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Minimizing Data, Maximizing Performance: Generative Examples for Continual
Task Learning

Supplementary Material

0.1. CAPER Explanation

In this section, we first introduce a brief list of notations,
followed by a detailed explanation of the CAPER removal
method.

Table 1. Summary of Notation

Symbol Description

f Neural network model (classifier)

l Cross entropy loss function

L(0) Loss function parameterized by the model weights

FO(x:) Feature map of sample x; at layer [

H() Projection function for feature maps

Af @ Feature distance between clean and perturbed inputs

A f (1,) Normalized feature distance for channel g of sample
1

oW Number of channels (output dimensions) at layer [

€; Instability score for sample 7 in CAPER

v Percentile threshold in CAPER for selecting unsta-
ble samples

&i Gaussian noise perturbation added to sample x;

o Standard deviation of Gaussian noise added in CA-
PER

m; Binary mask to indicate whether a sample is kept

(m; = 1) or removed (m; = 0)

In [1],the authors proposed a sample removal strategy to
remove those samples that are susceptible to noise based on
the difference in feature maps when a small perturbation is
added to the samples.

As outlined in Algorithm 1, for each sample, features
from a given layer are extracted for both clean and noise-
perturbed inputs. These features are projected into a lower-
dimensional space, and the feature distance between clean
and noisy inputs is measured. Samples exhibiting higher
averaged channel-wise perturbation distance are considered
unstable and thus more likely to degrade learning; such
samples are removed based on a threshold ~.

[

w

Algorithm 1 CAPER for Redundant Sample Removal -

One Task

Input: DNN, Layer [, v, Epoch T, Noise perturbation o, N

Samples

Train the initialized network using the complete training
dataset for 7 epochs

Capture features from layer [ of the DNN for original input
images {z;}_, and noise-perturbed images {z; + &;} ¥,
where §; ~ N(0,0?).

for each sample i € {1,2,...,N} do

Compute features £ (z;) and £ (2; 4 6;) for layer I

Apply projection function H to map features into a
lower-dimensional space

Compute feature distance

AfD = [|H(fD () — H(FD (25 + 6:))|l2

Normalize distances A f(*) on a channel-wise basis using:

A —mingeqy vy AF0

AfD) =

where A f(49) e [0, 1].
Calculate the instability of a sample using:

gy Af
- P10

€

Use ¢; of each sample to identify and remove susceptible
samples using the following mask:

0 if'¢; is in the top ~ values of €
m; =
1 ow

where € = {€1,...,€en}.

Despite its simplicity and effectiveness, CAPER has lim-
itations. It relies solely on perturbations caused by Gaus-
sian noise, which does not generalize well to more diverse
or real-world data corruptions such as blur, saturation, or
adversarial attacks like PGD. Additionally, based on our
experiments, CAPER does not perform well in continual
learning settings, particularly when tasks with significantly
different distributions are encountered sequentially. More-
over, by making classes more balanced after removal, our

maxne{l,...,N} Af(n’q) — minne{ly___’N} Af(nq)
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implementation performs better on individual tasks than the
method in [8]. However, it still under-performs in both ac-
curacy and robustness compared to our loss-based sample
removal strategy.

1. Additional Experiments

To further validate our proposed method in terms of both
accuracy and adversarial robustness, we have done more
experiments when images are corrupted by either applying
Gaussian Noise, Gaussian Blur, Saturate, or Rotate. These
experiments are conducted on both datasets of synthetic
data, mentioned in the first three parts, and on the MPC
benchmark using VGG16 in the last part.

1.1. Single-Generator Dataset Comparison with
Sample Removal

To build off of Figure 6 in the main paper, we consider
the normal and adversarial training settings for the single-
generator variants of Genlmage-Disjoint (Genlmage-ADM,
Genlmage-BigGAN, etc) when applying EpochLoss to re-
move training data in Figure 1. In some cases the applica-
tion of data removal improves accuracy, but generally does
not affect the ranking of which generators perform better or
worse than the others. ADM still performs better than all
other generators, and in some cases better than the natural
image baseline, particularly in adversarial training.

1.2. Corruption on Synthetic Samples Without
Sample Removal

In this part, we consider the impact of replacing natural im-
ages with synthetic samples when training on images with
corruptions applied. For these experiments, no removal is
performed. Figure 2 shows that using synthetic data in the
early tasks of CL can improve both accuracy and robustness
compared to training only on natural images.

1.3. Corruption on Natural Samples With Sample
Removal

To outline the robustness of our removal strategy in an ad-
versarial setting, we extend our experiments to the use of
both removal and substitution of training data when training
data is corrupted. We begin by analyzing the effectiveness
of our removal model on a CL setup without any data sub-
stitution, meaning that all training images are from the nat-
ural ImageNet dataset. Figure 3 shows the adversarial ac-
curacy under different corruption types, alongside standard
accuracy (denoted as ACC) when the model is trained on
clean, non-adversarial data. These results demonstrate that
EpochLoss outperforms other removal methods and even
the baseline. For these experiments we limit our investi-
gation to the first 3 tasks.

1.4. Model Generalization and Robustness on Syn-
Syn-Syn

In this section, we extend our experiments to both robust-
ness and generalization evaluation by substituting all tasks
with synthetic data. Note that, the experiments are done in
3 task CL setup. As seen in Figure 4, in most cases, the use
of synthetic data can outperform the baseline accuracy and
even other removal metrics.

1.5. Comparison of Data Removal Methods on MPC
Benchmark

As mentioned in Section 3, to compare our proposed re-
moval strategy with CAPER, we have conducted some ex-
periments on a subset of CIFAR100, including 9000 im-
ages over 20 classes. These experiments are done using
the VGG16 model with the same setup and hyperparame-
ters mentioned in Section 3. Figure 5 shows the robustness
our removal framework against corrupted images of CI-
FAR100, across most removal percentages and corruption
types. EpochLoss removal consistently matches or exceeds
the performance of CAPER and random removal methods,
even though random removal shows better performance and
robustness than our method dealing with Rotate corruption
either as training corruption or corrupted test images. In
addition, in some cases, EpochLoss outperforms even the
Baseline (no removal)at moderate removal levels.
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Comparison of Generative Model Substitution Over All Tasks
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Figure 1. For each single-generator variant of Genlmage-Disjoint, we compare the natural test accuracy over all six tasks when removing
a portion of training data using EpochLoss. We compare training on synthetic data for all tasks against training on the natural tasks of
Genlmage-Disjoint. In both the non-adversarial (top) and adversarially trained (bottom) settings, we see that the removal gradually reduces
accuracy beyond a certain point, but does not disproportionately affect any one generator.

CVPR
#75



CVPR
#75

CVPR 2025 Submission #75. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Gaussian Noise Gaussian Blur Saturate Rotate
Task 3

Task 1 Task 4

Task 3 Task 2 Task 3 Task 2

S VAR

Task 5 Task 6 !

Task 5

—— N-N-N-N-N-N~ —— S-N-N-N-N-N  —— S-S-N-N-N-N - S-S-5N-N-N —— SS55SNN —— S-55SSN -~ 555555

Figure 2. Comparison of adversarial robustness across different task configurations using natural (N) and synthetic images (S), when the
model is trained on corrupted images using Gaussian Noise, Gaussian Blur, Saturate, and Rotate, respectively, from top to bottom (rows),

whereas the columns correspond to the evaluation on a corruption.
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Figure 3. Comparison of standard and adversarial accuracy between EpochLoss and other sample removal methods under various corrup-
tion types: Gaussian Noise (GN), Gaussian Blur (GB), Saturation (S), and Rotation (R). The model is trained on Gaussian Noise-corrupted

dataset. ACC refers to the standard (non-adversarial) accuracy when trained on clean data. All tasks consist of natural images without
synthetic substitution.
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Figure 4. Comparison of standard and adversarial accuracy between EpochLoss and other sample removal methods under various corrup-
tion types: Gaussian Noise (GN), Gaussian Blur (GB), Saturation (S), and Rotation (R). The model is trained on Gaussian Noise-corrupted
dataset. ACC refers to the standard (non-adversarial) accuracy when trained on clean data. All tasks are substituted with synthetic images.
From top to bottom: results for Tasks 1 through 3.
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Figure 5. Comparison of adversarial accuracy and robustness between EpochLoss and other removal methods under various corruptions:
Gaussian Noise (GN), Gaussian Blur (GB), Saturation (S), and Rotation (R). The VGG16 model is trained on corrupted images of CI-
FAR100 with 9000 images using each respective corruption, from top to bottom: GN, GB, S, and R.
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