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Abstract

In this work, we study the effectiveness of a mod-
ular architecture for compositional generalization
and transfer learning in the embodied agent set-
ting. We develop an environment that allows us
to independently vary perceptual modalities and
action and task instructions, and use it to carefully
analyze the agent’s performance in these com-
positions. Our experiments demonstrate strong
zero-shot performance on held-out combinations
of perception, action and instruction spaces; as
well as fast adaptation to new perceptual spaces
without the loss of performance.

1. Introduction
Large scale pre-training of “foundational models” has be-
come the standard approach for natural language processing
(Brown et al., 2020; Goyal et al., 2021; Bommasani et al.,
2021) and computer vision (Radford et al., 2021; Alayrac
et al., 2022). With recent work such as GATO (Reed et al.,
2022), these pre-training approaches can be seen to be ef-
fective in the setting of agents that can accomplish a variety
of tasks, and are able to perceive the world and act in mul-
tiple observation and action spaces. An important quality
of such models is the ability to exhibit compositional gener-
alization to unseen combinations of observation and action
spaces, and adapt quickly to novel observation spaces by
transferring knowledge.

In this work, we demonstrate how these abilities can be
achieved through the use of end-to-end modular architec-
tures. The encoding of observations and the prediction of
actions is handled by a differentiable module specialized to
that space, with a single shared controller. This approach
integrates gracefully with the pre-training used for language
or vision models: the shared controller may be a pre-trained
large language model, or standard language pre-training
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tasks could be added along side downstream tasks when
training the model end-to-end.

To study the properties of such modular architecture in a
controlled manner, we construct an environment with com-
positional structure, where each instance of the environment
is created by combining an observation, action, and instruc-
tion space from a large set of options. We demonstrate
that through the use of modularity, agents can generalize
to unseen combinations of observation, action and instruc-
tion spaces; even when the unseen combinations are more
challenging. Moreover, we demonstrate that modularity
enables quick integration of novel observation modalities,
requiring only adaptation of the modules encoding the new
observation.

2. Setting
Our goal is to solve tasks defined by an environment in-
stance (Om, An, Ik), which is constructed by combining
m-th observation (O), n-th action (A) and k-th instruction
(I) space. Given an observation o(m) from space Om, ac-
tion space id n for An, and instruction i(k) from space
Ik, the goal is to find a policy that will predict an optimal
action π(o(m), i(k), n) → a ∈ An. The agent is trained
using imitation learning (Schaal, 1999) on a dataset of ex-
pert trajectories {Dm,n,k} collected on (Om, An, Ik). We
make sure that during training, the agent will be trained
on samples from environment instances containing at least
one of each of the individual spaces Om, An, and Ik, but
not all possible combinations (Om, An, Ik). This allows
us to test compositional generalization by deploying the
agent in environments containing unseen combinations, as
demonstrated in Figure 1 (a). Alternatively, we can add new
space and adapt the learned policy using data generated on
environment combinations that include this new space.

Note that in this setting, we can differentiate: (1) in-domain
generalization where the agent is trained on trajectories from
(Om, An, Ik), but a particular test sample (o(m), i(k), n) is
never seen due to random procedural generation of envi-
ronments; from (2) compositional generalization where test
samples are from environment combinations that were never
seen during training. For example, learning to predict the
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Figure 1: Illustration of the dataset formulation and the COIN (Compositional Interfaces) architecture for compositional generalization.
(a) Each environment instance is defined by a tuple (Om, An, Ik): a combination of observation Om, action An and instruction Ik
spaces. The agent is trained on data from a subset of all possible combinations, with the expectation of generalizing to combinations
not included in the training dataset. (b) The agent architecture consists of: perception modules (one for each observation space), action
modules (one for each action space) and a controller (shared across all environment instances). The controller takes the observation
embedding, instruction and action space identifier as input, while outputting action embedding. When acting in an environment consisting
of observation space Om and action space An, m-th perception module is used to predict the create the observation embedding and n-th
action module is used to predict action from the action embedding.

right action in action space An′ given observation o(m
′) and

instruction i(k
′) when the training dataset does not contain

samples from environment (Om′ , An′ , Ik′). In this work,
we are particularly interested in the latter.

3. Environment with Composable Observation,
Action and Instruction Spaces

To study compositional generalization to unseen combina-
tions of spaces, we construct a grid-world environment that
supports multiple means of observing the state as well as
acting in it. The state is a 7x7 grid containing up to four
different objects in addition to the agent itself, and the agent
is tasked with completing the instruction by navigating and
interacting with objects in the grid. Each object has a shape
(box, ball, snake, key) and a color (red, green, yellow, blue).
Each environment combination is constructed by select-
ing one observation, action, and instruction space from the
available options (see Figure 1 (a) for examples). We imple-
mented six different observation spaces, eight instruction
spaces and five action spaces, for a total of 240 possible
environment combinations. The description of each space
and additional details about the environment can be found
in the Appendix A.1.

4. Architecture with Compositional Interfaces
In our work, we use COIN (Compositional Interfaces) ar-
chitecture. It is a modular architecture consisting of three
main components: the perception modules, the controller,
and the action modules, as demonstrated in Figure 1 (b),
and detailed in the Appendix A.2. There is a different per-
ception module for each observation space and a differ-
ent action module for each action space. The controller is
shared between all spaces and has a transformer architec-
ture (Vaswani et al., 2017) (although any architecture that
can handle variable-length inputs and tokens can be used ).
Since instructions and action descriptions (we use textual de-
scriptions, such as e.g. "The action space is cardinals.") are
expressed in text, we can directly feed them to the controller
via simple word embedding layers.

The perception modules take in an observation and output a
fixed-size embedding. The architecture for each perception
module is chosen to best fit the modality of the correspond-
ing observation space. However, the dimensions of outputs
from those specialized architectures may vary from space
to space (or even sample to sample for some of the spaces).
In order to unify these outputs as input to the controller,
we use adapter network for each observation space. An

2



Compositional Interfaces for Compositional Generalization

Figure 2: Agent performance at different percentages of held-out
environments. Green: COIN agent on environments in the training
data. Blue: COIN agent on environments not in the training data.
Red: agent trained on only one environment.

adapter takes input of embedding of variable length and
outputs embedding of fixed length, which is then fed into
the controller.

The observation embedding is then concatenated with in-
struction and action space description embeddings. We also
concatenate a fixed number of special padding tokens be-
fore feeding them into the controller. Among output vectors
from the controller, we select the ones that correspond to the
padding tokens, which gives us a fixed number of embed-
dings vectors to work with. Those embeddings are then fed
into the action space specific action module, whose output
corresponds to the dimensions of the corresponding action
space. The fixed size of observation and action embedding
enables integration and faster adaptation of new observation
and action spaces down the line.

5. Experiments
In the following set of experiments, we examine the com-
positional generalization properties of COIN agent. First,
we examine the ability of COIN to generalize to unseen
environment instances (Om, An, Ik), where combinations
seen during training are selected uniformly at random (with
the constraint of sufficient coverage of individual spaces).
Next, we examine the case where the samples held out from
training are a selected group of particularly challenging com-
binations of instruction and observation spaces. Lastly, we
test the ability of COIN to adapt to new, completely unseen
observation spaces Onew through finetuning.

All the experiments use the compositional environments de-
scribed in Section 3. For training, we use a dataset of 2,048
episodes with near-optimal trajectories {τ (t)(m,n,k)}

2048
t=1 for

(20, 1k) (60, 2k) (80, 4k)
(% holdout, n_episodes)
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Figure 3: Agent performance at different percentages of held-out
environments with a fixed size of training dataset. Red: COIN
agent on environments in the training data. Cyan: COIN agent on
environments not in the training data.

each of the 240 = 6× 5× 8 possible combinations of ob-
servation, action and instruction spaces; some of which will
be held out from training. The near-optimal trajectories are
generated using the A* algorithm or by hand-engineering a
policy. We evaluate the performance of the trained agent by
measuring the rate of successful completion on both unseen
and seen environment combinations. The task is consid-
ered completed if the agent reaches the goal specified with
the instruction within the first 100 steps. When evaluating
the trained agent on seen environment combinations, we
measure the performance on that environment instance gen-
erated using a different random seed, i.e. the initial states
and instructions are very likely to differ from train time.

As an architecture for the perception modules, we use a
pre-trained ResNet-18 network (He et al., 2015) for image
spaces; for Grid and List spaces we use a 2D and 1D con-
volutional networks respectively; for token spaces, we use
1D convolutions. The controller is a pre-trained Distilled-
GPT-2 (Sanh et al., 2020), while each action module is a
simple feed-forward network with the output corresponding
to the dimensionality of the action space. The dimensions of
observation embedding are 10× 768, and the dimensions of
action embedding are 4× 768, where 768 is the dimension
of GPT-2 token embedding. Each network is trained for 80
epochs. More details about the architecture and the training
procedure can be found in the Appendix A.2.

As a baseline, we use an agent trained on individual environ-
ment combinations using the same architecture, i.e. we train
a separate agent on each of the 240 environment combina-
tions. Note that in these cases, there is no weight sharing
and each of such networks will contain only one perceptual
and action module.
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Figure 4: Comparison of performance between individual observation, action and instruction spaces. For each space, we report the
performance averaged over all environment combinations containing that space (the error bars represent standard deviation). For trained
on samples from 75% environment combinations, we report the completion rate on environment instances included (green) and not
included (blue) in the training data. The performance of an agent trained on only one environment instance is shown in red.

5.1. Random Holdouts

We start by examining the case where the environment in-
stances (Om, An, Ik) included in the dataset have been cho-
sen randomly by chance. To ensure relatively uniform cov-
erage of all spaces, the procedure for selecting environment
instances guarantees that each space individually has been
included in least four combinations. We vary the percentage
of environment instances held out from the training: either
25, 50 or 75% of all possible combinations. We report sepa-
rately the performance on the environments included in the
training data (seen) or held out from training (unseen). The
experiment in which we hold out particularly challenging
environment combinations from the training dataset can be
found in Appendix A.4.2.

The completion rates averaged over all the environment in-
stances can be seen in Figure 2. From there, we can see that
the COIN agent generalizes to unseen environment com-
binations extremely well, even outperforming the agents
trained on individual environment combinations when the
holdout rate is over 50%. As expected, the performance of
COIN agent drops as we decrease the number of combina-
tions included in the training data. The error bars represent
standard deviation over 240 environment instances.

In Figure 4 we take a look at the performance difference
for each of the spaces individually, i.e. we fix one of the
spaces (observation, action or instruction) and average over
the rest. We consider the case where 25% combinations are
held out (results with 50 and 75% held out combinations
can be found in the Appendix A.4.1. Here we can see that
COIN outperforms or matches the individual agents in all
but one space (instruction space Sort by Property). We can
also see that performance on unseen combinations closely
matches the performance on seen combinations, which im-

plies that the agent achieved near-perfect generalization to
unseen compositions (with the remaining generalization gap
being a consequence of either difficult optimization or poor
generalization to unseen observations and instructions). The
greatest performance gains are seen on token observation
spaces (Text, Symbol), which are particularly challenging
for optimization and benefit from additional supervision
provided by co-training on multiple observation spaces: the
learning there can be bootstrapped by learning a good con-
troller on other, easier spaces.

To evaluate the relative importance of using more data for
each of the training environment combinations versus using
more environment combinations in the training dataset, we
run an experiment where the total number of episodes seen
during training is kept constant, while varying the holdout
rate and number of episodes used in training. The total
number of episodes used in training is always 192k, with
the percentage of environment combinations used in training
and number of episodes being: (80%, 210), (40%, 211) and
(20%, 212). The results can be seen in Figure 3. We find that
for compositional generalization, it is more advantageous to
use more environment combinations.

5.2. New Perception Spaces

Lastly, we examine if COIN agent can effectively and effi-
ciently incorporate new observation spaces. This is partic-
ularly relevant in a continual learning setting, where over
a lifetime, new perceptual spaces may need to be added,
without harming the performance on spaces the agent has
been already trained on or requiring training again from
scratch on the entire dataset including the new observation
spaces. Modular architectures have the potential to integrate
new observational spaces without affecting the performance
on other spaces by training only the new perceptual module
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Figure 5: Performance of COIN agent on the 40 environment combinations EO containing a newly added observation space O, for each
of the six available observation spaces. The controller and action modules are trained on 75% of all randomly selected combinations
not including EO . In the top figure, we only train the newly added perceptual module (i.e. without affecting the performance on other
tasks), whereas in the bottom figure, we fine-tune the entire network. We report the results using 2048, 1024, or 516 episodes from each
environment in EO for training. We contrast these results to an agent trained from scratch on EO and agents trained individually on each
task in EO . The results are reported over 3 random seeds, with the error bar representing standard deviation over all environment instances
in EO

while freezing the controller and action modules. Moreover,
training only the new perception modules may require less
data and converge more quickly.

To test this, for each observation space Onew, we first take
out all the samples with that observation space from the
training data (in total 40 different environment combination)
and train on the data from randomly selected 75% of the
remaining environment combinations. Next, we take the
trained COIN network and add the freshly initialized per-
ception module for Onew, which is trained on the data from
all the environment combinations containing Onew. The
weights of the controller and action modules are kept frozen.
To compare the data requirements of adding the new percep-
tual spaces to already trained controller and action modules,
to training the entire network from scratch, we train the new
module using 2048, 1024, or 516 episodes from the dataset
(full, half, or one-fourth of the dataset respectively). For
comparison, we also try fine-tuning the entire network on
the combinations with the new observation space (i.e. with-
out freezing weights of the controller and action modules).
We also compare the results to the modular network trained
on the same 40 environments from scratch (i.e. without
transfer from other observation spaces).

Results on the new observation spaces with freezing of the
controller and action modules can be found in Figure 5 Top
and without freezing in Figure 5 Bottom. We find that, when
averaged over the observation spaces, by training only the
new perception module, we can match the performance ob-

tained by training from scratch and outperform training on
individual environments. Moreover, we can match the train-
ing from scratch with one-fourth of the data. This is likely
due to transfer from other tasks, where the new observation
just needs to be mapped to a representation interpretable
by the controller. We are finding that finetuning the entire
network is not necessary for achieving good performance,
hence a new observation space can be incorporated without
affecting performance on other environment instances.

6. Conclusion
In this paper, we proposed a modular architecture with dif-
ferentiable interfaces to various modalities of perception and
action. These interfaces are connected to a shared controller,
enabling passing gradients and end-to-end backpropagation,
while supporting knowledge sharing. We developed a new
environment in which perceptual modalities, sets of actions
and types of instructions can be independently varied. This
environment allowed us to systematically study composi-
tional generalization across different modalities.

An agent trained with the modular architecture demonstrated
zero-shot generalization when tested on unseen combina-
tion of modalities, outperforming an agent trained only
on that combination. Furthermore, on a set of held-out
combinations that were challenging to learn for a “single-
environment” agent, the modular agent still showed zero-
shot generalization. Lastly, we have shown that new percep-
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tual modalities can be easily incorporated by training only
the interface processing that modality. These results show
that modular architectures can engender compositional gen-
eralization and cross-domain transfer without any special
training scheme.
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A. Appendix
A.1. Environment with Composable Observation,

Action and Instruction Spaces

In this section, we provide additional details about the con-
struction and dynamics of the environment.

Observation spaces (Om): There are six possible observa-
tion spaces, in which positions, shapes, and colors of the
objects and agent in the grid are represented by: Text, Sym-
bols, List, Grid, Top View, or Side View. These spaces are
detailed in Table 1. Text space describes everything in hu-
man understandable language. Symbol space is similar, but
uses compact symbols instead of words. To build an obser-
vation in List space, we represent everything with one-hot
representation first. Then, for each object, we concatenate
all its properties into a single vector. Finally, we stack all
such vectors from all object and the agent together to give
complete description of the state. Grid space also builds a
vector for each object first, but then arranges them by their
location instead, producing a 3D tensor. The remaining
Top and Side view spaces are simply image rendering of
the environment. These image spaces and Grid space as-
sumes spatial location, which does not apply to inventory
objects. The inventory has size 4, and as as a workaround,
we use List representation of inventory for all non-token
spaces (List, Grid, Top View, or Side View). The image
observation spaces are illustrated in Figure 6. Each obser-
vation contains sufficient information for completing the
instruction, hence the tasks are fully observable.

The environment is constrained such that two objects can
not be in the same position (e.g. using the Drop action
on top of another object will have no effect), however, the
agent can be in the same position as an object. In the Grid
observation space, if the agent is in the same position (x, y)
as an object, we sum the two one-hot representations at
(x, y). The color of the agent is always grey. The objects are
added or removed from the inventory in the last-in, first-out
order.

Instruction spaces (Ik): In a given environment instance,
the agent is tasked with completing an instruction from one
of the eight possible instruction spaces. The simplest instruc-
tion, “Go to (x,y)”, requires the agent to reach the specified
location, while more complex instructions like “Pick up in
order: red box, yellow snake, and green box” involves mul-
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Observation Space Description

Text A natural language description, e.g., “The agent is at (3, 5), facing east. There is a yellow
snake at (2, 0). The agent has following items in the inventory: a blue box.”

Symbol A sequence of symbols, e.g., “A @ E x3y5. y S @ x2y0. I: b B.”

List A 2D tensor o, where o[i]=concat([object_i_position,
one_hot(object_i_shape),one_hot(object_i_color)])

Grid A 3D tensor o where the object at position (x, y) is indicated by
o[x, y]=concat([one_hot(object_shape)one_hot(object_color)])

Top View An image made by projecting 3D space from the top (see Figure 6 right).

Side View An image made by projecting 3D space from the side (see Figure 6 left).

Table 1: Observation Spaces

Instruction Space Description

Go To The agent needs to move to a randomly sampled location. E.g., "Go to (1, 3)."

Pickup N The agent needs to pick up exactly N objects, where N is a number randomly
sampled between 1 and # objects in the environment. E.g., "Pickup 2 objects."

Pickup Color Pick up one randomly chosen object specified by color. E.g., "Pick up one red
item."

Bring Shape Bring one randomly chosen object specified by shape to a randomly chosen
target location. E.g., "Bring one key to (4, 4)."

Bring Conditional Bring one item to one of the 4 corners, depending on the shape or color of the
object. Whether the target corner is determined by shape or color is randomly
sampled. E.g., "Bring one item to shape location."

Bring Object Bring an item specified by a randomly chosen shape and color to a randomly
chosen target location. E.g., "Bring green snake to (6, 2)."

Pickup in Order Pick up items in a specified random order determined by the color and shape of
the objects. E.g., "Pick up in order: red box, yellow snake, and green box."

Sort by Property Move all items of the same color or shape within 1 step of each other. Whether
the items should be moved based on shape or color is randomly sampled. E.g.,
"Sort items by color."

Table 2: Instruction Spaces

Action Space Description

Cardinals Move one step in one of the 4 cardinal directions (north, east, south, west)

Move NW Move one step north, move one step west, or teleport to the south-east corner of
the grid

Rotations Rotate left, rotate right, or move one step forward in the direction of facing

Teleport Direction Rotate left, rotate right, or teleport to a certain distance from the wall currently
facing (0-6 steps from the wall)

Knight Rotations Rotate left, rotate right, knight move left, or knight move right (i.e. two steps
forward in the direction of facing + one step left or right).

Table 3: Action Spaces

8
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(a) Top View Observation (b) Side View Observation

Figure 6: Illustration of the environment as represent ed by obser-
vation in Top View and Side View space. The agent (gray) is tasked
with completing the instruction by navigating and interacting with
objects in the grid. Each object is defined by a shape (ball, box,
key, snake) and color (red, blue, green, yellow).

tiple steps and require the agent to distinguish shapes and
colors. The full list of instruction spaces is given in Table
2. All instruction spaces involve manipulating objects and
positions of the agent, with individual instructions being ran-
domly sampled from the instruction space, while satisfying
the constraint of instruction completion being possible given
the initial state. When initiating the environment, we first
sample the initial state: the number of objects is sampled
uniformly from [1, 4], positions of the objects and the agent
are sampled uniformly without replacement. The properties
of objects (color, shape) are also sampled uniformly with-
out replacement. The instruction is sampled next, with the
constraint that sampled instruction can be completed given
the initial state.

Action spaces (An): Completing each of the instructions
can be accomplished by using one of the five possible action
spaces. The type of movement available varies between
spaces, as described in Table 3. Additionally, each action
space has three shared actions for picking and dropping
objects, and indicating the episode is done (Pick, Drop, and
Done actions respectively). Successful completion requires
the agent to complete the instruction and then output Done
action (selecting the Done action has no effect outside the
goal state). Using a movement action that would lead the
agent outside the grid also has no effect.

A.2. Architecture

An illustration of the architecture can be seen in Figure 7.
For non-token observation spaces, the perception module
is parametrized as in Figure 7 (a). For observation space
Grid, the 2D convolutional network consists of layers of 2D
convolutions followed by ReLu non-linearity. The dimen-
sions of output channels in the final convolution correspond
to the dimensions of the token embedding of the controller.
For the observation space List, the 2D convolution in Fig-
ure 7 (a) is replaced by 1D convolution (same architecture

as for inventory embedding: two layers of 1D convolution
followed by ReLu non-linearity; with the dimensions of
the output channels corresponding to the dimensions of the
token embedding of the controller, which is 768), whereas
for the image observation spaces Top View and Side View,
the 2D convolution is replaced by a pre-trained ResNet-18
network. For token observation spaces Text and Symbol, the
grid and inventory observations are embedded together (see
Figure 7 (b)): each token is first represented using the pre-
trained token and positional embeddings, then processed
using three layers of 1D convolutions followed by ReLu
non-linearity (with kernel sizes 7, 2 and 1 respectively). The
resulting output is then passed through a layernorm. We
found this architecture to work the best with token observa-
tional spaces.

For each observation space O, the resulting inventory and
grid embeddings are flattened and concatenated to a se-
quence v of length L(O) and passed through an adapter
module, resulting in a sequence h of length L. The adapter
module is a simple attention layer of the form:

hj =

L(0)∑
i

α
(O)
i,j (vi + b

(O)
i ) (1)

α
(O)
i,j = softmax(

w
(O),T
j vi∑L(0)

i′ w
(O),T
j vi′

), (2)

where hj is the j-th element of list h, vi is i-th element of list
v (each of dimension 768 corresponding to the dimensions
of token embeddings), while w(O)

j and b
(O)
i are the learned

parameters of the adapter module of observation space O
(also each of dimension 768). In our experiments, the length
of the final embedding is 10.

The resulting observation embedding h is then concatenated
with token embeddings of instruction, action space descrip-
tion, and special action tokens (as shown in in Figure 7
(c)), while adding the positional embeddings, and passed
through the controller network. The controller network is
a pre-trained Distilled-GPT-2. The action embeddings are
taken from the position of special action tokens, flattened
and then passed through the action module. The action mod-
ule of each action space has two layers of linear projection
followed by ReLu non-linearity, followed by a final linear
layer (with the output dimension determined by the number
of actions of the corresponding action space) and a softmax
layer. In our experiments, the length of action embedding is
4.

A.3. Related Work

Single Modality: Compositional generalization is often
studied at the level of a single domain. In vision domain,
models are tested if they can recognize an image that con-
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Figure 7: COIN Modular Architecture.

Figure 8: Distribution of differences in performance between COIN agent on seen tasks and agent trained on individual tasks (top), as
well as distribution of differences in performance between COIN agent on seen and un-seen tasks. The number of random seeds for each
environment combination varies as the held-out combinations are selected by chance.

tains an unseen combination of different visual properties
(e.g. shape, color), with emphasis on disentangled repre-
sentation (Xu et al., 2022). Instruction and task is another
domain where compositional generalization is well stud-
ied (Zhang et al., 2018; Zhou et al., 2022). At test time,
the agent is given an unseen instruction or task that usually
can be accomplished by chaining together already learned
skills (Lake & Baroni, 2017). This idea of learning a set of
skills that can be composed together can be traced back to

options framework (Sutton et al., 1999) and other hierarchi-
cal RL methods (Sukhbaatar et al., 2018). Given the recent
success of large language models, language is increasingly
being used: (Jiang et al., 2019) leverages natural language
for hierarchical RL; (Huang et al., 2022a) uses large lan-
guage models to decompose tasks into smaller subtasks;
(Mezghani et al., 2023) has a single model for both policy
and language reasoner. Unlike these, the focus our paper is
composition generalization across of different modalities.
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Modular Architectures for Multi-task Learning: Modu-
lar architectures can be viewed as composition of internal
modules of the agent, and often studied together with multi-
task generalization. PathNet (Fernando et al., 2017) uses
genetic algorithm to select a subset of a neural network to
be used for a specific task, showing positive transfer from
one task to another. (Rusu et al., 2016) grows a neural
network by adding new modules with each new task, but
allowing them to connect all previous modules. Contin-
ual learning is enabled by freezing previous modules, but
still positive transfer is observed between different Atari
games. Similarly, (Gesmundo & Dean, 2022) both grows
and and selects subsets of the network. However those
methods require training on the target environment, while
our method enables zero-shot generalization to an unseen
environment while utilizing a simple end-to-end training.
LegoNN (Dalmia et al., 2022) is an encoder-decoder model
with decoder modules that can be reused across machine
translation and speech recognition tasks. Our approach
for connecting perceptual modules to the controller recalls
(Alayrac et al., 2022), where the authors use cross-attention
to connect a vision model to a text Transformer, and (Jaegle
et al., 2021) where this idea is discussed more generally.

Multi-Embodiment Continuous Control: (Devin et al.,
2017; Huang et al., 2020) used Graph Neural Networks
(GNN) to build modular architecture that can control many
different physical bodies. Furthermore (Huang et al., 2020)
shows such architectures are capable of zero-shot general-
ization to a new physical body. Our work, as (Kurin et al.,
2020), uses a Transformer in place of the GNN. The “action
spaces” in this work are analogous to the body morphologies
in those. However, here, we study composable generaliza-
tion not just to different action spaces, but to perceptual and
task spaces as well.

Language Model as Controller and Planner via Text In-
terfaces: Several works have shown how a language model
used as can be a nexus between modalities, and controller
or planner for embodied agents. The general theme is to use
text as glue, and the language model as a central processor.
For example Socratic agents (Zeng et al., 2022) combines
multiple pre-trained models from different domains to cre-
ate a system that can solve unseen task involving a novel
combination of domains. Similarly (Huang et al., 2022b) de-
ploy a pretrained LM as a robotic controller by augmenting
it with additional models that can interpret visual scenes in
language. In (Ahn et al., 2022), the language model is used
to score affordances based on a task description, and as a
planner, following (Huang et al., 2022a). In this work, rather
than connecting modules via text, we use self-attention, al-
lowing end-to-end learning.

Transformers in Behaviorally Cloned Generalist Agents:
Our work is closely related to (Reed et al., 2022) and (Shrid-

har et al., 2023), where the authors showed that end-to-
end Transformers can be effective controllers for embodied
agents with multi-modal perception and/or actions. As in
those works, we train via behavioral cloning. While (Reed
et al., 2022) tokenizes all inputs and treats the Transformer
controller as a monolith, we allow passing gradients to per-
ceptual or task-specific submodules. In this, we are similar
to (Shridhar et al., 2023), but rather than consider a fixed
perceptual and action space as in that work, we show that
our setup allows compositional generalization between per-
ceptual, action and task spaces, and fast adaptation to new
spaces.

A.4. Experiments

In this section, we provide a more detailed description of
the training procedure, as well as additional results. For
a detailed description of the architecture, see the previous
Section (A.2). In addition to the expansion of the results
from Section 5, in A.4.4, we also add an experiment ex-
amining the ability of SOTA language models to handle
compositional generalization within in-context learning.

Each model is trained for 80 epochs using AdamW opti-
mizer and a linear learning rate schedule. The learning rate
is 3 × 10−4, with the batch size 8. We generally found
that lower batch sizes result in better generalization. The
completion rate of the trained agent was evaluated over 80
episodes for each environment combination (we consider
the task completed if the goal state is reached in less than
100 steps), where the environment seeds used to generate
training data are different from the environment seeds used
in the evaluation.

A.4.1. RANDOM HOLDOUTS

In Figure 8, we visualized the difference in performance for
each of the 240 environments and for the case of training on
75% environment combinations. Positive difference can be
interpreted as the first method outperforming the second in
this environment. In Figure 8 (top), we can see that COIN
agent significantly outperforms agents trained on individual
combinations for a majority of environments, in some cases
in fact, improving from no completed tasks to almost perfect
task completion. In Figure 8 (bottom), we compare the
performance of COIN agent on seen and unseen tasks. Here
we can see that difference in performance is typically within
the variance of performance on individual tasks, indicating
very good generalization to unseen combinations.

Figure 9 corresponds to Figure 4 (in Section 5.1) for the case
of training on 50% of environment combinations (top) and
25% of environment combinations (bottom). In Figure 3
(Section 5.1), we already demonstrated how compositional
generalization overall becomes worse as the percentage of
environment combinations used for training is decreased,
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Figure 9: Comparison of performance between individual observation, action and instruction spaces. For each space, we report the
performance averaged over all environment combinations containing that space (the error bars represent standard deviation). In the top
figure, we trained on 50% environment combinations, and in the bottom figure, we trained on 25% environment combinations. We report
the completion rate on environment instances included (green) and not included (blue) in the training data. The performance of an agent
trained on only one environment instance is shown in red.

whereas Figure 9 demonstrates which of the spaces are
affected the most.

A.4.2. HARD HOLDOUTS

Next, we consider the hard case where the holdout set is
composed of particularly challenging combinations, either
in terms of data collection or training time. We are partic-
ularly interested in this case, as in practice, there may be
cases where data collection is much more challenging for
some combinations (e.g. when some observation spaces
correspond to data collected on real robots instead of data
collected in simulation, where it can be hard to evaluate
completion of some instructions outside of simulation) . In
these cases, it might be advantageous to collect the data on
easier combinations for training and obtain good zero-shot
performance on hard combinations without requiring data
collection or training.

To construct hard combinations, we selected image obser-

vation spaces (Ohard = { Top View, Side View }) and two
of the hardest instruction spaces (Ihard = { Bring Object,
Pickup In Order }) as the performance on these spaces is
generally the lowest, training trajectories are the longest
and training on images takes more time. The hold-out set
Ehard then consists of all combinations (Om, An, Ik) where
Om ∈ Ohard and Ik ∈ Ihard. In our case, this will be a
total of 20 environment combinations. We train the COIN
agent on the remaining 200 combinations, or a randomly
sampled set of 75 and 50% of the remaining environments
(in total, this corresponds to 8, 32 and 55% of all possi-
ble combinations being held out respectively). For hard
holdouts, we report results on 5 different random seeds.

As shown in Table 10, we find that while not matching the
performance of agents trained individually on those combi-
nations or when the combinations are held out randomly, we
still observe good transfer from easier to hard combinations,
despite never seeing the particularly hard combination of
observation and instruction in the training dataset.
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Method Completion Rate

Individual Envs 0.35± 0.18
Random Holdouts (25%) 0.34± 0.07

Hard Holdouts (8%) 0.26± 0.08
Hard Holdouts (32%) 0.21± 0.12
Hard Holdouts (55%) 0.20± 0.10

Figure 10: Agent performance on a set of 20 particularly challeng-
ing environment instances Ehard. For COIN with both random and
hard holdouts, we report zero-shot performance. In hard holdouts,
the entire Ehard was held out from the training data; whereas in
random holdouts, a random selection of 25% of combinations was
held out. For hard holdouts, we report results where a total of 8, 32
and 55% of environment instances (including Ehard), were held
out. We also report the performance of agents trained on individual
environments from Ehard.

A.4.3. NEW OBSERVATION SPACES

To compare the performance of COIN agent under different
data sizes, we group the result presented in 5.2 based on
the number of episodes used in training. Figure 11 groups
the results of COIN agents (either trained from scratch on
the new observation space, only training the new perceptual
module or training the new perceptual module alongside
fine-tuning of the controller and action modules) based on
the number of episodes used in training. Figure 11 (top)
shows the results where all 2048 episodes were used in
training, and 11 (bottom) shows the results where only 516
episodes were used in training. Each of the experiments is
as described in Section 5.2. We can see here that transfer
is particularly advantageous in the low-data regime and in
optimizationally challenging observation spaces.

A.4.4. IN-CONTEXT LEARNING WITH GPT-3

Lastly, in order to illustrate that compositional general-
ization with respect to observation, action and instruction
spaces remains a challenge even for state-of-the-art lan-
guage models, we evaluate in-context learning of the best
available GPT-3 model (text-davinci-003).

To make the task less challenging for the language model,
we evaluate compositional generalization only with respect
to action and instruction spaces and construct environment
combinations by using: only Text observation space, a
smaller set of action spaces (Cardinals, Rotations, Move
NW, Knight Rotations) and easy task spaces (Go To, Pickup
Number, Pickup Color, Bring Shape); for a total of 16 en-
vironment combinations. We randomly select 25% of en-
vironment combinations for evaluation in 24-shot setting.
Each prompt is constructed by appending together a random
selection of 24 samples from the training set, each of which
is formulated as in the following example:

"Q: The agent is at (1, 4), facing north. There is
a green box at (4, 2), and a red snake at (6, 3).
The agent has the following items in its inventory:
yellow ball. The task is Pickup 1 item. Which of
the following actions should you choose:

(a) Turn right,

(b) Turn left,

(c) Take one step forward,

(d) Pick the top item,

(e) Drop the top inventory item,

(f) Finish episode.

A: (f) Finish episode."

We construct one such prompt for each observation while
acting in the held-out environment, appending the current
observation to the prompt and recording the model com-
pletion. We then use this model completion to predict the
next action. As before, we evaluate the method based on the
completion rates in each of the held-out environments (here
using 20 rollouts), and reporting the results over 5 random
selections of the hold-out set.

The completion rates for a model using GPT-3 for action
prediction was 5% (with standard deviation 6%). For com-
parison, the completion rates of COIN agent on the same
set of environment combinations (when encountered in the
random held-out set, from experiments in Section 5.1 with
hold-out rate 25%) is 79% (with standard deviation 18%).
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Figure 11: Performance of COIN agent on the 40 environment combinations EO containing a newly added observation space O, for each
of the six available observation spaces. The controller and action modules are trained on 75% of all randomly selected combinations
not including EO . In the top figure, we train on all 2048 episodes from each environment in EO , whereas in the bottom figure, we train
on only 516 episodes from each environment. The results are reported over 3 random seeds, with the error bar representing standard
deviation over all environment instances in EO
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