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Minimizing Data, Maximizing Performance: Generative Examples for Continual
Task Learning

Supplementary Material

0.1. CAPER Explanation001

In this section, we first introduce a brief list of notations,002
followed by a detailed explanation of the CAPER removal003
method.004

Table 1. Summary of Notation

Symbol Description

f Neural network model (classifier)
l Cross entropy loss function
L(θ) Loss function parameterized by the model weights
f (l)(xi) Feature map of sample xi at layer l
H(·) Projection function for feature maps
∆f (i) Feature distance between clean and perturbed inputs
∆f̂ (i,q) Normalized feature distance for channel q of sample

i

O(l) Number of channels (output dimensions) at layer l
ϵi Instability score for sample i in CAPER
γ Percentile threshold in CAPER for selecting unsta-

ble samples
δi Gaussian noise perturbation added to sample xi

σ Standard deviation of Gaussian noise added in CA-
PER

mi Binary mask to indicate whether a sample is kept
(mi = 1) or removed (mi = 0)

In [1],the authors proposed a sample removal strategy to005
remove those samples that are susceptible to noise based on006
the difference in feature maps when a small perturbation is007
added to the samples.008

As outlined in Algorithm 1, for each sample, features009
from a given layer are extracted for both clean and noise-010
perturbed inputs. These features are projected into a lower-011
dimensional space, and the feature distance between clean012
and noisy inputs is measured. Samples exhibiting higher013
averaged channel-wise perturbation distance are considered014
unstable and thus more likely to degrade learning; such015
samples are removed based on a threshold γ.016

Algorithm 1 CAPER for Redundant Sample Removal -
One Task
Input: DNN, Layer l, γ, Epoch T , Noise perturbation σ, N

Samples
1 Train the initialized network using the complete training

dataset for T epochs
2 Capture features from layer l of the DNN for original input

images {xi}Ni=1 and noise-perturbed images {xi + δi}Ni=1,
where δi ∼ N(0, σ2).

3 for each sample i ∈ {1, 2, . . . , N} do
4 Compute features f (l)(xi) and f (l)(xi + δi) for layer l
5 Apply projection function H to map features into a

lower-dimensional space
6 Compute feature distance

∆f (i) = ||H(f (l)(xi))−H(f (l)(xi + δi))||2

7 Normalize distances ∆f (i) on a channel-wise basis using:

∆f̂ (i,q) =
∆f (i,q) −minn∈{1,...,N} ∆f (n,q)

maxn∈{1,...,N} ∆f (n,q) −minn∈{1,...,N} ∆f (n,q)

where ∆f̂ (i,q) ∈ [0, 1].
8 Calculate the instability of a sample using:

ϵi =

∑O(l)

q=1 ∆f̂ (i,q)

O(l)

9 Use ϵi of each sample to identify and remove susceptible
samples using the following mask:

mi =

{
0 if ϵi is in the top γ values of ϵ
1 O.W

where ϵ = {ϵ1, . . . , ϵN}.

Despite its simplicity and effectiveness, CAPER has lim- 017
itations. It relies solely on perturbations caused by Gaus- 018
sian noise, which does not generalize well to more diverse 019
or real-world data corruptions such as blur, saturation, or 020
adversarial attacks like PGD. Additionally, based on our 021
experiments, CAPER does not perform well in continual 022
learning settings, particularly when tasks with significantly 023
different distributions are encountered sequentially. More- 024
over, by making classes more balanced after removal, our 025
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implementation performs better on individual tasks than the026
method in [8]. However, it still under-performs in both ac-027
curacy and robustness compared to our loss-based sample028
removal strategy.029

1. Additional Experiments030

To further validate our proposed method in terms of both031
accuracy and adversarial robustness, we have done more032
experiments when images are corrupted by either applying033
Gaussian Noise, Gaussian Blur, Saturate, or Rotate. These034
experiments are conducted on both datasets of synthetic035
data, mentioned in the first three parts, and on the MPC036
benchmark using VGG16 in the last part.037

1.1. Single-Generator Dataset Comparison with038
Sample Removal039

To build off of Figure 6 in the main paper, we consider040
the normal and adversarial training settings for the single-041
generator variants of GenImage-Disjoint (GenImage-ADM,042
GenImage-BigGAN, etc) when applying EpochLoss to re-043
move training data in Figure 1. In some cases the applica-044
tion of data removal improves accuracy, but generally does045
not affect the ranking of which generators perform better or046
worse than the others. ADM still performs better than all047
other generators, and in some cases better than the natural048
image baseline, particularly in adversarial training.049

1.2. Corruption on Synthetic Samples Without050
Sample Removal051

In this part, we consider the impact of replacing natural im-052
ages with synthetic samples when training on images with053
corruptions applied. For these experiments, no removal is054
performed. Figure 2 shows that using synthetic data in the055
early tasks of CL can improve both accuracy and robustness056
compared to training only on natural images.057

1.3. Corruption on Natural Samples With Sample058
Removal059

To outline the robustness of our removal strategy in an ad-060
versarial setting, we extend our experiments to the use of061
both removal and substitution of training data when training062
data is corrupted. We begin by analyzing the effectiveness063
of our removal model on a CL setup without any data sub-064
stitution, meaning that all training images are from the nat-065
ural ImageNet dataset. Figure 3 shows the adversarial ac-066
curacy under different corruption types, alongside standard067
accuracy (denoted as ACC) when the model is trained on068
clean, non-adversarial data. These results demonstrate that069
EpochLoss outperforms other removal methods and even070
the baseline. For these experiments we limit our investi-071
gation to the first 3 tasks.072

1.4. Model Generalization and Robustness on Syn- 073
Syn-Syn 074

In this section, we extend our experiments to both robust- 075
ness and generalization evaluation by substituting all tasks 076
with synthetic data. Note that, the experiments are done in 077
3 task CL setup. As seen in Figure 4, in most cases, the use 078
of synthetic data can outperform the baseline accuracy and 079
even other removal metrics. 080

1.5. Comparison of Data Removal Methods on MPC 081
Benchmark 082

As mentioned in Section 3, to compare our proposed re- 083
moval strategy with CAPER, we have conducted some ex- 084
periments on a subset of CIFAR100, including 9000 im- 085
ages over 20 classes. These experiments are done using 086
the VGG16 model with the same setup and hyperparame- 087
ters mentioned in Section 3. Figure 5 shows the robustness 088
our removal framework against corrupted images of CI- 089
FAR100, across most removal percentages and corruption 090
types. EpochLoss removal consistently matches or exceeds 091
the performance of CAPER and random removal methods, 092
even though random removal shows better performance and 093
robustness than our method dealing with Rotate corruption 094
either as training corruption or corrupted test images. In 095
addition, in some cases, EpochLoss outperforms even the 096
Baseline (no removal)at moderate removal levels. 097
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Comparison of Generative Model Substitution Over All Tasks

Figure 1. For each single-generator variant of GenImage-Disjoint, we compare the natural test accuracy over all six tasks when removing
a portion of training data using EpochLoss. We compare training on synthetic data for all tasks against training on the natural tasks of
GenImage-Disjoint. In both the non-adversarial (top) and adversarially trained (bottom) settings, we see that the removal gradually reduces
accuracy beyond a certain point, but does not disproportionately affect any one generator.
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Figure 2. Comparison of adversarial robustness across different task configurations using natural (N) and synthetic images (S), when the
model is trained on corrupted images using Gaussian Noise, Gaussian Blur, Saturate, and Rotate, respectively, from top to bottom (rows),
whereas the columns correspond to the evaluation on a corruption.
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Figure 3. Comparison of standard and adversarial accuracy between EpochLoss and other sample removal methods under various corrup-
tion types: Gaussian Noise (GN), Gaussian Blur (GB), Saturation (S), and Rotation (R). The model is trained on Gaussian Noise-corrupted
dataset. ACC refers to the standard (non-adversarial) accuracy when trained on clean data. All tasks consist of natural images without
synthetic substitution.
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Figure 4. Comparison of standard and adversarial accuracy between EpochLoss and other sample removal methods under various corrup-
tion types: Gaussian Noise (GN), Gaussian Blur (GB), Saturation (S), and Rotation (R). The model is trained on Gaussian Noise-corrupted
dataset. ACC refers to the standard (non-adversarial) accuracy when trained on clean data. All tasks are substituted with synthetic images.
From top to bottom: results for Tasks 1 through 3.
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Figure 5. Comparison of adversarial accuracy and robustness between EpochLoss and other removal methods under various corruptions:
Gaussian Noise (GN), Gaussian Blur (GB), Saturation (S), and Rotation (R). The VGG16 model is trained on corrupted images of CI-
FAR100 with 9000 images using each respective corruption, from top to bottom: GN, GB, S, and R.
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