
Under review as a conference paper at ICLR 2021

A ANALYSIS OF HARD SAMPLING

A.1 HARD SAMPLING INTERPOLATES BETWEEN MARGINAL AND WORST-CASE NEGATIVES

We begin by proving Proposition 3. Recall that the proposition stated the following.
Proposition 6. Let L∗(f) = supq∈Π L(f, q). Then for any t > 0 and measurable f : X → Sd−1/t

we observe the convergence L(f, q−β ) −→ L∗(f) as β →∞.

Proof. Consider the following essential supremum,

M(x) = ess sup
x−∈X :x−�x

f(x)T f(x−) = sup{m > 0 : m ≥ f(x)T f(x−) a.s. for x− ∼ p−}.

The second inequality holds since supp(p) = X . We may rewrite

L∗(f) = E x∼p
x+∼p+x

[
− log

ef(x)T f(x+)

ef(x)T f(x+) +QeM(x)

]
,

L(f, q−β ) = E x∼p
x+∼p+x

− log
ef(x)T f(x+)

ef(x)T f(x+) +QEx−∼q−β [ef(x)T f(x−)]

 .
The difference between these two terms can be bounded as follows,

∣∣∣L∗(f)− L(f, q−β )
∣∣∣ ≤ E x∼p

x+∼p+x

∣∣∣∣∣∣− log
ef(x)T f(x+)

ef(x)T f(x+) +QeM(x)
+ log

ef(x)T f(x+)

ef(x)T f(x+) +QEx−∼q−β [ef(x)T f(x−)]

∣∣∣∣∣∣
= E x∼p

x+∼p+x

∣∣∣∣∣log

(
ef(x)T f(x+) +QEx−∼q−β [ef(x)T f(x−)]

)
− log

(
ef(x)T f(x+) +QeM(x)

)∣∣∣∣∣
≤ e1/t

Q+ 1
· E x∼p

x+∼p+x

∣∣∣∣ef(x)T f(x+) +QEx−∼q−β [ef(x)T f(x−)]− ef(x)T f(x+) −QeM(x)

∣∣∣∣
=
e1/tQ

Q+ 1
· Ex∼p

∣∣∣∣Ex−∼q−β [ef(x)T f(x−)]− eM(x)

∣∣∣∣
≤ e1/t · Ex∼pEx−∼q−β

∣∣∣eM(x) − ef(x)T f(x−)
∣∣∣

where for the second inequality we have used the fact that f lies on the hypersphere of radius 1/t to
restrict the domain of the logarithm to values greater than (Q+1)e−1/t. Because of this the logarithm
is Lipschitz with parameter e1/t/(Q + 1). Using again the fact that f lies on the hypersphere we
know that

∣∣f(x)T f(x−)
∣∣ ≤ 1/t2 and hence have the following inequality,

Ex∼pEq−β

∣∣∣eM(x) − ef(x)T f(x−)
∣∣∣ ≤ e1/t2Ex∼pEq−β

∣∣∣M(x)− f(x)T f(x−)
∣∣∣

Let us consider the inner expectation Eβ(x) = Eq−β
∣∣M(x)− f(x)T f(x−)

∣∣. Note that since f is

bounded, Eβ(x) is uniformly bounded in x. Therefore, in order to show the convergence L(f, q−β )→
L∗(f) as β → ∞, it suffices by the dominated convergence theorem to show that Eβ(x) → 0
pointwise as β →∞ for arbitrary fixed x ∈ X .

From now on we denote M = M(x) for brevity, and consider a fixed x ∈ X . From the definition of
q−β it is clear that q−β � p−. That is, since q−β = c · p− for some (non-constant) c, it is absolutely
continuous with respect to p−. So M(x) ≥ f(x)T f(x−) almost surely for x− ∼ q−β , and we

14



Under review as a conference paper at ICLR 2021

may therefore drop the absolute value signs from our expectation. Define the following event
Gε = {x− : f(x)>f(x−) ≥ M − ε} where G is refers to a “good” event. Define its complement
Bε = Gcε where B is for “bad”. For a fixed x ∈ X and ε > 0 consider,

Eβ(x) = Ex−∼q−β

∣∣∣M(x)− f(x)T f(x−)
∣∣∣

= Px−∼q−β (Gε) · Ex−∼q−β

[∣∣∣M(x)− f(x)T f(x−)
∣∣∣ |Gε]+ Px−∼q−β (Bε) · Ex−∼q−β

[∣∣∣M(x)− f(x)T f(x−)
∣∣∣ |Bε]

≤ Px−∼q−β (Gε) · ε+ 2Px−∼q−β (Bε)

≤ ε+ 2Px−∼q−β (Bε).

We need to control Px−∼q−β (Bε). Expanding,

Px−∼q−β (Bε) =

∫
X
1
{
f(x)T f(x−) < M(x)− ε

} eβf(x)T f(x−) · p−(x−)

Zβ
dx−

where Zβ =
∫
X e

βf(x)T f(x−)p−(x−)dx− is the partition function of q−β . We may bound this
expression by,∫
X
1
{
f(x)T f(x−) < M − ε

} eβ(M−ε) · p−(x−)

Zβ
dx− ≤ eβ(M−ε)

Zβ

∫
X
1
{
f(x)T f(x−) < M − ε

}
p−(x−)dx−

=
eβ(M−ε)

Zβ
Px−∼p−(Bε)

≤ eβ(M−ε)

Zβ

Note that

Zβ =

∫
X
eβf(x)T f(x−)p−(x−)dx− ≥ eβ(M−ε/2)Px−∼p−(f(x)T f(x−) ≥M − ε/2).

By the definition of M = M(x) the probability ρε = Px−∼p−(f(x)T f(x−) ≥M − ε/2) > 0, and
we may therefore bound,

Px−∼q−β (Bε) =
eβ(M−ε)

eβ(M−ε/2)ρε

= e−βε/2/ρε

−→ 0 as β →∞.

We may therefore take β to be sufficiently big so as to make Px−∼q−β (Bε) ≤ ε and therefore
Eβ(x) ≤ 3ε. In other words, Eβ(x) −→ 0 as β →∞.

A.2 OPTIMAL EMBEDDINGS ON THE HYPERSPHERE FOR WORST-CASE NEGATIVE SAMPLES

In order to study properties of global optima of the contrastive objective using the adversarial worst
case hard sampling distribution recall that we have the following limiting objective,

L∞(f, q) = E x∼p
x+∼p+x

[
− log

ef(x)T f(x+)

Ex−∼qβ [ef(x)T f(x−)]

]
. (8)

We may separate the logarithm of a quotient into the sum of two terms plus a constant,

L∞(f, q) = Lalign(f) + Lunif(f, q)− 1/t2

15



Under review as a conference paper at ICLR 2021

where Lalign(f) = Ex,x+‖f(x)− f(x+)‖2/2 and Lunif(f, q) = Ex∼p logEx−∼qef(x)>f(x−). Here
we have used the fact that f lies on the boundary of the hypersphere of radius 1/t, which gives us the
following equivalence between inner products and squared Euclidean norm,

2/t2 − 2f(x)>f(x+) = ‖f(x)‖2 + ‖f(x+)‖2 − 2f(x)>f(x+) = ‖f(x)− f(x+)‖2. (9)

Taking supremum to obtain L∗∞(f) = supq∈Π L∞(f, q) we find that the second expression simplifies
to,

L∗unif(f) = sup
q∈Π
Lunif(f, q) = Ex∼p log sup

x−�x
ef(x)>f(x−) = Ex∼p sup

x−�x
f(x)>f(x−).

Using Eqn. (9), this can be re-expressed as,

Ex∼p sup
x−�x

f(x)>f(x−) = −Ex∼p inf
x−�x

‖f(x)− f(x−)‖2/2 + 1/t2. (10)

The forthcoming theorem exactly characterizes the global optima of minf L∗∞(f)

Theorem 7. Suppose the downstream task is classification (i.e. C is finite), and let L∗∞(f) =
supq∈Π L∞(f, q) . The infimum inff : measurable L∗∞(f) is attained, and any f∗ achieving the global
minimum is such that f∗(x) = f∗(x+) almost surely. Furthermore, letting vc = f∗(x) for any x
such that h(x) = c (so vc is well defined up to a set of x of measure zero), f∗ is characterized as
being any solution to the following ball-packing problem,

max
{vc∈Sd−1/t}c∈C

∑
c∈C

ρ(c) ·min
c′ 6=c
‖vc − vc′‖2. (11)

Proof. Any minimizer of Lalign(f) has the property that f(x) = f(x+) almost surely. So, in order
to prove the first claim, it suffices to show that there exist functions f ∈ arg inff L∗unif(f) for which
f(x) = f(x+) almost surely. This is because, at that point, we have shown that arg minf Lalign(f)
and arg minf L∗unif(f) intersect, and therefore any solution of L∗∞(f) = Lalign(f) + L∗unif(f) must
lie in this intersection.

To this end, suppose that f ∈ arg minf L∗unif(f) but that f(x) 6= f(x+) with non-zero probability.
We shall show that we can construct a new embedding f̂ such that f(x) = f(x+) almost surely, and
L∗unif(f̂) ≤ L∗unif(f). Due to Eqn. (10) this last condition is equivalent to showing,

Ex∼p inf
x−�x

‖f̂(x)− f̂(x−)‖2 ≥ Ex∼p inf
x−�x

‖f(x)− f(x−)‖2. (12)

Fix a c ∈ C, and let xc ∈ arg maxx:h(x)=c infx−�x ‖f(x)− f(x−)‖2. The maximum is guaranteed
to be attained, as we explain now. Indeed we know the maximum is attained at some point in
the closure ∂{x : h(x) = c} ∪ {x : h(x) = c}. Since X is compact and connected, any point
x̄ ∈ ∂{x : h(x) = c} \ {x : h(x) = c} is such that infx−�x̄ ‖f(x̄) − f(x−)‖2 = 0 since x̄ must
belong to {x : h(x) = c′} for some other c′. Such an x̄ cannot be a solution unless all points in
{x : h(x) = c} also achieve 0, in which case we can simply take xc to be a point in the interior of
{x : h(x) = c}.

Now, define f̂(x) = f(xc) for any x such that h(x) = c and f̂(x) = f(x) otherwise. Let us first aim
to show that Eqn. (12) holds for this f̂ . Let us begin to expand the left hand side of Eqn. (12),

16



Under review as a conference paper at ICLR 2021

Ex∼p inf
x−�x

‖f̂(x)− f̂(x−)‖2

= Eĉ∼ρEx∼p(·|ĉ) inf
x−�x

‖f̂(x)− f̂(x−)‖2

= ρ(c)Ex∼p(·|c) inf
x−�x

‖f̂(x)− f̂(x−)‖2

+ (1− ρ(c))Eĉ∼ρ(·|ĉ6=c)Ex∼p(·|ĉ) inf
x−�x

‖f̂(x)− f̂(x−)‖2

= ρ(c)Ex∼p(·|c) inf
x−�x

‖f(xc)− f(x−)‖2

+ (1− ρ(c))Eĉ∼ρ(·|ĉ6=c)Ex∼p(·|ĉ) inf
x−�x

‖f̂(x)− f̂(x−)‖2

= ρ(c) inf
x−�xc

‖f(xc)− f(x−)‖2

+ (1− ρ(c))Eĉ∼ρ(·|ĉ6=c)Ex∼p(·|ĉ) inf
h(x−)6=ĉ

‖f̂(x)− f̂(x−)‖2 (13)

By construction, the first term can be lower bounded by infx−�xc ‖f(xc) − f(x−)‖2 ≥
Ex∼p(·|c) infh(x−) 6=c ‖f(x) − f(x−)‖2 for any x such that h(x) = c. To lower bound the sec-
ond term, consider any fixed ĉ 6= c and x ∼ p(·|ĉ) (so h(x) = ĉ). Define the following two subsets
of the input space X

A = {f(x−) : f(x−) 6= ĉ for x− ∈ X} Â = {f(x−) ∈ X : f̂(x−) 6= ĉ for x− ∈ X}.

Since by construction the range of f̂ is a subset of the range of f , we know that Â ⊆ A. Combining
this with the fact that f̂(x) = f(x) whenever h(x) = ĉ 6= c we see,

inf
h(x−)6=ĉ

‖f̂(x)− f̂(x−)‖2 = inf
h(x−)6=ĉ

‖f(x)− f̂(x−)‖2

= inf
u∈Â
‖f(x)− u‖2

≥ inf
u∈A
‖f(x)− u‖2

= inf
h(x−)6=ĉ

‖f(x)− f(x−)‖2

Using these two lower bounds we may conclude that Eqn. (13) can be lower bounded by,

ρ(c)Ex∼p(·|c) inf
h(x−)6=c

‖f(x)− f(x−)‖2 + (1− ρ(c))Eĉ∼ρ(·|ĉ 6=c)Ex∼p(·|ĉ) inf
h(x−)6=ĉ

‖f(x)− f(x−)‖2

which equals Ex∼p infx−�x ‖f(x)− f(x−)‖2. We have therefore proved Eqn. (12). To summarize
the current progress; given an embedding f we have constructed a new embedding f̂ that attains
lower Lunif loss and which is constant on x such that f̂ is constant on {x : h(x) = c}. Enumerating
C = {c1, c2 . . . , c|C|}, we may repeatedly apply the same argument to construct a sequence of
embeddings f1, f2, . . . , f|C| such that fi is constant on each of the following sets {x : h(x) = cj} for
j ≤ i . The final embedding in the sequence f∗ = f|C| is such that L∗unif(f

∗) ≤ L∗unif(f) and therefore
f∗ is a minimizer. This embedding is constant on each of {x : h(x) = cj} for j = 1, 2, . . . ,|C|. In
other words, f∗(x) = f∗(x+) almost surely. We have proved the first claim.

Obtaining the second claim is a matter of manipulating L∗∞(f∗). Indeed, we know that L∗∞(f∗) =
L∗unif(f

∗)− 1/t2 and defining vc = f∗(x) = f(xc) for each c ∈ C, this expression is minimized if
and only if f∗ attains,

17



Under review as a conference paper at ICLR 2021

max
f
Ex∼p inf

x−�x
‖f(x)− f(x−)‖2 = max

f
Ec∼ρEx∼p(·|c) inf

h(x−)6=c
‖f(x)− f(x−)‖2

= max
f

∑
c∈C

ρ(c) · inf
h(x−) 6=c

‖f(x)− f(x−)‖2

= max
{vc∈Sd−1/t}c∈C

∑
c∈C

ρ(c) ·min
c′ 6=c
‖vc − vc′‖2

where the final equality inserts f∗ as an optimal f and reparameterizes the maximum to be over the
set of vectors {vc ∈ Sd−1/t}c∈C .

A.3 DOWNSTREAM GENERALIZATION

Theorem 8. Suppose ρ is uniform on C and f is such that L∗∞(f) − inf f̄ measurable L∗∞(f̄) ≤
ε with ε ≤ 1. Let {v∗c ∈ Sd−1/t}c∈C be a solution to Problem 7, and define ξ =
minc,c−:c 6=c−

∥∥v∗c − v∗c−
∥∥ > 0. Then there exists a set of vectors {vc ∈ Sd−1/t}c∈C such that

the following 1-nearest neighbor classifier,

ĥ(x) = ĉ, where ĉ = arg min
c̄∈C

∥∥f(x)− vc̄
∥∥ (ties broken arbitrarily)

achieves misclassification risk,

P(ĥ(x) 6= c) ≤ 8ε

(ξ2 − 2|C| (1 + 1/t)ε1/2)2

Proof. To begin, using the definition of ĥ we know that for any 0 < δ < ξ,

Px,c(ĥ(x) = c) = Px,c
(∥∥f(x)− vc

∥∥ ≤ min
c−:c− 6=c

∥∥f(x)− vc−
∥∥)

≥ Px,c
(∥∥f(x)− vc

∥∥ ≤ δ, and δ ≤ min
c−:c− 6=c

∥∥f(x)− vc−
∥∥)

≥ 1− Px,c
(∥∥f(x)− vc

∥∥ > δ
)
− Px,c

(
min

c−:c− 6=c

∥∥f(x)− vc−
∥∥ < δ

)
So to prove the result, our goal is now to bound these two probabilities. To do so, we use the bound
on the excess risk. Indeed, combining the fact L∗∞(f)− inf f̄ measurable L∗∞(f̄) ≤ ε with the notational

rearrangements before Theorem 7 we observe that Ex,x+

∥∥f(x)− f(x+)
∥∥2 ≤ 2ε.

We have,

2ε ≥ Ex,x+

∥∥f(x)− f(x+)
∥∥2

= Ec∼ρEx+∼p(·|c)Ex∼p(·|c)
∥∥f(x)− f(x+)

∥∥2
.

For fixed c, x+, let xc ∈ arg min{x+:h(x+)=c} Ex∼p(·|c)
∥∥f(x)− f(x+)

∥∥2
where we extend the

minimum to be over the closure, a compact set, to guarantee it is attained. Then we have

2ε ≥ Ec∼ρEx+∼p(·|c)Ex∼p(·|c)
∥∥f(x)− f(x+)

∥∥2 ≥ Ec∼ρEx∼p(·|c)
∥∥f(x)− vc

∥∥2

where we have now defined vc = f(xc) for each c ∈ C. Note in particular that vc lies on the surface
of the hypersphere Sd−1/t. This enables us to obtain the follow bound using Markov’s inequality,

18



Under review as a conference paper at ICLR 2021

Px,c
(∥∥f(x)− vc

∥∥ > δ
)

= Px,c
(∥∥f(x)− vc

∥∥2
> δ2

)
≤
Ex,c

∥∥f(x)− vc
∥∥2

δ2

≤ 2ε

δ2
.

so it remains still to bound Px,c
(

minc−:c− 6=c
∥∥f(x)− vc−

∥∥ < δ
)
. Defining ξ′ =

minc,c−:c 6=c−‖vc − vc−‖, we have the following fact (proven later).

Fact (see lemma 9): ξ′ ≥
√
ξ2 − 2|C| (1 + 1/t)

√
ε.

Using this fact we are able to get control over the tail probability as follows,

Px,c
(

min
c−:c− 6=c

∥∥f(x)− vc−
∥∥ < δ

)
≤ Px,c

(∥∥f(x)− vc
∥∥ > ξ′ − δ

)
≤ Px,c

(∥∥f(x)− vc
∥∥ > ξ −

√
ξ2 − 2|C| (1 + 1/t)ε1/2 − δ

)
= Px,c

(∥∥f(x)− vc
∥∥2
> (
√
ξ2 − 2|C| (1 + 1/t)ε1/2 − δ)2

)
≤ 2ε

(
√
ξ2 − 2|C| (1 + 1/t)ε1/2 − δ)2

.

where this inequality holds for for any 0 ≤ δ ≤
√
ξ2 − 2|C| (1 + 1/t)ε1/2.

Gathering together our tail probability bounds we find that Px,c(ĥ(x) = c) ≥ 1 − 2ε
δ2 −

2ε

(
√
ξ2−2|C|(1+1/t)ε1/2−δ)2

for any 0 ≤ δ ≤
√
ξ2 − 2|C| (1 + 1/t)ε1/2. That is,

Px,c(ĥ(x) 6= c) ≤ 2ε

δ2
+

2ε

(
√
ξ2 − 2|C| (1 + 1/t)ε1/2 − δ)2

Since this holds for any 0 ≤ δ ≤
√
ξ2 − 2|C| (1 + 1/t)ε1/2,

Px,c(ĥ(x) 6= c) ≤ min
0≤δ≤

√
ξ2−2|C|ε

{
2ε

δ2
+

2ε

(
√
ξ2 − 2|C| (1 + 1/t)ε1/2 − δ)2

}
.

Elementary calculus shows that the minimum is attained at δ =

√
ξ2−2|C|(1+1/t)ε1/2

2 . Plugging this in
yields the final bound,

P(ĥ(x) 6= c) ≤ 8ε

(ξ2 − 2|C| (1 + 1/t)ε1/2)2
.

Lemma 9. Consider the same setting as introduced in Theorem 5. In particular define

ξ′ = min
c,c−:c 6=c−

‖vc − vc−‖ , ξ = min
c,c−:c6=c−

∥∥v∗c − v∗c−
∥∥ .

where {v∗c ∈ Sd−1/t}c∈C is a solution to Problem 7, and {vc ∈ Sd−1/t}c∈C is defined via vc =

f(xc) with xc ∈ arg min{x+:h(x+)=c} Ex∼p(·|c)
∥∥f(x)− f(x+)

∥∥2
for each c ∈ C. Then we have,

ξ′ ≥
√
ξ2 − 2|C| (1 + 1/t)ε1/2.

19



Under review as a conference paper at ICLR 2021

Proof. Define,

X = min
c−:c− 6=c

‖vc − vc−‖2 , X∗ = min
c−:c− 6=c

∥∥v∗c − v∗c−
∥∥2
.

X and X∗ are random due to the randomness of c ∼ ρ. We can split up the following expectation by
conditioning on the event {X ≤ X∗} and its complement,

E|X −X∗| = P(X ≥ X∗)E[X −X∗] + P(X ≤ X∗)E[X∗ −X]. (14)

UsingL∗∞(f)−inf f̄ measurable L∗∞(f̄) ≤ ε and the notational re-writing of the objectiveL∗∞ introduced
before Theorem 7, we observe the following fact, whose proof we give in a separate lemma after the
conclusion of this proof.

Fact (see lemma 10): EX∗ − 2(1 + 1/t)
√
ε ≤ EX ≤ EX∗.

This fact implies in particular E[X − X∗] ≤ 0 and E[X∗ − X] ≤ 2(1 + 1/t)
√
ε. Inserting both

inequalities into Eqn. 14 we find that E|X −X∗| ≤ 2(1 + 1/t)
√
ε. In other words, since ρ is

uniform,

1

|C|
∑
c∈C

∣∣∣∣ min
c−:c− 6=c

‖vc − vc−‖2 − min
c−:c− 6=c

∥∥v∗c − v∗c−
∥∥2
∣∣∣∣ ≤ 2(1 + 1/t)

√
ε.

From which we can say that for any c ∈ C ,

∣∣∣∣ min
c−:c− 6=c

‖vc − vc−‖2 − min
c−:c− 6=c

∥∥v∗c − v∗c−
∥∥2
∣∣∣∣ ≤ 2|C| (1 + 1/t)

√
ε.

So minc−:c− 6=c‖vc − vc−‖ ≥
√

minc−:c− 6=c
∥∥v∗c − v∗c−

∥∥2 − 2|C| (1 + 1/t)ε1/2 ≥√
ξ2 − 2|C| (1 + 1/t)ε1/2. Since this holds for any c ∈ C , we conclude that

ξ′ ≥
√
ξ2 − 2|C| (1 + 1/t)ε1/2.

Lemma 10. Consider the same setting as introduced in Theorem 5. Define also,

X = min
c−:c− 6=c

‖vc − vc−‖2 , X∗ = min
c−:c− 6=c

∥∥v∗c − v∗c−
∥∥2
,

where vc = f(xc) with xc ∈ arg min{x+:h(x+)=c} Ex∼p(·|c)
∥∥f(x)− f(x+)

∥∥2
for each c ∈ C. We

have,
EX∗ − 2(1 + 1/t)

√
ε ≤ EX ≤ EX∗.

Proof. By Theorem 7 we know there is an f∗ attaining the minimum inf f̄ measurable L∗∞(f̄) and that
this f∗ attains L∗align(f∗) = 0, and also minimizes the uniformity term L∗unif(f), taking the value
L∗unif(f

∗) = Ec∼ρ maxc−:c− 6=c v
∗
c
>v∗c− . Because of this we find,

L∗unif(f) ≤
(
L∗∞(f)− L∗∞(f∗)

)
+
(
L∗align(f∗)− L∗align(f)

)
+ L∗unif(f

∗)

≤
(
L∗∞(f)− L∗∞(f∗)

)
+ L∗unif(f

∗)

≤ ε+ L∗unif(f
∗)

= ε+ Ec∼ρ max
c−:c− 6=c

v∗c
>v∗c− .

20



Under review as a conference paper at ICLR 2021

Since we would like to bound Ec∼ρ maxc−:c− 6=c vc
>vc− in terms of Ec∼ρ maxc−:c− 6=c v

∗
c
>v∗c− ,

this observation means that is suffices to bound Ec∼ρ maxc−:c− 6=c vc
>vc− in terms of L∗unif(f). To

this end, note that for a fixed c, and x such that h(x) = c we have,

sup
x−�x

f(x)>f(x−) = sup
x−�x

{
vc
>f(x−) + (f(x)− vc)

>f(x−)
}

= sup
x−�x

vc
>f(x−)−

∥∥f(x)− vc
∥∥ /t

≥ max
x−∈{xc}c∈C

vc
>f(x−)−

∥∥f(x)− vc
∥∥ /t

= max
c− 6=c

vc
>vc− −

∥∥f(x)− vc
∥∥ /t

where the inequality follows since {xc}c∈C is a subset of the closure of {x− : x− � x}. Taking
expectations over c, x,

L∗unif(f) = Ex,c sup
x−�x

f(x)>f(x−)

≥ Ec∼ρ max
c− 6=c

vc
>vc− − Ex,c

∥∥f(x)− vc
∥∥ /t

≥ Ec∼ρ max
c− 6=c

vc
>vc− −

√
Ex,c

∥∥f(x)− vc
∥∥2
/t

≥ Ec∼ρ max
c− 6=c

vc
>vc− −

√
ε/t.

So since ε ≤
√
ε, we have found that

Ec∼ρ max
c− 6=c

vc
>vc− ≤

√
ε/t+ ε+ Ec∼ρ max

c−:c− 6=c
v∗c
>v∗c− ≤ (1 + 1/t)

√
ε+ Ec∼ρ max

c−:c− 6=c
v∗c
>v∗c− .

Of course we also have,

Ec∼ρ max
c−:c− 6=c

v∗c
>v∗c− = L∗unif(f

∗) ≤ Ec∼ρ max
c−:c− 6=c

vc
>vc−

since the embedding f(x) = vc whenever h(x) = c is also a feasible solution. Combining these two
inequalities with the simple identity x>y = 1/t2 −‖x− y‖2 /2 for all length 1/t vectors x,y, we
find,

1/t2 − Ec∼ρ max
c−:c− 6=c

∥∥v∗c − v∗c−
∥∥2
/2 ≤ 1/t2 − Ec∼ρ max

c−:c− 6=c
‖vc − vc−‖

2
/2

≤ 1/t2 − Ec∼ρ max
c−:c− 6=c

∥∥v∗c − v∗c−
∥∥2
/2 + (1 + 1/t)

√
ε.

Subtracting 1/t2 and multiplying by −2 yields the result.

B GRAPH REPRESENTATION LEARNING

We describe in detail the hard sampling method for graphs whose results are reported in Section 5.2.
Before getting that point, in the interests of completeness we cover some required background details
on the InfoGraph method of Sun et al. (2020). For further information see the original paper (Sun
et al., 2020).

21



Under review as a conference paper at ICLR 2021

B.1 BACKGROUND ON GRAPH REPRESENTATIONS

We observe a set of graphs G = {Gj ∈ G}nj=1 sampled according to a distribution p over an ambient

graph space G. Each node u in a graph G is assumed to have features h(0)
u living in some Euclidean

space. We consider a K-layer graph neural network, whose k-th layer iteratively computes updated
embeddings for each node v ∈ G in the following way,

h(k)
v = COMBINE(k)

h(k−1)
v ,AGGREGATE(k)

({(
h(k−1)
v , h(k−1)

u , euv

)
: u ∈ N (v)

})
where COMBINE(k) and AGGREGATE(k) are parameterized learnable functions and N (v) denotes
the set of neighboring nodes of v. The K embeddings for a node u are collected together to
obtain a single final summary embedding for u. As recommended by Xu et al. (2019) we use
concatenation, hu = hu(G) = CONCAT

(
{h(k)

u }Kk=1

)
to obtain an embedding in Rd. Finally, the

node representations are combined together into a length d graph level embedding using a readout
function,

H(G) = READOUT
(
{hu}u∈G

)
which is typically taken to be a simple permutation invariant function such as the sum or mean. The
InfoGraph method aims to maximize the mutual information between the graph level embedding
H(G) and patch-level embeddings hu(G) using the following objective,

max
h
EG∼p

1

|G|
∑
u∈G

I
(
hu(G);H(G)

)
In practice the population distribution p is replaced by its empirical counterpart, and the mutual
information I is replaced by a variational approximation IT . In line with Sun et al. (2020) we use the
Jensen-Shannon mutual information estimator as formulated by Nowozin et al. (2016). It is defined
using a neural network discriminator T : R2d → R as,

IT
(
hu(G);H(G)

)
= EG∼p

[
−sp(−T

(
hu(G), H(G)

)
)
]
−E(G,G′)∼p×p

[
sp(T

(
hu(G), H(G′)

)
)
]

where sp(z) = log(1+ez) denotes the softplus function. The finial objective is the joint maximization
over h and T ,

max
θ,ψ

EG∼p
1

|G|
∑
u∈G

IT
(
hu(G);H(G)

)
B.2 HARD NEGATIVE SAMPLING FOR LEARNING GRAPH REPRESENTATIONS

In order to derive a simple modification of the NCE hard sampling technique that is appropriate for
use with InfoGraph, we first provide a mildly generalized view of hard sampling. Recall that the
NCE contrastive objective can be decomposed into two constituent pieces,

L(f, q) = Lalign(f) + Lunif(f, q)

where q is in fact a family of distributions q(x−;x) over x− that is indexed by the possible values of
the anchor x. Lalign performs the role of “aligning” positive pairs (embedding near to one-another),
while Lunif repels negative pairs. The hard sampling framework aims to solve,

22



Under review as a conference paper at ICLR 2021

inf
f

sup
q
L(f, q).

In the case of NCE loss we take,

Lalign(f) = −E x∼p
x+∼p+x

f(x)T f(x+),

Lunif(f, q) = E x∼p
x+∼p+x

log
{
ef(x)T f(x+) +QEx−∼q[ef(x)T f(x−)]

}
.

View this view, we can easily adapt to the InfoGraph framework, taking

Lalign(h, T ) = −EG∼p
1

|G|
∑
u∈G

sp(−T
(
hu(G), H(G)

)
),

Lunif(h, T, q) = −EG∼p
1

|G|
∑
u∈G

EG′∼qsp(T
(
hu(G), H(G′)

)
)

Denote by p̂ the distribution over nodes u ∈ Rs defined by first sampling G ∼ p, then sampling
u ∈ G uniformly over all nodes of G. Then these two terms can be simplified to

Lalign(h, T ) = −Eu∼p̂sp(−T
(
hu(G), H(G)

)
),

Lunif(h, T, q) = −E(u,G′)∼p̂×qsp(T
(
hu(G), H(G′)

)
)

At this point it becomes clear that, just as with NCE, a distribution q∗ ∈ arg maxq L(f, q) in the
InfoGraph framework if it is supported on arg maxG′∈G sp(T

(
hu(G), H(G′)

)
). Although this is

still hard to compute exactly, it can be approximated by,

qβu(G′) ∝ exp
(
βT (hu(G), H(G))

)
· p(G′).

C ADDITIONAL EXPERIMENTS

C.1 HARD NEGATIVES WITH LARGE BATCH SIZES

0.0 0.1 0.2 0.5
 (CIFAR10)

88.1

88.2

88.3

88.4

To
p-

1 
Ac

cu
ra

cy

MoCo-v2 ( = 0, + = 0)
+ = 0.0

Figure 6: Hard negative sampling using MoCo-
v2 framework. Results show that hard negative
samples can still be useful when the negative
memory bank is very large (in this case N =
65536).

The vision experiments in the main body of the
paper are all based off the SimCLR framework
(Chen et al., 2020a). They use a relatively small
batch size (up to 512). In order to test whether our
hard negatives sampling method can help when the
negative batch size is very large, we also run ex-
periments using MoCo-v2 with standard negative
memory bank size N = 65536 (He et al., 2020;
Chen et al., 2020c). We adopt the official MoCo-
v2 code2. Embeddings are trained for 200 epochs,
with batch size 128. Figure 6 summarizes the re-
sults. We find that hard negative sampling can still
improve the generalization of embeddings trained
on CIFAR10: MoCo-v2 attains linear readout accu-
racy of 88.08%, and MoCo-v2 with hard negatives
(β = 0.2, τ+ = 0) attains 88.47%.

C.2 ABLATIONS

2https://github.com/facebookresearch/moco

23

https://github.com/facebookresearch/moco


Under review as a conference paper at ICLR 2021

0.0 0.5 1.0 2.0 6.0
 (CIFAR10)

89

90

91

92

To
p-

1 
Ac

cu
ra

cy SimCLR ( = 0, + = 0)
+ = 0.1

Figure 7: The effect of varying concentration
parameter β on linear readout accuracy for CI-
FAR10. (Complements the left and middle plot
from Figure 4.)

To study the affect of varying the concentration
parameter β on the learned embeddings Figure 9
plots cosine similarity histograms of pairs of sim-
ilar and dissimilar points. The results show that
for β moving from 0 through 0.5 to 2 causes both
the positive and negative similarities to gradually
skew left. In terms of downstream classification, an
important property is the relative difference in sim-
ilarity between positive and negative pairs. In this
case β = 0.5 find the best balance (since it achieves
the highest downstream accuracy). When β is taken
very large (β = 6), we see a change in conditions.
Both positive and negative pairs are assigned higher
similarities in general. Visually it seems that the
positive and negative histograms for β = 6 overlap
a lot more than for smaller values, which helps ex-
plain why the linear readout accuracy is lower for
β = 6 .

Figure 12 gives real examples of hard vs. uniformly sampled negatives. Given an anchor x (a
monkey) and trained embedding f (trained on STL10 using standard SimCLR for 400 epochs), we
sample a batch of 128 images. The top row shows the ten negatives x− that have the largest inner
product f(x)>f(x−), while the bottom row is a random sample from from the same batch. Negatives
with the largest inner product with the anchor correspond to the items in the batch are the most
important terms in the objective since they are given the highest weighting by q−β . Figure 12 shows
that “real” hard negatives are conceptually similar to the idea as proposed in Figure 1: hard negatives
are semantically similar to the anchor, possessing various similarities, including color (browns and
greens), texture (fur), and objects (animals vs machinery).

0

2

4

6

Fr
eq

ue
nc

y

0.0 0.5 1.0
Cosine Similarity

0

2

4

6

Fr
eq

ue
nc

y

0.0 0.5 1.0
Cosine Similarity

0.0 0.5 1.0
Cosine Similarity

0.0 0.5 1.0
Cosine Similarity

0.0 0.5 1.0
Cosine Similarity

0.0 0.5 1.0
Cosine Similarity

Positive 
 Pairs

N
egative 

 Pairs

= 0, acc=67.73% = 0.5, acc=69.61% = 2, acc=67.68% = 6, acc=65.54%

Figure 8: Histograms of cosine similarity of pairs of points with different label (bottom) and same
label (top) for embeddings trained on CIFAR100 with different values of β. Histograms overlaid
pairwise to allow for easy comparison.

0

2

4

6

Fr
eq

ue
nc

y

0.0 0.5 1.0
Cosine Similarity

0

2

4

6

Fr
eq

ue
nc

y

0.0 0.5 1.0
Cosine Similarity

0.0 0.5 1.0
Cosine Similarity

0.0 0.5 1.0
Cosine Similarity

0.0 0.5 1.0
Cosine Similarity

0.0 0.5 1.0
Cosine Similarity

Positive 
 Pairs

N
egative 

 Pairs

H & D H & not D not H & D not H & not D (SimCLR)

Figure 9: Histograms of cosine similarity of pairs of points with the same label (top) and different
labels (bottom) for embeddings trained on CIFAR100 with four different objectives. H=Hard
Sampling, D=Debiasing. Histograms overlaid pairwise to allow for convenient comparison.

24



Under review as a conference paper at ICLR 2021

0.0

2.5

5.0

7.5

Fr
eq

ue
nc

y

0.0 0.5 1.0
Cosine Similarity

0.0

2.5

5.0

7.5

Fr
eq

ue
nc

y

0.0 0.5 1.0
Cosine Similarity

0.0 0.5 1.0
Cosine Similarity

0.0 0.5 1.0
Cosine Similarity

0.0 0.5 1.0
Cosine Similarity

0.0 0.5 1.0
Cosine Similarity

Positive 
 Pairs

N
egative 

 Pairs

H & D H & not D not H & D not H & not D (SimCLR)

Figure 10: Histograms of cosine similarity of pairs of points with the same label (top) and different
labels (bottom) for embeddings trained on CIFAR10 with four different objectives. H=Hard Sampling,
D=Debiasing. Histograms overlaid pairwise to allow for convenient comparison.

0 50 100 150 200 250 300 350 400
Epochs (CIFAR100)

20

30

40

50

60

Re
ad

ou
t A

cc
ur

ac
y

SimCLR
Hard ( = 1.0, + = 0.05)
Hard ( = 0.5, + = 0.05)

0 50 100 150 200 250 300 350 400
Epochs (STL10)

40

50

60

70

80

Re
ad

ou
t A

cc
ur

ac
y

SimCLR
Hard ( = 1.0, + = 0.1)
Hard ( = 0.5, + = 0.1)

Figure 11: Hard sampling takes much fewer epochs to reach the same accuracy as SimCLR does in
400 epochs; for STL10 with β = 1 it takes only 60 epochs, and on CIFAR100 it takes 125 epochs
(also with β = 1).

D EXPERIMENTAL DETAILS

Figure 13 shows PyTorch-style pseudocode for the standard objective, the debiased objective, and the
hard sampling objective. The proposed hard-sample loss is very simple to implement, requiring only
two extra lines of code compared to the standard objective.

D.1 VISUAL REPRESENTATIONS

We implement SimCLR in PyTorch. We use a ResNet-50 (He et al., 2016) as the backbone with
embedding dimension 2048 (the representation used for linear readout), and projection head into
the lower 128-dimensional space (the embedding used in the contrastive objective). We use the
Adam optimizer (Kingma & Ba, 2015) with learning rate 0.001 and weight decay 10−6. Official
code will be released. Since we adopt the SimCLR framework, the number of negative samples
N = 2(batch size− 1). Since we always take the batch size to be a power of 2 (16, 32, 64, 128, 256)
the negative batch sizes are 30, 62, 126, 254, 510 respectively.

Annealing β Method: We detail the annealing method whose results are given in Figure 4. The
idea is to reduce the concentration parameter down to zero as training progresses. Specifically,
suppose we have e number of total training epochs. We also specify a number ` of “changes” to the
concentration parameter we shall make. We initialize the concentration parameter β1 = β (where
this β is the number reported in Figure 4), then once every e/` epochs we reduce βi by β/`. In
other words, if we are currently on βi, then βi+1 = βi − β/`, and we switch from βi to βi+1 in
epoch number i · e/`. The idea of this method is to select particularly difficult negative samples early
on order to obtain useful gradient information early on, but later (once the embedding is already
quite good) we reduce the “hardness” level so as to reduce the harmful effect of only approximately
correcting for false negatives (negatives with the same labels as the anchor).

We also found the annealing in the opposite direction (“down”) achieved similar performance.

25



Under review as a conference paper at ICLR 2021

Anchor
Hard negatives

Uniform negatives 

Figure 12: Qualitative comparison of hard negatives and uniformly sampled negatives for embedding
trained on STL10 for 400 epochs using SimCLR. Top row: selecting the 10 images with highest
inner product with anchor in latent space from a batch of 128 inputs. Bottom row: a set of random
samples from the same batch. Hard negatives are semantically much more similar to the anchor than
uniformly sampled negatives - hard negatives possess many similar characteristics to the anchor,
including texture, colors, animals vs machinery.

1 # pos : exp of inner products for positive examples
2 # neg : exp of inner products for negative examples
3 # N : number of negative examples
4 # t : temperature scaling
5 # tau_plus: class probability
6 # beta : concentration parameter
7
8 #Original objective
9 standard_loss = -log(pos.sum() / (pos.sum() + neg.sum()))

10
11 #Debiased objective
12 Neg = max((-N*tau_plus*pos + neg).sum() / (1-tau_plus), e**(-1/t))
13 debiased_loss = -log(pos.sum() / (pos.sum() + Neg))
14
15 #Hard sampling objective (Ours)
16 reweight = (beta*neg) / neg.mean()
17 Neg = max((-N*tau_plus*pos + reweight*neg).sum() / (1-tau_plus), e**(-1/t))
18 hard_loss = -log( pos.sum() / (pos.sum() + Neg))

Figure 13: Pseudocode for our proposed new hard sample objective, as well as the original NCE
contrastive objective, and debiased contrastive objective. In each case we take the number of positive
samples to be M = 1. The implementation of our hard sampling method only requires two additional
lines of code compared to the standard objective.

Bias-variance of empirical estimates in hard-negative objective: Recall the final hard negative
samples objective we derive is,

E x∼p
x+∼p+x

− log
ef(x)T f(x+)

ef(x)T f(x+) + Q
τ− (Ex−∼qβ [ef(x)T f(x−)]− τ+Ev∼q+β [ef(x)T f(v)])

 . (15)

This objective admits a practical counterpart by using empirical approximations to
Ex−∼qβ [ef(x)T f(x−)] and Ev∼q+β [ef(x)T f(v)]. In practice we use a fairly large number of samples
(e.g. N = 510) to approximate the first expectation, and only M = 1 samples to approximate the
second. Clearly in both cases the resulting estimator is unbiased. Further, since the first expectation
is approximated using many samples, and the integrand is bounded, the resulting estimator is well
concentrated (e.g. apply Hoeffding’s inequality out-of-the-box). But what about the second expec-
tation? This might seem uncontrolled since we use only one sample, however it turns out that the
random variable X = ef(x)T f(v) where x ∼ p and v ∼ q+

β has variance that is bounded by Lalign(f).

Lemma 11. Consider the random variable X = ef(x)T f(v) where x ∼ p and v ∼ q+
β . Then

Var(X) ≤ O
(
Lalign(f)

)
.

Recall that Lalign(f) = Ex,x+‖f(x) − f(x+)‖2/2 is termed alignment, and Wang & Isola (2020)
show that the contrastive objective jointly optimize alignment and uniformity. Lemma 11 therefore

26



Under review as a conference paper at ICLR 2021

shows that as training evolves, the variance of the X = ef(x)T f(v) where x ∼ p and v ∼ q+
β is

bounded by a term that we expect to see becoming small, suggesting that using a single sample
(M = 1) to approximate this expectation is not unreasonable. We cannot, however, say more than
this since we have no guarantee that Lalign(f) goes to zero.

Proof. Fix an x and recall that we are considering q+
β (·) = q+

β (·;x). First letX ′ be an i.i.d. copy ofX ,
and note that, conditioning on x, we have 2Var(X|x) = Var(X|x)+Var(X ′|x) = Var(X−X ′|x) ≤
E
[
(X −X ′)2|x

]
. Bounding this difference,

E
[
(X −X ′)2|x

]
= Ev,v′∼q+β

(
ef(x)>f(v) − ef(x)>f(v′)

)2

≤ Ev,v′∼q+β

(
e1/t2

[
f(x)>f(v)− f(x)>f(v′)

])2

≤ e1/t4Ev,v′∼q+β

([∥∥f(x)
∥∥∥∥f(v)− f(v′)

∥∥ ])2

=
e1/t4

t2
Ev,v′∼q+β

∥∥f(v)− f(v′)
∥∥2

≤ O
(
Ev,v′∼p+

∥∥f(v)− f(v′)
∥∥2
)

where the first inequality follows since f lies on the sphere of radius 1/t, the second inequality by
Cauchy–Schwarz, the third again since f lies on the sphere of radius 1/t, and the fourth since q+

β is
absolutely continuous with respect to p+ with bounded ratio.

Since p+(x+) = p(x+|h(x)) only depends on c = h(x), rather than x itself, taking expectations over
x ∼ p is equivalent to taking expectations over c ∼ ρ. Further, ρ(c)p(v|c)p(v′|c) = p(v)p(v′|c) =

p(v)p+
v (v′). So Ec∼ρEv,v′∼p+

∥∥f(v)− f(v′)
∥∥2

= Ex,x+

∥∥f(x)− f(x+)
∥∥2

= 2Lalign(f), where
x ∼ p and x+ ∼ p+

x . Thus we obtain the lemma.

1 # pos : exp of inner products for positive examples
2 # neg : exp of inner products for negative examples
3 # N : number of negative examples
4 # t : temperature scaling
5 # tau_plus: class probability
6 # beta : concentration parameter
7
8 #Clipping negatives trick before computing reweighting
9 reweight = 2*neg / max( neg.max().abs(), neg.min().abs() )

10 reweight = (beta*reweight) / reweight.mean()
11 Neg = max((-N*tau_plus*pos + reweight*neg).sum() / (1-tau_plus), e**(-1/t))
12 hard_loss = -log( pos.sum() / (pos.sum() + Neg))

Figure 14: In cases where the learned embedding is not normalized to lie on a hypersphere we found
that clipping the negatives to live in a fixed range (in this case [−2, 2]) stabilizes optimization.

D.2 GRAPH REPRESENTATIONS

All datasets we benchmark on can be downloaded at www.graphlearning.io from
the TUDataset repository of graph classification problems (Morris et al., 2020). Informa-
tion on basic statistics of the datasets is included in Tables 2 and 3. For fair compari-
son to the original InfoGraph method, we adopt the official code, which can be found at
https://github.com/fanyun-sun/InfoGraph. We modify only the gan_losses.py

27

www.graphlearning.io
https://github.com/fanyun-sun/InfoGraph


Under review as a conference paper at ICLR 2021

script, adding in our proposed hard sampling via reweighting. For simplicity we trained all models
using the same set of hyperparameters: we used the GIN architecture (Xu et al., 2019) with K = 3
layers and embedding dimension d = 32. Each model is trained for 200 epochs with batch size 128
using the Adam optimizer (Kingma & Ba, 2015). with learning rate 0.001, and weight decay of 10−6.
Each embedding is evaluated using the average accuracy 10-fold cross-validation using an SVM as
the classifier (in line with the approach taken by Morris et al. (2020)). Each experiment is repeated
from scratch 10 times, and the distribution of results from these 10 runs is plotted in Figure 3.

Since the graph embeddings are not constrained to lie on a hypersphere, for a batch we clip all the
inner products to live in the interval [−2, 2] while computing the reweighting, as illustrated in Figure
14. We found this to be important for stabilizing optimization.

Dataset DD PTC REDDIT-B PROTEINS
No. graphs 1178 344 2000 1113
No. classes 2 2 2 2
Avg. nodes 284.32 14.29 429.63 39.06
Avg. Edges 715.66 14.69 497.75 72.82

Table 2: Basic statistics for graph datasets.

Dataset ENZYMES MUTAG IMDB-B IMDB-M
No. graphs 600 188 1000 1500
No. classes 6 2 2 3
Avg. nodes 32.63 17.93 19.77 13.00
Avg. Edges 62.14 19.79 96.53 65.94

Table 3: Basic statistics for graph datasets.

D.3 SENTENCE REPRESENTATIONS

We adopt the official quick-thoughts vectors experimental settings, which can be found at
https://github.com/lajanugen/S2V. We keep all hyperparameters at the default val-
ues and change only the s2v-model.py script. Since the official BookCorpus dataset Kiros
et al. (2015) is not available, we use an unofficial version obtained using the following repository:
https://github.com/soskek/bookcorpus. Since the sentence embeddings are also not
constrained to lie on a hypersphere, we use the same clipping trick as for the graph embeddings,
illustrated in Figure 14.

After training on the BookCorpus dataset, we evaluate the embeddings on six different classification
tasks: paraphrase identification (MSRP) (Dolan et al., 2004), question type classification (TREC)
(Voorhees & Harman, 2002), opinion polarity (MPQA) (Wiebe et al., 2005), subjectivity classification
(SUBJ) (Pang & Lee, 2004), product reviews (CR) (Hu & Liu, 2004), and sentiment of movie reviews
(MR) (Pang & Lee, 2005).

Comparison with Kalantidis et al. (2020): Kalantidis et al. (2020) also consider ways to sample
negatives, and propose a mixing strategy for hard negatives, called MoCHi. The main points of
difference are: 1) MoCHi considers the benefit of hard negatives, but does not consider the possibility
of false negatives (Principle 1), which we found to be valuable. 2) MoCHi introduces three extra
hyperparameters, while our method introduces only two (β, τ+). If we discard Principle 1 (i.e. τ+)
then only β requires tuning. 3) our method introduces zero computational overhead, whereas MoCHi
involves a small amount of extra computation.

28

https://github.com/lajanugen/S2V
https://github.com/soskek/bookcorpus

	Analysis of Hard Sampling
	Hard Sampling Interpolates Between Marginal and Worst-Case Negatives
	Optimal Embeddings on the Hypersphere for Worst-Case Negative Samples
	Downstream Generalization

	Graph Representation Learning
	Background on Graph Representations
	Hard Negative Sampling for Learning Graph Representations

	Additional Experiments
	Hard negatives with large batch sizes
	Ablations

	Experimental Details
	Visual Representations
	Graph Representations
	Sentence Representations


