

≤ I{E}

√√√√2

m∑
j=1

1

m∑
j=1

TVj ,T d log(1 +
T

λd
) = I{E}

√
2mdT log(1 +

T

λd
) ,

(18)
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where we use mt to denote the number of connected components partitioned by the algorithm at t,625

Ṽ ′
t,k, k ∈ [mt] to denote the connected components partitioned by the algorithm at t, V

′
t,k ⊆ Ṽ ′

t,k to626

denote the subset extracted to be the cluster V t for it from Ṽ ′
t,k conditioned on it ∈ Ṽ ′

t,k, and TVj ,T627

to denote the number of times that the served users lie in the ground-truth cluster Vj up to time T ,628

i.e., TVj ,T =
∑

t∈[T ] I{it ∈ Vj}.629

The reasons for having Eq.(15) are as follows. Under event E , the algorithm will always have630

a “good partition" after T0. By Definition 5.5 and the proof process of Lemma H.1 about the631

edge deletion conditions, we can get mt ≤ m and if it ∈ Ṽ ′
t,k, it ∈ Vj , then Vj ⊆ V

′
t,k632

since V
′
t,k contains Vj and possibly other ground-truth clusters Vn, n ∈ [m], whose prefer-633

ence vectors are ζ-close to θj . Therefore, by the definition of the regularized Gramian matrix,634

we can get MV
′
t,k,t−1 ⪰ MVj ,t−1,∀t ≥ T0 + 1. Thus by the above reasoning,

∑mt

k=1 I{it ∈635

Ṽ ′
t,k} ∥xat

∥
M

−1

V ′
t,k,t−1

≤
∑m

j=1 I{it ∈ Vj} ∥xat
∥
M

−1
Vj,t−1

,∀t ≥ T0 + 1. Eq.(16) holds by the636

Cauchy–Schwarz inequality; Eq.(17) follows by the following technical Lemma J.2. Eq.(18) is637

from the Cauchy–Schwarz inequality and the fact that
∑m

j=1 TVj ,T = T .638

We then bound the last term in Eq.(14):639

I{E}ϵ∗
T∑

t=T0+1

∑
s∈[t−1]

is∈V t

∣∣∣x⊤
at
M

−1

V t,t−1xas

∣∣∣ = I{E}ϵ∗
T∑

t=T0+1

mt∑
k=1

I{it ∈ Ṽ ′
t,k}

∑
s∈[t−1]

is∈V ′
t,k

∣∣∣x⊤
at
M

−1

V
′
t,k,t−1xas

∣∣∣
≤ I{E}ϵ∗

T∑
t=T0+1

mt∑
k=1

I{it ∈ Ṽ ′
t,k}

√√√√√ ∑
s∈[t−1]

is∈V ′
t,k

1
∑

s∈[t−1]

is∈V ′
t,k

∣∣∣x⊤
at
M

−1

V
′
t,k,t−1xas

∣∣∣2
(19)

≤ I{E}ϵ∗
T∑

t=T0+1

mt∑
k=1

I{it ∈ Ṽ ′
t,k}
√
TV

′
t,k,t−1 ∥xat

∥2
M

−1

V ′
t,k,t−1

(20)

≤ I{E}ϵ∗
T∑

t=T0+1

√√√√mt∑
k=1

I{it ∈ Ṽ ′
t,k}

mt∑
k=1

I{it ∈ Ṽ ′
t,k}TV

′
t,k,t−1 ∥xat

∥2
M

−1

V ′
t,k,t−1

(21)

≤ I{E}ϵ∗
√
T

T∑
t=T0+1

√√√√mt∑
k=1

I{it ∈ Ṽ ′
t,k} ∥xat

∥2
M

−1

V ′
t,k,t−1

(22)

≤ I{E}ϵ∗
√
T

√√√√ T∑
t=T0+1

1

T∑
t=T0+1

mt∑
k=1

I{it ∈ Ṽ ′
t,k} ∥xat

∥2
M

−1

V ′
t,k,t−1

(23)

≤ I{E}ϵ∗
√
T

√√√√T

T∑
t=T0+1

m∑
j=1

I{it ∈ Vj} ∥xat∥
2

M
−1
Vj,t−1

(24)

= I{E}ϵ∗T

√√√√ m∑
j=1

T∑
t=T0+1

I{it ∈ Vj} ∥xat
∥2
M

−1
Vj,t−1

≤ I{E}ϵ∗T
√

2md log(1 +
T

λd
) , (25)
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where Eq.(19), Eq.(21) and Eq.(23) hold because of the Cauchy–Schwarz inequality, Eq.(20) holds640

since MV
′
t,k,t−1 ⪰

∑
s∈[t−1]

is∈V ′
t,k

xasx
⊤
as

, Eq.(22) is because TV
′
t,k,t−1 ≤ T , Eq. (24) follows from the641

same reasoning as Eq.(15), and Eq.(25) comes from the following technical Lemma J.2.642

Finally, plugging Eq.(18) and Eq.(25) into Eq.(14), take expectation and plug it into Eq.(13), we can643

get:644

R(T ) ≤5 + T0 +
ũ

u
× 2ϵ∗

√
2dT

λ̃
3
2
x

+ 2ϵ∗T

(
1 +

√
2md log(1 +

T

λd
)

)
+ 2

(√
λ+

√
2 log(T ) + d log(1 +

T

λd
)

)
×
√
2mdT log(1 +

T

λd
) , (26)

where645

T0 = 16u log(
u

δ
) + 4umaxmax{ 8d

λ̃x(
γ1

4 − ϵ∗
√

1
2λ̃x

)2
log(

u

δ
),
16

λ̃2
x

log(
8d

λ̃2
xδ

)}

is given in the following Lemma H.1 in Appendix H.646

F Proof and Discussions of Theorem 5.4647

In the work [21], they give a lower bound for misspecified linear bandits with a single user. The648

lower bound of R(T ) is given by: R3(T ) ≥ ϵ∗T
√
d. Therefore, suppose our problem with649

multiple users and m underlying clusters where the arrival times are Ti for each cluster, then650

for any algorithms, even if they know the underlying clustering structure and keep m indepen-651

dent linear bandit algorithms to leverage the common information of clusters, the best they can652

get is R(T ) =
∑

i∈[m] R3(Ti) ≥ ϵ∗
∑

i∈[m] Ti

√
d = ϵ∗T

√
d, which gives a lower bound of653

O(ϵ∗T
√
d) for the CBMUM problem. Recall that the regret upper bound of our algorithms is of654

O(ϵ∗T
√
md log T + d

√
mT log T ), asymptotically matching this lower bound with respect to T655

up to logarithmic factors and with respect to m up to O(
√
m) factors, showing the tightness of our656

theoretical results (where m are typically very small for real-applications).657

We conjecture that the gap for the m factor is due to the strong assumption that cluster structures658

are known to prove our lower bound, and whether there exists a tighter lower bound will be left for659

future work.660

G Proof of the key Lemma 5.7661

In Lemma 5.7, we want to bound the term
∣∣∣∣x⊤

a M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xas
x⊤
as
(θis − θit)

∣∣∣∣. By the662

definition of “good partition", we have ∥θis − θit∥2 ≤ ζ , ∀is ∈ V t. It is an easy-to-be-made mistake663

to directly drag ∥θis − θit∥2 out to upper bound it by
∥∥∥∥x⊤

a M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xas
x⊤
as

∥∥∥∥
2

× ζ and664

then proceed. We need more careful analysis.665

We first prove the following general lemma.666

Lemma G.1. For vectors x1,x2, . . . ,xk ∈ Rd,∥xi∥2 ≤ 1,∀i ∈ [k], and vectors θ1,θ2, . . . ,θk ∈667

Rd, ∥θi∥2 ≤ C, ∀i ∈ [k], where C > 0 is a constant, we have:668 ∥∥∥∥∥
k∑

i=1

xix
⊤
i θi

∥∥∥∥∥
2

≤ C
√
d

∥∥∥∥∥
k∑

i=1

xix
⊤
i

∥∥∥∥∥
2

.
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Proof. Let X ∈ Rd×k be a matrix such that it has xi s as its columns, i.e., X = [x1, . . . ,xk] =669 
x11 x21 · · · xk1

x12 x22 · · · xk2

...
...

. . .
...

x1d x2d · · · xkd

 .670

Let y ∈ Rk×1 be a vector that has x⊤
i θi s as its elements, i.e., y = [x⊤

1 θ1, . . . ,x
⊤
k θk]

⊤. Then we671

have:672

∥∥∥∥∥
k∑

i=1

xix
⊤
i θi

∥∥∥∥∥
2

2

= ∥Xy∥22 ≤ ∥X∥22 ∥y∥
2
2 (27)

= ∥X∥22
k∑

i=1

(x⊤
i θi)

2

≤ ∥X∥22
k∑

i=1

∥xi∥22 ∥θi∥22 (28)

≤ C2 ∥X∥22
k∑

i=1

∥xi∥22

= C2 ∥X∥22 ∥X∥2F
≤ C2d ∥X∥42 (29)

= C2d
∥∥∥XX⊤

∥∥∥2
2

(30)

= C2d

∥∥∥∥∥
k∑

i=1

xix
⊤
i

∥∥∥∥∥
2

2

, (31)

where Eq. (27) follows by the matrix operator norm inequality, Eq. (28) follows by the673

Cauchy–Schwarz inequality, Eq. (29) follows by ∥X∥F ≤
√
d ∥X∥2, Eq. (30) follows from674

∥X∥22 =
∥∥∥XX⊤

∥∥∥
2
.675

The above result is tight. We can show that the lower bound of
∥∥∥∑k

i=1 xix
⊤
i θi

∥∥∥
2

under the conditions676

in the lemma is exactly C
√
d
∥∥∥∑k

i=1 xix
⊤
i

∥∥∥
2
. Specifically, let k = 2, C = 1, d = 2, x1 = [0, 1]⊤,677

x2 = [1, 0]⊤, θ1 = [1, 0]⊤, θ2 = [0, 1]⊤, then we have
∥∥∥∑2

i=1 xix
⊤
i θi

∥∥∥
2
=
∥∥[1, 1]⊤∥∥

2
=

√
2, and678

C
√
d
∥∥∥∑2

i=1 xix
⊤
i

∥∥∥
2
= 1 ×

√
2 ×

∥∥∥∥[1 0
0 1

]∥∥∥∥
2

=
√
2. Therefore, we have that the upper bound679

given in Lemma G.1 matches the lower bound.680

We are now ready to prove the key Lemma 5.7 with the above Lemma G.1.681

19



At any t ≥ T0, if the current partition is a “good partition", and V t /∈ V , then for all xa ∈682

Rd, ∥xa∥2 ≤ 1, with probability at least 1− δ:683 ∣∣∣∣∣∣∣x⊤
a M

−1

V t,t−1

∑
s∈[t−1]

is∈V t

xas
x⊤
as
(θis − θit)

∣∣∣∣∣∣∣ ≤ ∥xa∥2

∥∥∥∥∥∥∥M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xas
x⊤
as
(θis − θit)

∥∥∥∥∥∥∥
2

(32)

≤
∥∥∥M−1

V t,t−1

∥∥∥
2

∥∥∥∥∥∥∥
∑

s∈[t−1]

is∈V t

xas
x⊤
as
(θis − θit)

∥∥∥∥∥∥∥
2

(33)

≤ 2ϵ∗

√
2d

λ̃x

×
∥∥∥M−1

V t,t−1

∥∥∥
2

∥∥∥∥∥∥∥
∑

s∈[t−1]

is∈V t

xas
x⊤
as

∥∥∥∥∥∥∥
2

(34)

≤ 2ϵ∗

√
2d

λ̃x

×
λmax(

∑
s∈[t−1]

is∈V t

xasx
⊤
as
)

λmin(MV t,t−1)

≤ 2ϵ∗

√
2d

λ̃x

×
TV t,t−1

2TV t,t−1λ̃x + λ
(35)

≤ ϵ∗
√
2d

λ̃
3
2
x

,

where Eq.(32) follows by the Cauchy–Schwarz inequality, Eq.(33) follows from the inequality of684

matrix’s operator norm, Eq.(34) follows from the fact that in a “good partition", ∥θit − θl∥2 ≤685

2ϵ∗
√

2
λ̃x

,∀l ∈ V t and Lemma G.1, Eq.(35) follows by Eq.(47) with probability ≥ 1− δ.686

H Lemma H.1 of the sufficient time T0 and its proof687

The following lemma gives a sufficient time T0 for the algorithm to get a “good partition".688

Lemma H.1. With the carefully designed edge deletion rule, after689

T0 ≜ 16u log(
u

δ
) + 4umaxmax{ 8d

λ̃x(
γ1

4 − ϵ∗
√

1
2λ̃x

)2
log(

u

δ
),
16

λ̃2
x

log(
8d

λ̃2
xδ

)}

= O

(
u

(
d

λ̃x(γ1 − ζ)2
+

1

λ̃2
x

)
log

1

δ

)

rounds, with probability at least 1 − 3δ for some δ ∈ (0, 1
3 ), RCLUMB can always get a “good690

partition".691

Below is the detailed proof of Lemma H.1.692

Proof. We first prove the following result:693

With probability at least 1− δ for some δ ∈ (0, 1), at any t ∈ [T ]:694

∥∥∥θ̂i,t − θj(i)
∥∥∥
2
≤

β(Ti,t,
δ
u ) + ϵ∗

√
Ti,t√

λ+ λmin(M i,t)
,∀i ∈ U , (36)
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where β(Ti,t,
δ
u ) ≜

√
λ+

√
2 log(uδ ) + d log(1 +

Ti,t

λd ).695

θ̂i,t − θj(i) = (
∑
s∈[t]
is=i

xas
x⊤
as

+ λI)−1

(∑
s∈[t]
is=i

xas
(x⊤

as
θj(i) + ϵis,sas

+ ηs)

)
− θj(i) (37)

= (
∑
s∈[t]
is=i

xas
x⊤
as

+ λI)−1[(
∑
s∈[t]
is=i

xas
x⊤
as

+ λI)θj(i) − λθj(i) +
∑
s∈[t]
is=i

xas
ϵis,sas

+
∑
s∈[t]
is=i

xas
ηs]− θj(i)

= −λM̃
−1

i,t θ
j(i) + M̃

−1

i,t

∑
s∈[t]
is=i

xas
ϵis,sas

+ M̃
−1

i,t

∑
s∈[t]
is=i

xas
ηs ,

where we denote M̃ i,t = M i,t + λI , and Eq.(37) holds by definition.696

Therefore,697

∥∥∥θ̂i,t − θj(i)
∥∥∥
2
≤ λ

∥∥∥M̃−1

i,t θ
j(i)
∥∥∥
2
+

∥∥∥∥∥∥∥M̃
−1

i,t

∑
s∈[t]
is=i

xas
ϵis,sas

∥∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥M̃
−1

i,t

∑
s∈[t]
is=i

xas
ηs

∥∥∥∥∥∥∥
2

. (38)

We then bound the three terms in Eq.(38) one by one. For the first term:698

λ
∥∥∥M̃−1

i,t θ
j(i)
∥∥∥
2
≤ λ

∥∥∥∥M̃− 1
2

i,t

∥∥∥∥2
2

∥∥∥θj(i)
∥∥∥
2
≤

√
λ√

λmin(M̃ i,t)
, (39)

where we use the Cauchy–Schwarz inequality, the inequality for the operator norm of matrices, and699

the fact that λmin(M̃ i,t) ≥ λ.700

For the second term in Eq.(38):701 ∥∥∥∥∥∥∥M̃
−1

i,t

∑
s∈[t]
is=i

xas
ϵis,sas

∥∥∥∥∥∥∥
2

= max
x∈Sd−1

∑
s∈[t]
is=i

x⊤M̃
−1

i,t xas
ϵis,sas

≤ max
x∈Sd−1

∑
s∈[t]
is=i

∣∣∣x⊤M̃
−1

i,t xasϵ
is,s
as

∣∣∣
≤ max

x∈Sd−1

∑
s∈[t]
is=i

∣∣∣x⊤M̃
−1

i,t xas

∣∣∣ ∥∥ϵis,sas

∥∥
∞ (40)

≤ ϵ∗ max
x∈Sd−1

∑
s∈[t]
is=i

∣∣∣x⊤M̃
−1

i,t xas

∣∣∣
≤ ϵ∗ max

x∈Sd−1

√√√√∑
s∈[t]
is=i

1
∑
s∈[t]
is=i

∣∣∣x⊤M̃
−1

i,t xas

∣∣∣2 (41)

≤ ϵ∗
√
Ti,t

√
max

x∈Sd−1
x⊤M̃

−1

i,t x (42)

=
ϵ∗
√
Ti,t√

λmin(M̃ i,t)
, (43)

where we denote Sd−1 = {x ∈ Rd : ∥x∥2 = 1}, Eq.(40) follows from Holder’s inequality, Eq.(41)702

follows by the Cauchy–Schwarz inequality, Eq.(42) holds because M̃ i,t ⪰
∑

s∈[t]
is=i

xas
x⊤
as

, Eq.(43)703

follows from the Courant-Fischer theorem.704
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For the last term in Eq.(38)705 ∥∥∥∥∥∥∥M̃
−1

i,t

∑
s∈[t]
is=i

xas
ηs

∥∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥∥M̃
− 1

2

i,t

∑
s∈[t]
is=i

xas
ηs

∥∥∥∥∥∥∥
2

∥∥∥∥M̃− 1
2

i,t

∥∥∥∥
2

(44)

=

∥∥∥∑ s∈[t]
is=i

xas
ηs

∥∥∥
M̃

−1
i,t√

λmin(M̃ i,t)
, (45)

where Eq.(44) follows by the Cauchy–Schwarz inequality and the inequality for the operator norm of706

matrices, and Eq.(45) follows by the Courant-Fischer theorem.707

Following Theorem 1 in [1], with probability at least 1− δ for some δ ∈ (0, 1), for any i ∈ U , we708

have:709 ∥∥∥∥∥∥∥
∑
s∈[t]
is=i

xasηs

∥∥∥∥∥∥∥
M̃

−1
i,t

≤

√
2 log(

u

δ
) + log(

det(M̃ i,t)

det(λI)
)

≤
√
2 log(

u

δ
) + d log(1 +

Ti,t

λd
) , (46)

where det(M) denotes the determinant of matrix M , Eq.(46) is because det(M̃ i,t) ≤710 (
trace(λI+

∑
s∈[t]
is=i

xasx
⊤
as

)

d

)d

≤
(λd+Ti,t

d

)d
, and det(λI) = λd.711

Plugging Eq.(46) into Eq. (45), then plugging Eq. (39), Eq.(43) and Eq.(45) into Eq.(38), we can get712

that Eq.(73) holds with probability ≥ 1− δ.713

Then, with the item regularity assumption stated in Assumption 3.3, the technical Lemma J.1,714

together with Lemma 7 in [23], with probability at least 1− δ, for a particular user i, at any t such715

that Ti,t ≥ 16
λ̃2
x

log( 8d
λ̃2
xδ
), we have:716

λmin(M̃ i,t) ≥ 2λ̃xTi,t + λ . (47)

Based on the above reasoning, we have: if Ti,t ≥ 16
λ̃2
x

log( 8d
λ̃2
xδ
), then with probability ≥ 1− 2δ, we717

have:718 ∥∥∥θ̂i,t − θj(i)
∥∥∥
2
≤

β(Ti,t,
δ
u ) + ϵ∗

√
Ti,t√

λmin(M̃ i,t)

≤
β(Ti,t,

δ
u ) + ϵ∗

√
Ti,t√

2λ̃xTi,t + λ

≤

√
λ+

√
2 log(uδ ) + d log(1 +

Ti,t

λd )√
2λ̃xTi,t + λ

+ ϵ∗

√
1

2λ̃x

, (48)

for any i ∈ U .719

Let720 √
λ+

√
2 log(uδ ) + d log(1 +

Ti,t

λd )√
2λ̃xTi,t + λ

+ ϵ∗

√
1

2λ̃x

<
γ1
4

, (49)

which is equivalent to721

√
λ+

√
2 log(uδ ) + d log(1 +

Ti,t

λd )√
2λ̃xTi,t + λ

<
γ1
4

− ϵ∗

√
1

2λ̃x

, (50)
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where γ1 is given in Definition 5.1.722

Assume λ ≤ 2 log(uδ ) + d log(1 +
Ti,t

λd ), which is typically held, then a sufficient condition for Eq.723

(50) is:724

2 log(uδ ) + d log(1 +
Ti,t

λd )

2λ̃xTi,t

<
1

4
(
γ1
4

− ϵ∗

√
1

2λ̃x

)2 . (51)

To satisfy the condition in Eq.(51), it is sufficient to show725

2 log(uδ )

2λ̃xTi,t

<
1

8
(
γ1
4

− ϵ∗

√
1

2λ̃x

)2 (52)

and726

d log(1 +
Ti,t

λd )

2λ̃xTi,t

<
1

8
(
γ1
4

− ϵ∗

√
1

2λ̃x

)2 . (53)

From Eq.(52), we can get:727

Ti,t ≥
8 log(uδ )

λ̃x(
γ1

4 − ϵ∗
√

1
2λ̃x

)2
. (54)

Following Lemma 9 in [23], we can get the following sufficient condition for Eq.(53):728

Ti,t ≥
8d log( 4

λλ̃x(
γ1
4 −ϵ∗

√
1

2λ̃x
)2
)

λ̃x(
γ1

4 − ϵ∗
√

1
2λ̃x

)2
. (55)

Assume u
δ ≥ 4

λλ̃x(
γ1
4 −ϵ∗

√
1

2λ̃x
)2

, which is typically held, we can get that729

Ti,t ≥
8d

λ̃x(
γ1

4 − ϵ∗
√

1
2λ̃x

)2
log(

u

δ
) (56)

is a sufficient condition for Eq.(49). Together with the condition that Ti,t ≥ 16
λ̃2
x

log( 8d
λ̃2
xδ
), we can get730

that if731

Ti,t ≥ max{ 8d

λ̃x(
γ1

4 − ϵ∗
√

1
2λ̃x

)2
log(

u

δ
),
16

λ̃2
x

log(
8d

λ̃2
xδ

)},∀i ∈ U , (57)

then with probability ≥ 1− 2δ:732 ∥∥∥θ̂i,t − θj(i)
∥∥∥
2
<

γ1
4

,∀i ∈ U .

By Lemma 8 in [23], and Assumption 3.2 of user arrival uniformness, we have that for all733

t ≥ T0 ≜ 16u log(
u

δ
) + 4umax{ 8d

λ̃x(
γ1

4 − ϵ∗
√

1
2λ̃x

)2
log(

u

δ
),
16

λ̃2
x

log(
8d

λ̃2
xδ

)} , (58)

with probability at least 1− δ, condition in Eq.(57) is satisfied.734

Therefore we have that for all t ≥ T0, with probability ≥ 1− 3δ:735 ∥∥∥θ̂i,t − θj(i)
∥∥∥
2
<

γ1
4

,∀i ∈ U . (59)

Next, we show that with Eq.(59), we can get that the RCLUMB keeps a “good partition". First,736

if we delete the edge (i, l), then user i and user j belong to different ground-truth clusters, i.e.,737

∥θi − θl∥2 > 0. This is because by the deletion rule of the algorithm, the concentration bound,738

and triangle inequality, ∥θi − θl∥2 =
∥∥∥θj(i) − θj(l)

∥∥∥
2

≥
∥∥∥θ̂i,t − θ̂l,t

∥∥∥
2
−
∥∥∥θj(l) − θl,t

∥∥∥
2
−739
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∥∥∥θj(i) − θi,t

∥∥∥
2

> 0. Second, we show that if ∥θi − θl∥ ≥ γ1 > 2ϵ∗
√

2
λ̃x

, the RCLUMB740

algorithm will delete the edge (i, l). This is because if ∥θi − θl∥ ≥ γ1, then by the trian-741

gle inequality, and
∥∥∥θ̂i,t − θj(i)

∥∥∥
2

< γ1

4 ,
∥∥∥θ̂l,t − θj(l)

∥∥∥
2

< γ1

4 , θi = θj(i), θl = θj(l), we742

have
∥∥∥θ̂i,t − θ̂l,t

∥∥∥
2
≥ ∥θi − θl∥ −

∥∥∥θ̂i,t − θj(i)
∥∥∥
2
−
∥∥∥θ̂l,t − θj(l)

∥∥∥
2
> γ1 − γ1

4 − γ1

4 = γ1

2 >743

√
λ+

√
2 log(u

δ )+d log(1+
Ti,t
λd )√

λ+2λ̃xTi,t

+ ϵ∗
√

1
2λ̃x

+
√
λ+

√
2 log(u

δ )+d log(1+
Tl,t
λd )√

λ+2λ̃xTl,t

+ ϵ∗
√

1
2λ̃x

, which will trigger744

the deletion condition Line 10 in Algo.1.745

From the above reasoning, we can get that at round t, any user within V t is ζ-close to it, and all the746

users belonging to Vj(i) are contained in V t, which means the algorithm has done a “good partition"747

at t by Definition 5.5.748

I Proof of Lemma 5.6749

We prove the result in two situations: when V t ∈ V and when V t /∈ V .750

(1) Situation 1: for any t ≥ T0 and V t ∈ V , which means that the current user it is clustered751

completely correctly, i.e., V t = Vj(it), therefore θl = θit ,∀l ∈ V t, then we have:752

θ̂V t,t−1 − θit = (
∑

s∈[t−1]

is∈V t

xas x
⊤
as

+ λI)−1(
∑

s∈[t−1]

is∈V t

xasrs)− θit

= (
∑

s∈[t−1]

is∈V t

xas
x⊤
as

+ λI)−1

( ∑
s∈[t−1]

is∈V t

xas
(x⊤

as
θis + ϵis,sas

+ ηs)

)
− θit

= (
∑

s∈[t−1]

is∈V t

xas
x⊤
as

+ λI)−1

( ∑
s∈[t−1]

is∈V t

xas
(x⊤

as
θit + ϵis,sas

+ ηs)

)
− θit

= (
∑

s∈[t−1]

is∈V t

xas x
⊤
as

+ λI)−1[(
∑

s∈[t−1]

is∈V t

xasx
⊤
as

+ λI)θit − λθit +
∑

s∈[t−1]

is∈V t

xasϵ
is,s
as

+
∑

s∈[t−1]

is∈V t

xasηs]− θit

= −λM
−1

V t,t−1θit +
∑

s∈[t−1]

is∈V t

M
−1

V t,t−1xas
ϵis,sas

+
∑

s∈[t−1]

is∈V t

M
−1

V t,t−1xas
ηs .

Therefore we have753

∣∣∣x⊤
a (θ̂V t,t−1 − θit)

∣∣∣ ≤ λ
∣∣∣x⊤

a M
−1

V t,t−1θit

∣∣∣+
∣∣∣∣∣∣∣
∑

s∈[t−1]

is∈V t

x⊤
a M

−1

V t,t−1xas
ϵis,sas

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣x⊤

a M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xas
ηs

∣∣∣∣∣∣∣ .
(60)

Next, we bound the three terms in Eq.(60). For the first term:754

λ
∣∣∣x⊤

a M
−1

V t,t−1θit

∣∣∣ ≤ λ ∥xa∥M−1

V t,t−1

√
λmax(M

−1

V t,t−1) ∥θit∥2 ≤
√
λ ∥xa∥M−1

V t,t−1

, (61)

where we use the inequality of matrix norm, the Cauchy–Schwarz inequality, ∥θit∥2 ≤ 1, and the755

fact that λmax(M
−1

V t,t−1) =
1

λmin(MV t,t−1)
≤ 1

λ .756
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For the second term in Eq.(60):757

∣∣∣∣∣∣∣
∑

s∈[t−1]

is∈V t

x⊤
a M

−1

V t,t−1xas
ϵis,sas

∣∣∣∣∣∣∣ ≤
∑

s∈[t−1]

is∈V t

∣∣∣x⊤
a M

−1

V t,t−1xas
ϵis,sas

∣∣∣
≤

∑
s∈[t−1]

is∈V t

∥∥ϵis,sas

∥∥
∞

∣∣∣x⊤
a M

−1

V t,t−1xas

∣∣∣
≤ ϵ∗

∑
s∈[t−1]

is∈V t

∣∣∣x⊤
a M

−1

V t,t−1xas

∣∣∣ , (62)

where in the second inequality we use the Holder’s inequality.758

For the last term, with probability at least 1− δ:759

∣∣∣∣∣∣∣x⊤
a M

−1

V t,t−1

∑
s∈[t−1]

is∈V t

xas
ηs

∣∣∣∣∣∣∣ ≤ ∥xa∥M−1

V t,t−1

∥∥∥∥∥∥∥
∑

s∈[t−1]

is∈V t

xas
ηs

∥∥∥∥∥∥∥
M

−1

V t,t−1

(63)

≤ ∥xa∥M−1

V t,t−1

√
2 log(

1

δ
) + log(

det(MV t,t−1)

det(λI)
)

≤ ∥xa∥M−1

V t,t−1

√
2 log(

1

δ
) + d log(1 +

T

λd
) , (64)

where the second inequality follows by Theorem 1 in [1], Eq.(64) is because det(MV t,t−1) ≤760 (
trace(λI+

∑
s∈[t]

is∈V t

xasx
⊤
as

)

d

)d

≤
(λd+TV t,t

d

)d ≤
(
λd+T

d

)d
, and det(λI) = λd.761

Plugging Eq.(61), Eq.(62) and Eq.(64) into Eq.(60), we can prove Lemma 5.6 in situation 1, i.e., for762

any t ≥ T0 and V t ∈ V , with probability at least 1− δ:763

∣∣∣x⊤
a (θ̂V t,t−1 − θit)

∣∣∣ ≤ ϵ∗
∑

s∈[t−1]

is∈V t

∣∣∣x⊤
a M

−1

V t,t−1xas

∣∣∣+∥xa∥M−1

V t,t−1

(√
λ+

√
2 log(

1

δ
) + d log(1 +

T

λd
)

)
.

(65)

(2) Situation 2: for any t ≥ T0 and V t /∈ V , which means that the current user is misclustered by764

the algorithm, i.e., V t ̸= Vj(it), but with Lemma H.1, with probability at least 1 − 3δ, the current765
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partition is a “good partition", i.e., ∥θl − θit∥2 ≤ 2ϵ∗
√

2
λ̃x

,∀l ∈ V t, we have:766

θ̂V t,t−1 − θit = (
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is∈V t

xas
(x⊤

as
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V t,t−1

∑
s∈[t−1]

is∈V t

xas
ηs +M

−1

V t,t−1

∑
s∈[t−1]

is∈V t

xas
x⊤
as
(θis − θit)

+M
−1

V t,t−1(
∑

s∈[t−1]

is∈V t

xas
x⊤
as

+ λI)θit − λM
−1

V t,t−1θit − θit

= M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xasϵ
is,s
as

+M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xasηs +M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xasx
⊤
as
(θis − θit)

− λM
−1

V t,t−1θit .

Thus, with Lemma 5.7 and with the previous reasoning, with probability at least 1− 5δ, we have:767

∣∣∣x⊤
a (θ̂V t,t−1 − θit)

∣∣∣ ≤ λ
∣∣∣x⊤

a M
−1

V t,t−1θit

∣∣∣+
∣∣∣∣∣∣∣
∑

s∈[t−1]

is∈V t

x⊤
a M

−1

V t,t−1xas
ϵis,sas

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣x⊤

a M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xas
ηs

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣x⊤
a M

−1

V t,t−1

∑
s∈[t−1]

is∈V t

xas
x⊤
as
(θis − θit)

∣∣∣∣∣∣∣
≤ ϵ∗

∑
s∈[t−1]

is∈V t

∣∣∣x⊤
a M

−1

V t,t−1xas

∣∣∣+ ∥xa∥M−1

V t,t−1

(√
λ+

√
2 log(

1

δ
) + d log(1 +

T

λd
)

)

+
ϵ∗
√
2d

λ̃
3
2
x

.

Therefore, combining situation 1 and situation 2, the result of Lemma 5.6 then follows.768

J Technical Lemmas and Their Proofs769

We first prove the following technical lemma which is used to prove Lemma H.1.770

Lemma J.1. Under Assumption 3.3, at any time t, for any fixed unit vector θ ∈ Rd771

Et[(θ
⊤xat

)2| |At|] ≥ λ̃x ≜
∫ λx

0

(1− e−
(λx−x)2

2σ2 )Cdx . (66)

Proof. The proof of this lemma mainly follows the proof of Claim 1 in [11], but with more careful772

analysis, since their assumption is more stringent than ours.773

Denote the feasible arms at round t by At = {xt,1,xt,2, . . . ,xt,|At|}. Consider the corresponding774

i.i.d. random variables θi = (θ⊤xt,i)
2 − Et[(θ

⊤xt,i)
2| |At|], i = 1, 2, . . . , |At|. By Assumption775

3.3, θi s are sub-Gaussian random variables with variance bounded by σ2. Therefore, we have that776
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for any α > 0 and any i ∈ [|At|]:777

Pt(θi < −α| |At|) ≤ e−
α2

2σ2 ,

where Pt(·) is the shorthand for the conditional probability778

P(·|(i1,A1, r1), . . . , (it−1,At−1, rt−1), it).779

We also have that Et[(θ
⊤xt,i)

2| |At| = Et[θ
⊤xt,ix

⊤
t,iθ| |At|] ≥ λmin(Ex∼ρ[xx

⊤]) ≥ λx by As-780

sumption 3.3. With the above inequalities, we can get781

Pt( min
i=1,...,|At|

(θ⊤xt,i)
2 ≥ λx − α| |At|) ≥ (1− e−

α2

2σ2 )C ,

where C is the upper bound of |At|.782

Therefore, we have783

Et[(θ
⊤xat

)2| |At|] ≥ Et[ min
i=1,...,|At|

(θ⊤xt,i)
2| |At|]

≥
∫ ∞

0

Pt( min
i=1,...,|At|

(θ⊤xt,i)
2 ≥ x| |At|)dx

≥
∫ λx

0

(1− e−
(λx−x)2

2σ2 )Cdx ≜ λ̃x

784

Finally, we prove the following lemma which is used in the proof of Theorem 5.3.785

Lemma J.2.
T∑

t=T0+1

min{I{it ∈ Vj} ∥xat
∥2
M

−1
Vj,t−1

, 1} ≤ 2d log(1 +
T

λd
),∀j ∈ [m] . (67)

Proof.

det(MVj ,T ) = det
(
MVj ,T−1 + I{iT ∈ Vj}xaT

x⊤
aT

)
= det(MVj ,T−1)det

(
I + I{iT ∈ Vj}M

− 1
2

Vj ,T−1xaT
x⊤
aT

M
− 1

2

Vj ,T−1

)
= det(MVj ,T−1)

(
1 + I{iT ∈ Vj} ∥xaT

∥2
M

−1
Vj,T−1

)
= det(MVj ,T0)

T∏
t=T0+1

(
1 + I{it ∈ Vj} ∥xat∥

2

M
−1
Vj,t−1

)

≥ det(λI)
T∏

t=T0+1

(
1 + I{it ∈ Vj} ∥xat∥

2

M
−1
Vj,t−1

)
. (68)

∀x ∈ [0, 1], we have x ≤ 2 log(1 + x). Therefore786

T∑
t=T0+1

min{I{it ∈ Vj} ∥xat
∥2
M

−1
Vj,t−1

, 1} ≤ 2

T∑
t=T0+1

log

(
1 + I{it ∈ Vj} ∥xat

∥2
M

−1
Vj,t−1

)

= 2 log

( T∏
t=T0+1

(
1 + I{it ∈ Vj} ∥xat

∥2
M

−1
Vj,t−1

))
≤ 2[log(det(MVj ,T ))− log(det(λI))]

≤ 2 log

(
trace(λI +

∑T
t=1 I{it ∈ Vj}xat

x⊤
at
)

λd

)d

≤ 2d log(1 +
T

λd
) . (69)

787
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K Algorithms of RSCLUMB788

This section introduces the Robust Set-based Clustering of Misspecified Bandits Algorithm789

(RSCLUMB). Unlike RCLUMB, which maintains a graph-based clustering structure, RSCLUMB790

maintains a set-based clustering structure. Besides, RCLUMB only splits clusters during the learning791

process, while RSCLUMB allows both split and merge operations. A brief illustration is that the792

agent will split a user out of its current set(cluster) if it finds an inconsistency between the user and its793

set, and if there are two clusters whose estimated preferences are close enough, the agent will merge794

them. A detailed discussion of the connection between the graph structure and the set structure can795

be found in [25].796

Now we introduce the details of RSCLUMB. The algorithm first initializes a single set S1 containing797

all users and updates it during the learning process. The whole learning process consists of phases798

(Algo. 2 Line 3), where the s − th phase contains 2s rounds. At the beginning of each phase, the799

agent marks all users as "unchecked", and if a user comes later, it will be marked as "checked". If all800

users in a cluster are checked, then this cluster will be marked as "checked" meaning it is an accurate801

cluster in the current phase. With this mechanism, every phase can maintain an accuracy level, and802

the agent can put the accurate clusters aside and focus on exploring the inaccurate ones. For each803

cluster Vj , the algorithm maintains two estimated vectors θ̂Vj
and θ̃Vj

, where the θ̂Vj
is similar to804

the θ̂V j
in RCLUMB and is used for the recommendation, while the θ̃Vj is the average of all the805

estimated user preference vectors in this cluster and is used for the split and merge operations.806

At time t in phase s, the user iτ comes with the item set Dτ , where τ represents the index of total807

time steps. Then the algorithm determines the cluster and makes a cluster-based recommendation.808

This process is similar to RCLUMB. After updating the information (Algo. 2 Line12), the agent809

checks if a split or a merge is possible (Algo. 2 Line13-17).810

By our assumption, users in the same cluster have the same vectors. So a cluster can be regarded811

as a good cluster only when all the estimated user vectors are close to the estimated cluster vector.812

We call a user is consistent with the cluster if their estimated vectors are close enough. If a user is813

inconsistent with its current cluster, the agent will split it out. Two clusters are consistent when their814

estimated vectors are close, and the agent will merge them.815

RSCLUMB maintains two sets of estimated cluster vectors: (i) cluster-level estimation with integrated816

user information, which is for recommendations (Line 12 and Line 10 in Algo.2); (ii) the average of817

estimated user vectors, which is used for robust clustering (Line 3 in Algo.3 and Line 2 in Algo.4).818

The previous set-based CB work [25] only uses (i) for both recommendations and clustering, which819

would lead to erroneous clustering under misspecifications, and cannot get any non-vacuous regret820

bound in CBMUM.821

L Main Theorem and Lemmas of RSCLUMB822

Theorem L.1 (main result on regret bound for RSCLUMB). With the same assumptions in Theorem823

5.3, the expected regret of the RSCLUMB algorithm for T rounds satisfies:824

R(T ) ≤ O

(
u

(
d

λ̃x(γ1 − ζ1)2
+

1

λ̃2
x

)
log T +

ϵ∗
√
dT

λ̃1.5
x

+ ϵ∗T
√

md log T + d
√
mT log T + ϵ∗

√
1

λ̃x

T

)
≤ O(ϵ∗T

√
md log T + d

√
mT log T ) (70)

Lemma L.2. For RSCLUMB, we use T1 to represent the corresponding T0 of RCLUMB. Then :825

T1 ≜ 16u log(
u

δ
) + 4umax{ 16

λ̃2
x

log(
8d

λ̃2
xδ

),
8d

λ̃x(
γ1

6 − ϵ∗
√

1
2λ̃x

)2
log(

u

δ
)}

= O

(
u

(
d

λ̃x(γ1 − ζ1)2
+

1

λ̃2
x

)
log

1

δ

)
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Algorithm 2 Robust Set-based Clustering of Misspecified Bandits Algorithm (RSCLUMB)

1: Input: Deletion parameter α1, α2 > 0, f(T ) =
√

1+ln(1+T )
1+T , λ, β, ϵ∗ > 0.

2: Initialization:
• M i,0 = 0d×d, bi,0 = 0d×1, Ti,0 = 0 , ∀i ∈ U ;
• Initialize the set of cluster indexes by J = {1} and the single cluster S1 by M1 = 0d×d,
b1 = 0d×1, T1 = 0, C1 = U , j(i) = 1, ∀i.

3: for all s = 1, 2, . . . do
4: Mark every user unchecked for each cluster.

5: For each cluster Vj , compute T̃Vj = TVj , θ̂Vj = (λI +MVj )
−1bVj , θ̃Vj =

∑
i∈Vj

θ̂i

[Vj ]

6: for all t = 1, 2, . . . , T do
7: Compute τ = 2s − 2 + t
8: Receive the user iτ and the decision set Dτ

9: Determine the cluster index j = j(iτ )
10: Recommend item aτ with the largest UCB index as shown in Eq. (5)
11: Received the feedback rτ .
12: Update the information:

M iτ ,τ = M iτ ,τ−1 + xaτx
T
aτ
, biτ ,τ = biτ ,τ−1 + rτxaτ ,

Tiτ,τ = Tiτ ,τ−1 + 1, θ̂iτ ,τ = (λI +M iτ ,τ )
−1biτ ,τ

MVj ,τ = MVj ,τ−1 + xaτ
xT
aτ
, bVj ,τ = bVj ,τ−1 + rτxτ ,

TVj ,τ = TVj ,τ−1 + 1, θ̂Vj ,τ = (λI +MVj ,τ )
−1bVj ,τ ,

θ̃Vj ,τ =

∑
i∈Vj

θ̂i, τ

[Vj ]

13: if iτ is unchecked then
14: Run Split
15: Mark user iτ has been checked
16: Run Merge

Algorithm 3 Split

1: Define F (T ) =
√

1+ln(1+T )
1+T

2: if
∥∥∥θ̂iτ ,τ − θ̃Vj ,τ

∥∥∥ > α1(F (Tiτ ,τ ) + F (TVj ,τ )) + α2ϵ∗ then

3: Split user iτ from cluster Vj and form a new cluster V
′

j of user iτ

MVj ,τ = MVj ,τ −M iτ ,τ , bVj = bVj − biτ ,τ ,

TVj ,τ = TVj ,τ − Tiτ ,τ , Cj,τ = Cj,τ − {iτ},
MV ′

j ,τ
= M iτ ,τ , bV ′

j ,τ
= biτ ,τ ,

TV ′
j ,τ

= Tiτ ,τ , Cj′,τ = {iτ}

Lemma L.3. For RSCLUMB, after 2T1 + 1 rounds: in each phase, after the first u rounds, with826

probability at least 1− 5δ:827

∣∣∣x⊤
a (θit − θ̂V t,t−1)

∣∣∣ ≤ (
3ϵ∗

√
2d

2λ̃
3
2
x

+ 6ϵ∗

√
1

2λ̃x

)I{V t /∈ V }+ β ∥xa∥M−1

V t,t−1

+ ϵ∗
∑

s∈[t−1]

is∈V t

∣∣∣x⊤
a M

−1

V t,t−1xas

∣∣∣
≜ (

3ϵ∗
√
2d

2λ̃
3
2
x

+ 6ϵ∗

√
1

2λ̃x

)I{V t /∈ V }+ Ca,t
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Algorithm 4 Merge
1: for any two checked clustersVj1 , Vj2 satisfying∥∥∥θ̃j1 − θ̃j2

∥∥∥ <
α1

2
(F (TVj1

) + F (TVj2
)) +

α2

2
ϵ∗

do
2: Merge them:

MVj1
= M j1 +M j2 , bVj1

= bVj1
+ bVj2

,

TVj1
= TVj1

+ TVj2
, CVj1

= CVj1
∪ CVj2

3: Set j(i) = j1,∀i ∈ j2, delete Vj2

M Proof of Lemma L.3828

|xT
a (θi − θ̂V t,t

)| = |xT
a (θi − θVt

)|+ |xT
a (θ̂V t,t

− θVt
)|

≤
∥∥xT

a

∥∥ ∥θi − θVt
∥+ |xT

a (θ̂V t,t
− θVt

)|

≤ 6ϵ∗

√
1

2λ̃x

+ |xT
a (θ̂V t,t

− θVt)|

(71)

where the last inequality holds due to the fact ∥xa∥ ≤ 1 and the condition of "split" and "merge".829

For |xT
a (θ̂V t,t

− θVt
)|:830

θ̂V t,t−1 − θVt = (
∑

s∈[t−1]

is∈V t

xas x
⊤
as

+ λI)−1(
∑

s∈[t−1]

is∈V t

xasrs)− θVt

= (
∑

s∈[t−1]

is∈V t

xas
x⊤
as

+ λI)−1

( ∑
s∈[t−1]

is∈V t

xas
(x⊤

as
θis + ϵis,sas

+ ηs)

)
− θVt

= M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xasϵ
is,s
as

+M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xasηs +M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xasx
⊤
as
θis − θVt

= M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xas
ϵis,sas

+M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xas
ηs +M

−1

V t,t−1

∑
s∈[t−1]

is∈V t

xas
x⊤
as
(θis − θVt

)

+M
−1

V t,t−1(
∑

s∈[t−1]

is∈V t

xas
x⊤
as

+ λI)θVt
− λM

−1

V t,t−1θVt
− θVt

= M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xasϵ
is,s
as

+M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xasηs +M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xasx
⊤
as
(θis − θVt)

− λM
−1

V t,t−1θVt
.

Thus, with the same method in Lemma 5.7 but replace ζ = 4ϵ∗
√

1
2λ̃x

with ζ1 = 6ϵ∗
√

1
2λ̃x

, and with831

the previous reasoning, with probability at least 1− 5δ, we have:832

|xT
a (θ̂V t,t

− θVt
)| ≤ Cat

+
3ϵ∗

√
2d

2λ̃
3
2
x

(72)

The lemma can be concluded.833
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N Proof of Lemma L.2834

With the analysis in the proof of Lemma H.1, with probability at least 1− δ:835 ∥∥∥θ̂i,t − θj(i)
∥∥∥
2
≤

β(Ti,t,
δ
u ) + ϵ∗

√
Ti,t√

λ+ λmin(M i,t)
,∀i ∈ U , (73)

and the estimated error of the current cluster
∥∥∥θ̃j(i)

− θj(i)
∥∥∥ also satisfies this inequality. For836

set-based clustering structure, to ensure for each user there is only one ζ-close cluster, we let:837

β(Ti,t,
δ
u ) + ϵ∗

√
Ti,t√

λ+ λmin(M i,t)
≤ γ1

6
(74)

By assuming λ < 2 log(uδ ) + d log(1 +
Ti,t

λd ), we can simplify it to838

2 log(uδ ) + d log(1 +
Ti,t

λd )

2λ̃xTi,t

<
1

4
(
γ1
6

− ϵ∗

√
1

2λ̃x

)2 (75)

which can be proved by
2 log( u

δ)

2λ̃xTi,t
≤ 1

8 (
γ1

6 − ϵ∗
√

1
2λ̃x

)2 and d log(1+
Ti,t
λd )

2λ̃xTi,t
≤ 1

8 (
γ1

6 − ϵ∗
√

1
2λ̃x

)2. It’s839

obvious that the former one can be satisfied by Ti,t ≥ 8 log(u/δ)

λ̃x(
γ1
6 −ϵ∗

√
1/2λ̃x)2

. As for the latter one, by840

[23] Lemma 9, we can get Ti,t ≥
8d log( 16

λ̃xλ(
γ1
6

−ϵ∗
√

1/2λ̃x)2

4λ̃x(
γ1
6 −ϵ∗

√
1/2λ̃x)2

. By assuming u
δ ≥ 16

4λ̃xλ(
γ1
6 −ϵ∗

√
2/4λ̃x)2

,841

the lemma is proved.842

O Proof of Theorem L.1843

After 2T1 rounds,in each phase, at most u times split operations will happen, we use u log(T ) to844

bound the regret generated in these rounds. Then in the remained rounds the cluster num will be no845

more than m.846

For the instantaneous regret Rt at round t, with probability at least 1− 2δ for some δ ∈ (0, 1
2 ):847

Rt = (xT
a∗
t
θit + ϵit,ta∗

t
)− (xT

at
θit + ϵit,tat

)

= x⊤
a∗
t
(θit − θ̂V t,t−1) + (x⊤

a∗
t
θ̂V t,t−1 + Ca∗

t ,t
)− (x⊤

at
θ̂V t,t−1 + Cat,t)

+ x⊤
at
(θ̂V t,t−1 − θit) + Cat,t − Ca∗

t ,t
+ (ϵit,ta∗

t
− ϵit,tat

)

≤ 2Cat
+ 2ϵ∗ + (12ϵ∗

√
1

2λ̃x

+
3ϵ∗

√
2d

λ̃
3
2
x

)I(V t /∈ V )

(76)

where the last inequality holds due to the UCB arm selection strategy, the concentration bound given848

in LemmaL.3 and the fact that
∥∥ϵi,t∥∥∞ ≤ ϵ∗.849

Define such events. Let:850

E2 = {All clusters V t only contain users who satisfy
∥∥∥θ̃i − θ̃V t

∥∥∥ ≤ α1(

√
1 + log(1 + Ti,t)

1 + Ti,t
+

√
1 + log(1 + TV t,t

)

1 + TV t,t

)+α2ϵ∗}
851

E3 = {rt ≤ 2Cat
+ 2ϵ∗ + 12ϵ∗

√
1

2λ̃x

+
3ϵ∗

√
2d

λ̃
3
2
x

}
852

E
′
= E2 ∩ E3

From previous analysis, we can know that P(E2) ≥ 1− 3δ and P(E3) ≥ 1− 2δ, thus P(E ′ ≥ 1− 5δ).853

By taking δ = 1
T , we can get:854

E(Rt) = P (E)I{E}Rt + P (Ē)I{Ē}Rt

≤ I{E}Rt + 5

≤ 2T1 + 2ϵ∗T + (12ϵ∗

√
1

2λ̃x

+
3ϵ∗

√
2d

λ̃
3
2
x

)T + 2

T∑
2T1

Cat
+ 5

(77)
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Now we need to bound 2
∑T

2T1
Cat . We already know that after 2T1 rounds, in each phase k after855

the first u rounds,there will be at most m clusters856

Consider phase k, for simplicity, ignore the fist u rounds. For the first term in Cat :857

Tk∑
t=Tk−1

∥xat∥
−1

MV t,t−1
=

Tk∑
t=Tk−1

mt∑
j=1

I{i ∈ V t,j} ∥xat
∥
M

−1

V t,j

≤
mt∑
j=1

√√√√ Tk∑
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Tk∑
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2
M−1

V t,j

≤
mt∑
j=1

√
2Tk,jd log(1 +

T

λd
)

≤
√
2m(Tk − Tk−1)d log(1 +

T

λd
)

(78)

For all phases:858

s∑
k=1

√
2m(Tk+1 − Tk)d log(1 +

T

λd
) ≤

√√√√2
s∑
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1

s∑
k=1

(Tk+1 − Tk)md log(1 +
T

λd
)

≤
√
2mdT log(T ) log(1 +

T

λd
)

(79)

Similarly, for the second term in Cat
:859
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Then for all phases this term can be bounded by ϵ∗T
√
2md log(1 + T

λd ).860

Thus the total regret can be bounded by:861
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Figure 2: The cumulative regret of the algorithms under different scales of misspecification level.

P More Experiments863

For ablation study, we test our algorithms’ performance under different scales of deviation. We864

test RCLUMB and RSCLUMB when ϵ∗ = 0.05, 0.1, 0.2, 0.3 and 0.4 in both misspecification level865

known and unknown cases. In the known case, we set ϵ∗ according to the real misspecification866

level, and we compare our algorithms’ performance to the baselines except LinUCB and CW-OFUL867

which perform worst; in the unknown case, we keep ϵ∗ = 0.2, and we compare our algorithms to868

RLinUCB-Ind as only it has the pre-spicified parameter ϵ∗ among the baselines. The results are shown869

in Fig.2. We plot each algorithm’s final cumulative regret under different misspecification levels. All870

the algorithms’ performance get worse when the deviation gets larger, and our two algorithms always871

perform better than the baselines. Besides, the regrets in the unknown case are only slightly larger872

than the known case. These results can match our theoretical results and again show our algorithms’873

effectiveness, as well as verify that our algorithm can handle the unknown misspecification level.874
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