
A Technical Tools393

In this section we avail ourselves of some technical tools that shall be used in all of the proofs below.394

A.1 Reduction to lower bounds over a finite class395

The lower bound on the minimax excess risk will be established via the usual route of first identifying396

a “hard” finite set of problem instances and then establishing the lower bound over this finite class.397

One difference from the usual setup in proving such lower bounds [see 22, Chapter 15] is that the398

training samples are drawn from an imbalanced distribution, whereas the test samples are drawn from399

a balanced one.400

Let P be a class of pairs of distributions, where each element (Pmaj,Pmin) ∈ P is a pair of dis-401

tributions over [0, 1] × {−1, 1}. As before, we let Ptest denote the uniform mixture over Pmaj402

and Pmin. We let V denote a finite index set. Corresponding to each element v ∈ V there is a403

Pv = (Pv,maj,Pv,min) ∈ P with Pv,test = (Pv,maj + Pv,min)/2. Finally, also define a pair of random404

variables (V, S) as follows:405

1. V is a uniform random variable over the set V .406

2. (S | V = v) ∼ P
nmaj

v,maj × Pnmin

v,min, is an independent draw of nmaj samples from Pv,maj and407

nmin samples from Pv,min.408

We shall let Q denote the joint distribution of the random variables (V, S), and let QS denote the409

marginal distribution of S.410

With this notation in place, we now present a lemma that lower bounds the minimax excess risk in411

terms of quantities defined over the finite class of “hard” instances Pv .412

Lemma A.1. Let the random variables (V, S) be as defined above. The minimax excess risk is lower413

bounded as follows:414

Minimax Excess Risk(P) = inf
A

sup
(Pmaj,Pmin)∈P

ES∼Pnmaj
maj ×P

nmin
min

[
R(AS ;Ptest)−R(f?(Ptest);Ptest)

]
≥ RV −BV ,

where RV and Bayes-error BV are defined as415

RV := ES∼QS
[inf
h

P(x,y)∼
∑

v∈V Q(v|S)Pv,test
(h(x) 6= y)],

BV := EV [R(f?(PV,test);PV,test))].

Proof. By the definition of Minimax Excess Risk,416

Minimax Excess Risk = inf
A

sup
(Pmaj,Pmin)∈P

ES∼Pnmaj
maj ×P

nmin
min

[R(AS ;Ptest)]−R(f?(Ptest);Ptest)

≥ inf
A

sup
v∈V

E
S|v∼P

nmaj
v,maj×P

nmin
v,min

[R(AS ;Pv,test)]−R(f?(Pv,test);Pv,test)

≥ inf
A

EV
[
E
S|V∼P

nmaj
V,maj×P

nmin
V,min

[R(AS ;PV,test)]−R(f?(PV,test);PV,test))
]

= inf
A

EV [E
S|V∼P

nmaj
V,maj×P

nmin
V,min

[R(AS ;PV,test)]]− EV [R(f?(PV,test);PV,test))]︸ ︷︷ ︸
=BV

.

We continue lower bounding the first term as follows417

inf
A

EV [E
S|V∼P

nmaj
V,maj×P

nmin
V,min

[R(AS ;PV,test)]] = inf
A

E(V,S)∼Q[P(x,y)∼PV,test
(AS(x) 6= y)]

= inf
A

ES∼QS
EV∼Q(·|S)[P(x,y)∼PV,test

(AS(x) 6= y)]

(i)

≥ ES∼QS
[inf
h

EV∼Q(·|S)[P(x,y)∼PV,test
(h(x) 6= y)]]

= ES∼QS
[inf
h

P(x,y)∼
∑

v∈V Q(v|S)Pv,test
(h(x) 6= y)]

= RV ,

where (i) follows since AS is a fixed classifier given the sample set S. This, combined with the418

previous equation block completes the proof.419

12



A.2 The Hat Function and its Properties420

In this section, we define the hat function and establish some of its properties. This function will be421

useful in defining “hard” problem instances to prove our lower bounds. Given a positive integer K422

the hat function is defined as423

φK(x) =


∣∣x+ 1

4K

∣∣− 1
4K for x ∈

[
− 1

2K , 0
]
,

1
4K −

∣∣x− 1
4K

∣∣ for x ∈
[
0, 1

2K

]
,

0 otherwise.
(6)

When K is clear from context, we omit the subscript.424

−0.2 −0.1 0.0 0.1 0.2

−0.05

0.00

0.05

Hat Function (φ4)

Figure 3: The hat function with K = 4.

We first notice that this function is 1-Lipschitz and odd, so425 ∫ 1
2K

− 1
2K

φK(x) dx = 0.

We also compute some other key quantities for φ.426

Lemma A.2. For any positive integer K,427 ∫ 1
2K

− 1
2K

|φK(x)| dx =
1

8K2
.

Proof. We suppress K in the notation. We have that,428 ∫ 1
2K

− 1
2K

|φ(x)| dx =

∫ 0

− 1
2K

∣∣∣∣ 1

4K
−
∣∣∣∣x+

1

4K

∣∣∣∣∣∣∣∣ dx+

∫ 1
2K

0

∣∣∣∣∣∣∣∣x− 1

4K

∣∣∣∣− 1

4K

∣∣∣∣ dx.

The integrand
∣∣ 1

4K −
∣∣x+ 1

4K

∣∣∣∣ over x ∈
[
− 1

2K , 0
]

defines a triangle with base 1
2K and height 1

4K ,429

thus it has area 1
16K2 . Therefore,430 ∫ 0

− 1
2K

∣∣∣∣ 1

4K
−
∣∣∣∣x+

1

4K

∣∣∣∣∣∣∣∣ dx =
1

16K2
.

The same holds for the second term. Thus, by adding them up we get that
∫ 1

2K

− 1
2K

|φ(x)| dx =431

1
8K2 .432

Lemma A.3. For any positive integer K,433 ∫ 1
K

0

log

(
1 + φK(x− 1

2K )

1− φK(x− 1
2K )

)(
1 + φK

(
x− 1

2K

))
dx ≤ 1

3K3
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and434 ∫ 1
K

0

log

(
1− φK(x− 1

2K )

1 + φK(x− 1
2K )

)(
1− φK

(
x− 1

2K

))
dx ≤ 1

3K3
.

Proof. Let us suppress K in the notation. We prove the first bound below and the second bound435

follows by an identical argument. We have that436 ∫ 1
K

0

log

(
1 + φ(x− 1

2K )

1− φ(x− 1
2K )

)(
1 + φ

(
x− 1

2K

))
dx

=

∫ 1
2K

− 1
2K

log

(
1 + φ(x)

1− φ(x)

)
(1 + φ(x)) dx

=

∫ 1
2K

0

log

(
1 + φ(x)

1− φ(x)

)
(1 + φ(x)) dx+

∫ 0

− 1
2K

log

(
1 + φ(x)

1− φ(x)

)
(1 + φ(x)) dx

=

∫ 1
2K

0

log

(
1 + φ(x)

1− φ(x)

)
(1 + φ(x)) dx−

∫ 0

1
2K

log

(
1 + φ(−x)

1− φ(−x)

)
(1 + φ(−x)) dx

=

∫ 1
2K

0

log

(
1 + φ(x)

1− φ(x)

)
(1 + φ(x)) dx+

∫ 1
2K

0

log

(
1− φ(x)

1 + φ(x)

)
(1− φ(x)) dx,

where the last equality follows since φ is an odd function. Now, we may collect the integrands to get437

that,438 ∫ 1
K

0

log

(
1 + φ(x− 1

2K )

1− φ(x− 1
2K )

)(
1 + φ

(
x− 1

2K

))
dx

= 2

∫ 1
2K

0

log

(
1 + φ(x)

1− φ(x)

)
φ(x) dx

= 2

∫ 1
2K

0

log

(
1 +

2φ(x)

1− φ(x)

)
φ(x) dx

≤ 2

∫ 1
2K

0

2φ(x)2

1− φ(x)
dx,

where the last inequality follows since log(1 + x) ≤ x for all x. Now we observe that φ(x) ≤ x ≤ 1
2439

for x ∈ [0, 1
2K ], and in particular, 1

1−φ(x) ≤ 2. Thus,440 ∫ 1
K

0

log

(
1 + φ(x− 1

2K )

1− φ(x− 1
2K )

)(
1 + φ

(
x− 1

2K

))
dx

≤ 8

∫ 1
2K

0

φ(x)2 dx

≤ 8

∫ 1
2K

0

x2 dx

=
1

3K3
.

This proves the first bound. The second bound follows analogously.441

B Proofs in the Label Shift Setting442

Throughout this section we operate in the label shift setting (Section 3.2.1).443

First, in Appendix B.1 through a sequence of lemmas we prove the minimax lower bound Theorem 4.1.444

Next, in Appendix B.2 we prove Theorem 5.1 which is an upper bound on the excess risk of the445

undersampled binning estimator (see Eq. (5)) with dnmine1/3 bins by invoking previous results on446

nonparametric density estimation [9, 8].447
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B.1 Proof of Theorem 4.1448

In this section, we provide a proof of the minimax lower bound in the label shift setting.449

We construct the “hard” set of distributions as follows. Fix K to be an integer that will be specified450

in the sequel. Let the index set be V = {−1, 0, 1}K × {−1, 0, 1}K . For v ∈ V , we will let451

v1 ∈ {−1, 0, 1}K be the first K coordinates and v−1 ∈ {−1, 0, 1}K be the last K coordinates. That452

is, v = (v1, v−1).453

For every v ∈ P we shall define pair of class-conditional distributions Pv,1 and Pv,−1 as follows: for454

x ∈ Ij = [ j−1
K , jK ],455

Pv,1(x) = 1 + v1,jφ

(
x− j + 1/2

K

)
Pv,−1(x) = 1 + v−1,jφ

(
x− j + 1/2

K

)
,

where φ is defined in Eq. 6. Notice that Pv,1 only depends on v1 while Pv,−1 only depends on v−1.456

We continue to define We continue to define457

Pv,maj(x, y) = Pv,1(x)1(y = 1)

Pv,min(x, y) = Pv,−1(x)1(y = −1),

and458

Pv,test(x, y) =
Pv,maj(x, y) + Pv,min(x, y)

2
=

Pv,1(x)1(y = 1) + Pv,−1(x)1(y = −1)

2
.

Observe that in the test distribution it is equally likely for the label to be +1 or −1.459

Recall that as described in Section A.1, V shall be a uniform random variable over V and S | V ∼460

P
nmaj

v,maj × Pnmin

v,min. We shall let Q denote the joint distribution of (V, S) and let QS denote the marginal461

over S.462

With this construction in place, we first show that the minimax excess risk is lower bounded by463

Lemma B.1. For any positive integers K,nmaj, nmin, the minimax excess risk is lower bounded as464

follows:465

Minimax Excess Risk(PLS)

= inf
A

sup
(Pmaj,Pmin)∈PLS

E
S∼P

nmaj
maj ×P

nmin
min

[
R(AS ;Ptest)−R(f?;Ptest)

]
≥ 1

36K
− 1

2
ES∼QS

[
TV

(∑
v∈V

Q(v | S)Pv,1,
∑
v∈V

Q(v | S)Pv,−1

)]
. (7)

Proof. By invoking Lemma A.1 we get that466

Minimax Excess Risk(PLS)

≥ ES∼QS
[inf
h

P(x,y)∼
∑

v∈V Q(v|S)Pv,test
(h(x) 6= y)]︸ ︷︷ ︸

=RV

−EV [R(f?(PV,test);PV,test))]︸ ︷︷ ︸
=BV

.

We proceed by calculating alternate expressions for RV and BV to get our desired lower bound on467

the minimax excess risk.468

Calculation of RV : Immediately by Le Cam’s lemma [22, Eq. 15.13], we get that469

RV = ES∼QS

[
inf
h

P(x,y)∼
∑

v∈V Q(v|S)Pv,test
(h(x) 6= y)

]
=

1

2
ES∼QS

[
1− TV

(∑
v∈V

Q(v | S)Pv,1,
∑
v∈V

Q(v | S)Pv,−1

)]
. (8)
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Calculation of BV : Again by invoking Le Cam’s lemma [22, Eq. 15.13], we get that for any class470

conditional distributions P1,P−1,471

R(f?;Ptest) =
1

2
− 1

2
TV(P1,P−1).

So by taking expectations, we get that472

BV = EV [R(f?(PV,test);PV,test)] = EV
[

1

2
− 1

2
TV(PV,1,PV,−1)

]
. (9)

We now compute EV [TV(PV,1,PV,−1)] as follows:473

EV [TV(PV,1,PV,−1)] =
1

2
EV
[∫ 1

x=0

|PV,1(x)− PV,−1(x)| dx

]

=
1

2
EV

 K∑
j=1

∫ j
K

j−1
K

|V1,j − V−1,j |
∣∣∣∣φ(x− j + 1/2

K

)∣∣∣∣ dx


=

1

2

K∑
j=1

EV

[∫ j
K

j−1
K

|V1,j − V−1,j |
∣∣∣∣φ(x− j + 1/2

K

)∣∣∣∣ dx

]

(i)
=

1

16K2

K∑
j=1

EV [|V1,j − V−1,j |],

where (i) follows by Lemma A.2. Observe that V1,j , V−1,j are independent uniform random variables474

on {−1, 0, 1}, it is therefore straightforward to compute that475

EV [|V1,j − V−1,j |] =
8

9
.

This yields that476

EV [TV(PV,1,PV,−1)] =
1

18K
.

Plugging this into Eq. (9) allows us to conclude that477

BV = EV [R(f?(PV,test);PV,test)] =
1

2

(
1− 1

18K

)
. (10)

Combining Eqs. (8) and (10) establishes the claimed result.478

479

In light of this previous lemma we now aim to upper bound the expected total variation distance in480

Eq. (7).481

Lemma B.2. Suppose that v is drawn uniformly from the set {−1, 1}K , and that S | v is drawn from482

P
nmaj

v,maj × Pnmin

v,min then,483

ES

[
TV

(∑
v∈V

Q(v | S)Pv,1,
∑
v∈V

Q(v | S)Pv,−1

)]
≤ 1

18K
− 1

144K
exp

(
−nmin

3K3

)
.
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Proof. Let ψ := ES
[
TV

(∑
v∈V Q(v | S)Pv,1,

∑
v∈V Q(v | S)Pv,−1

)]
. Then,484

ψ = ES

[
TV

(∑
v∈V

Q(v | S)Pv,1,
∑
v∈V

Q(v | S)Pv,−1

)]

=
1

2
ES

[∫ 1

x=0

∣∣∣∣∣∑
v∈V

Q(v | S) (Pv,1(x)− Pv,−1(x))

∣∣∣∣∣ dx

]

=
1

2
ES

 K∑
j=1

∫ j
K

x= j−1
K

∣∣∣∣∣∑
v∈V

Q(v | S) (Pv,1(x)− Pv,−1(x))

∣∣∣∣∣ dx


=

1

2
ES

 K∑
j=1

∫ j
K

x= j−1
K

∣∣∣∣∣∑
v∈V

Q(v | S)(v1,j − v−1,j)φ

(
x− j + 1/2

K

)∣∣∣∣∣ dx

 ,

where the last equality is by the definition of Pv,1 and Pv,−1. Continuing we get that,485

ψ =
1

2

[∫ j
K

x= j−1
K

∣∣∣∣φ(x− j + 1/2

K

)∣∣∣∣ dx

]
ES

 K∑
j=1

∣∣∣∣∣∑
v∈V

Q(v | S)(v1,j − v−1,j)

∣∣∣∣∣


(i)
=

1

16K2
ES

 K∑
j=1

∣∣∣∣∣∑
v∈V

Q(v | S)(v1,j − v−1,j)

∣∣∣∣∣


=
1

16K2

K∑
j=1

∫ ∣∣∣∣∣∑
v∈V

Q(v | S)(v1,j − v−1,j)

∣∣∣∣∣ dQS(S)

=
1

16K2

K∑
j=1

∫ ∣∣∣∣∣∑
v∈V

Q(v, S)(v1,j − v−1,j)

∣∣∣∣∣ dS

(i)
=

1

16K2|V|
K∑
j=1

∫ ∣∣∣∣∣∑
v∈V

Q(S | v)(v1,j − v−1,j)

∣∣∣∣∣ dS,

where (i) follows by the calculation in Lemma A.2 and (ii) follows since v is a uniform random486

variable over the set V .487

The distributions Pv,1 and Pv,−1 are symmetrically defined over all intervals Ij = [ j−1
K , jK ], and488

hence all of the summands in the RHS above are equal. Thus,489

ψ =
1

16K|V|

∫ ∣∣∣∣∣∑
v∈V

Q(S | v)(v1,1 − v−1,1)

∣∣∣∣∣ dS. (11)

Before we continue further, let us define490

V+ = {v ∈ V | v1,1 > v−1,1}.
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For every v ∈ V+, let ṽ ∈ V be such that is the same as v on all coordinates, except ṽ1,1 = −v1,1491

and ṽ−1,1 = −v−1,1. Then continuing from Eq. (11) we find that,492

ψ
(i)
=

1

16K|V|

∫ ∣∣∣∣∣ ∑
v∈V+

(v1,1 − v−1,1)(Q(S | v)− Q(S | ṽ))

∣∣∣∣∣ dS

(ii)

≤ 1

16K|V|

∫ ∑
v∈V+

(v1,1 − v−1,1) |Q(S | v)− Q(S | ṽ)| dS

=
1

16K|V|
∑
v∈V+

(v1,1 − v−1,1)

∫
|Q(S | v)− Q(S | ṽ)| dS

=
1

8K|V|
∑
v∈V+

(v1,1 − v−1,1)TV(Q(S | v),Q(S | ṽ))︸ ︷︷ ︸
=:Ξ

, (12)

where (i) we use the definition of V+ and ṽ, (ii) follows since v1,1 > v−1,1 for v ∈ V+.493

Now we further partition V+ into 3 sets V(1,0),V(0,−1),V(1,−1) as follows494

V(1,0) = {v ∈ V | v1,1 = 1, v−1,1 = 0},
V(0,−1) = {v ∈ V | v1,1 = 0, v−1,1 = −1},
V(1,−1) = {v ∈ V | v1,1 = 1, v−1,1 = −1}.

Note that Q(S | v) = P
nmaj

v,maj × Pnmin

v,min, and therefore495

Ξ =
∑
v∈V+

(v1,1 − v−1,1)TV
(
P
nmaj

v,maj × Pnmin

v,min,P
nmaj

ṽ,maj × Pnmin

ṽ,min

)
(i)
=

∑
v∈V(1,0)

TV
(
P
nmaj

v,maj × Pnmin

v,min,P
nmaj

ṽ,maj × Pnmin

ṽ,min

)
+

∑
v∈V(0,−1)

TV
(
P
nmaj

v,maj × Pnmin

v,min,P
nmaj

ṽ,maj × Pnmin

ṽ,min

)
+ 2

∑
v∈V(1,−1)

TV
(
P
nmaj

v,maj × Pnmin

v,min,P
nmaj

ṽ,maj × Pnmin

ṽ,min

)
, (13)

where (i) follows since v1, v−1 ∈ {−1, 0, 1}K and by the definition of the sets V(1,0),V(0,1) and496

V(1,−1).497

Now by the Bretagnolle–Huber inequality [see 4, Corollary 4],498

TV
(
P
nmaj

v,maj × Pnmin

v,min,P
nmaj

ṽ,maj × Pnmin

ṽ,min

)
= TV

(
P
nmaj

ṽ,maj × Pnmin

ṽ,min,P
nmaj

v,maj × Pnmin

v,min

)
≤ 1− 1

2
exp

(
−KL

(
P
nmaj

ṽ,maj × Pnmin

ṽ,min‖P
nmaj

v,maj × Pnmin

v,min

))
,

where we flip the arguments in the first step for simplicity later.499

Next, by the chain rule for KL-divergence, we have that500

KL(P
nmaj

ṽ,maj × Pnmin

ṽ,min‖P
nmaj

v,maj × Pnmin

v,min) = nmajKL(Pṽ,maj‖Pv,maj) + nminKL(Pṽ,min‖Pv,min).

Using these, let us upper bound the first term in Eq. (13) corresponding to v ∈ V(0,−1). For501

v ∈ V(0,−1), notice that KL(Pṽ,maj‖Pv,maj) = 0 since v1,j = ṽ1,j for all j ∈ {1, . . . ,K}. For the502

second term, KL(Pṽ,min‖Pv,min), only v1,1 and ṽ1,1 differ, so503

KL(Pṽ,min‖Pv,min) =

∫ 1

0

Pv,−1(x) log

(
Pv,−1(x)

Pṽ,−1(x)

)
dx

=

∫ 1
K

0

log

(
1 + φK(x− 1

2K )

1− φK(x− 1
2K )

)(
1 + φK

(
x− 1

2K

))
dx

≤ 1

3K3
,
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where the last inequality is a result of the calculation in Lemma A.3.504

Therefore, we get505 ∑
v∈V(0,−1)

TV
(
P
nmaj

v,maj × Pnmin

v,min,P
nmaj

ṽ,maj × Pnmin

ṽ,min

)
≤ 9K−1

(
1− 1

2
exp

(
−nmin

3K3

))
.

For the terms in Eq. (13) corresponding to V(0,−1),V(1,−1), we simply take the trivial bound to get506 ∑
v∈V(0,−1)

TV
(
P
nmaj

v,maj × Pnmin

v,min,P
nmaj

ṽ,maj × Pnmin

ṽ,min

)
≤ 9K−1,

∑
v∈V(1,−1)

TV
(
P
nmaj

v,maj × Pnmin

v,min,P
nmaj

ṽ,maj × Pnmin

ṽ,min

)
≤ 9K−1.

Plugging these bounds into Eq. (13) we get that,507

Ξ ≤ 4 · 9K−1 − 9K−1

2
exp

(
−nmin

3K3

)
.

Now using this bound on Ξ in Eq. (12) and observing that |V| = 9K , we get that,508

ψ = ES

[
TV

(∑
v∈V

Q(v | S)Pv,1,
∑
v∈V

Q(v | S)Pv,−1

)]

≤ 1

8 · 9KK

(
4 · 9K−1 − 9K−1

2
exp

(
−nmin

3K3

))
=

1

18K
− 1

144K
exp

(
−nmin

3K3

)
,

completing the proof.509

Finally, we combine Lemma B.1 and Lemma B.2 to establish the minimax lower bound in this label510

shift setting. We recall the statement of the theorem here.511

Theorem 4.1. Consider the label shift setting described in Section 3.2.1. Recall that PLS is the class512

of pairs of distributions (Pmaj,Pmin) that satisfy the assumptions in that section. The minimax excess513

risk over this class is lower bounded as follows:514

Minimax Excess Risk(PLS) = inf
A

sup
(Pmaj,Pmin)∈PLS

Excess Risk[A; (Pmaj,Pmin)] ≥
c

nmin
1/3

. (3)

Proof. By Lemma B.1 we know that,515

Minimax Excess Risk(PLS) ≥ 1

36K
− 1

2
ES∼QS

[
TV

(∑
v∈V

Q(v | S)Pv,1,
∑
v∈V

Q(v | S)Pv,−1

)]
.

Next by the calculation in Lemma B.2 we have that516

Minimax Excess Risk(PLS) ≥ 1

36K
− 1

2

(
1

18K
− 1

144K
exp

(
−nmin

3K3

))
=

1

288K
exp

(
−nmin

3K3

)
.

Setting K = dnmin
1/3e yields the result.517

B.2 Proof of Theorem 5.1518

In this section, we derive an upper bound on the excess risk of the undersampled binning estimator519

AUSB (Eq. (5)) in the label shift setting. Recall that given a dataset S this estimator first calculates520

the undersampled dataset SUS, where the number of points from the minority group (nmin) is equal to521
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the number of points from the majority group (nmin), and the size of the dataset is 2nmin. Throughout522

this section, (Pmaj,Pmin) shall be an arbitrary element of PLS.523

To bound the excess risk of the undersampling algorithm, we will relate it to density estimation.524

Recall that n1,j denotes the number of points in SUS with label +1 that lie in Ij , and n−1,j is defined525

analogously.526

Given a positive integer K, for x ∈ Ij = [ j−1
K , jK ], by the definition of the undersampled binning527

estimator (Eq. (5))528

ASUSB(x) =

{
1 if n1,j > n−1,j ,

−1 otherwise.

Recall that since we have undersampled,
∑
j n1,j =

∑
j n−1,j = nmin. Therefore, define the simple529

histogram estimators for P1(x) = P(x | y = 1) and P−1(x) = P(x | y = −1) as follows: for530

x ∈ Ij ,531

P̂S1 (x) :=
n1,j

Knmin
and P̂S−1(x) :=

n−1,j

Knmin
.

With this histogram estimator in place, we may define an estimator for η(x) := Ptest(y = 1|x) as532

follows,533

η̂S(x) :=
P̂S1 (x)

P̂S1 (x) + P̂S−1(x)
.

Observe that, for x ∈ Ij534

η̂S(x) > 1/2 ⇐⇒ n1,j > n−1,j ⇐⇒ ASUSB(x) = 1.

Defining an estimator η̂S for the Ptest(y = 1 | x) in this way will allow us to relate the excess risk of535

AUSB to the estimation error in P̂S1 and P̂S−1.536

Before proving the theorem we restate it here.537

Theorem 5.1. Consider the label shift setting described in Section 3.2.1. For any (Pmaj,Pmin) ∈ PLS538

the expected excess risk of the Undersampling Binning Estimator (Eq. (5)) with number of bins with539

K = cdnmin
1/3e is upper bounded by540

Excess Risk[AUSB; (Pmaj,Pmin)] = ES∼Pnmaj
maj ×P

nmin
min

[
R(ASUSB;Ptest)−R(f?;Ptest)

]
≤ C

nmin
1/3

.

Proof. By the definition of the excess risk541

Excess Risk[AUSB; (Pmaj,Pmin)] := ES∼Pnmaj
maj ×P

nmin
min

[
R(ASUSB;Ptest))−R(f?;Ptest)

]
.

By invoking [25, Theorem 1] we may upper bound the excess risk given a draw of S by542

R(ASUSB;Ptest))−R(f?;Ptest) ≤ 2

∫ ∣∣η̂S(x)− η(x)
∣∣Ptest(x) dx.
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Continuing using the definition of η̂S above and because η = P1/(P1 + P−1) we have that,543

R(ASUSB;Ptest))−R(f?;Ptest)

= 2

∫ 1

0

∣∣∣∣∣ P̂S1 (x)

P̂S1 (x) + P̂S−1(x)
− P1(x)

P1(x) + P−1(x)

∣∣∣∣∣
(
P1(x) + P−1(x)

2

)
dx

=

∫ 1

0

∣∣∣∣∣
(
P1(x) + P−1(x)

P̂S1 (x) + P̂S−1(x)

)
P̂S1 (x)− P1(x)

∣∣∣∣∣ dx

(i)

≤
∫ 1

0

∣∣∣P̂S1 (x)− P1(x)
∣∣∣ dx+

∫ 1

0

∣∣∣∣∣P1(x) + P−1(x)

P̂S1 (x) + P̂S−1(x)
− 1

∣∣∣∣∣ P̂S1 (x) dx

=

∫ 1

0

∣∣∣P̂S1 (x)− P1(x)
∣∣∣ dx+

∫ 1

0

∣∣∣P̂S1 (x) + P̂S−1(x)− P1(x)− P−1(x)
∣∣∣ P̂S1 (x)

P̂S1 (x) + P̂S−1(x)
dx

≤ 2

∫ 1

0

∣∣∣P̂S1 (x)− P1(x)
∣∣∣ dx+

∫ 1

0

∣∣∣P̂S−1(x)− P−1(x)
∣∣∣ dx

(ii)

≤ 2

√∫ 1

0

(
P̂S1 (x)− P1(x)

)2

dx+

√∫ 1

0

(
P̂S−1(x)− P−1(x)

)2

dx,

where (i) follows by the triangle inequality, (ii) is by the Cauchy–Schwarz inequality.544

Taking expectation over the samples S and by invoking Jensen’s inequality we find that,545

Excess Risk(AS ; (Pmaj,Pmin))

= ES
[
R(ASUSB;Ptest))−R(f?;Ptest)

]
≤ 2

√
ES
[∫ (

P̂S1 (x)− P1(x)
)2

dx

]
+

√
ES
[∫ (

P̂S−1(x)− P−1(x)
)2

dx

]
.

We note that P̂Sj only depends on nmin i.i.d. draws from class j. Thus by [9, Theorem 1.7], if546

K = cdnmine1/3 then547

ES
[∫ (

P̂Sj (x)− Pj(x)
)2

dx

]
≤ C

nmin
2/3

.

Plugging this into the previous inequality yields the desired result.548

C Proof in the Group-Covariate Shift Setting549

Throughout this section we operate in the group-covariate shift setting (Section 3.2.2).550

First in Appendix C.1, we prove Theorem 4.2, the minimax lower bound through a sequence of551

lemmas. Second in Appendix C.2, we prove Theorem 5.2 that upper bound on the excess risk of the552

undersampled binning estimator with dnmine1/3 bins.553

C.1 Proof of Theorem 4.2554

In this section, we provide a proof of the minimax lower bound in the group shift setting.555

We construct the “hard” set of distributions as follows. Let the index set be V = {−1, 1}K . For every556

v ∈ V define a distribution as follows: for x ∈ Ij = [ j−1
K , jK ],557

Pv(y = 1 | x) :=
1

2

[
1 + vjφ

(
x− j + 1/2

K

)]
,

where φ is defined in Eq. 6. Given a τ ∈ [0, 1] we also construct the group distributions as follows:558

Pa(x) =

{
2− τ if x ∈ [0, 0.5)

τ if x ∈ [0.5, 1],
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and let559

Pb(x) = 2− Pa(x).

We can verify that560

Overlap(Pa,Pb) = 1− TV(Pa,Pb) = 1− 1

2

∫ 1

x=0

|Pa(x)− Pb(x)| dx = τ.

We continue to define561

Pv,maj(x, y) = Pv(y | x)Pa(x)

Pv,min(x, y) = Pv(y | x)Pb(x),

and562

Pv,test(x, y) = Pv(y | x)

(
Pa(x) + Pb(x)

2

)
.

Observe that (Pa(x) + Pb(x))/2 = 1, the uniform distribution over [0, 1].563

Recall that as described in Section A.1, V shall be a uniform random variable over V and S | V ∼564

P
nmaj

v,maj × Pnmin

v,min. We shall let Q denote the joint distribution of (V, S) and let QS denote the marginal565

over S.566

With this construction in place, we present the following lemma that lower bounds the minimax567

excess risk by a sum of exp(−KL(Q(S | vj = 1)‖Q(S | vj = −1)) over the intervals. Intuitively,568

KL(Q(S | vj = 1)‖Q(S | vj = −1) is a measure of how difficult it is to identify whether vj = 1 or569

vj = −1 from the samples.570

Lemma C.1. For any positive integers K,nmaj, nmin and τ ∈ [0, 1], the minimax excess risk is lower571

bounded as follows:572

Minimax Excess Risk(PGS(τ)) = inf
A

sup
(Pmaj,Pmin)∈PGS(τ)

E
S∼P

nmaj
maj ×P

nmin
min

[
R(AS ;Ptest)−R(f?;Ptest)

]
≥ 1

32K2

K∑
j=1

exp(−KL(Q(S | vj = 1)‖Q(S | vj = −1))).

Proof. By invoking Lemma A.1, we know that the minimax excess risk is lower bounded by573

Minimax Excess Risk(PGS(τ))

≥ ES∼QS
[inf
h

P(x,y)∼
∑

v∈V Q(v|S)Pv,test
(h(x) 6= y)]︸ ︷︷ ︸

=RV

−EV [R(f?(PV,test);PV,test)]︸ ︷︷ ︸
=BV

,

where V is a uniform random variable over the set V , S | V = v is a draw from P
nmaj

v,maj × Pnmin

v,min, and574

Q denotes the joint distribution over (V, S).575

We shall lower bound this minimax risk in parts. First, we shall establish a lower bound on RV , and576

then an upper bound on the Bayes risk BV .577

Lower bound on RV . Unpacking RV using its definition we get that,578

RV = ES∼QS
[inf
h

P(x,y)∼
∑

v∈V Q(v|S)Pv,test
(h(x) 6= y)]

= ES∼QS

[
inf
h

∫ 1

0

Ptest(x)Py∼∑v∈V Q(v|S)Pv(·|x)[h(x) 6= y] dx

]
(i)
= ES∼QS

[∫ 1

0

Ptest(x) min

{∑
v∈V

Q(v | S)Pv(1 | x),
∑
v∈V

Q(v | S)Pv(−1 | x)

}
dx

]
(ii)
=

1

2
− ES∼QS

[∫ 1

0

Ptest(x)

∣∣∣∣∣12 −∑
v∈V

Q(v | S)Pv(1 | x)

∣∣∣∣∣ dx

]
(iii)
=

1

2
−
∫ 1

0

Ptest(x)ES∼QS

[∣∣∣∣∣12 −∑
v∈V

Q(v | S)Pv(1 | x)

∣∣∣∣∣
]

dx, (14)
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where (i) follows by taking h to be the pointwise minimizer over x, (ii) follows since Pv(−1 | x) =579

1− Pv(1 | x) and min{s, 1− s} = (1− |1− 2s|)/2 for all s ∈ [0, 1], and (iii) follows by Fubini’s580

theorem which allows us to switch the order of the integrals.581

If x ∈ Ij = [ j−1
K , jK ] for some j ∈ {1, . . . ,K} we let jx denote the value of this index j. With this582

notation in place let us continue to upper bound integrand in the second term in the RHS above as583

follows:584

ES∼QS

[∣∣∣∣∣12 −∑
v∈V

Q(v | S)Pv(1 | x)

∣∣∣∣∣
]

(i)
= ES∼QS

[∣∣∣∣φ(x− jx + 1/2

K

)∣∣∣∣ |Q(vjx = 1 | S)− Q(vjx = −1 | S)|
]

=

∣∣∣∣φ(x− jx + 1/2

K

)∣∣∣∣ES∼QS
[|Q(vjx = 1 | S)− Q(vjx = −1 | S)|]

(ii)
=

∣∣∣∣φ(x− jx + 1/2

K

)∣∣∣∣ES∼QS

[∣∣∣∣Q(S | vjx = 1)QV (vjx = 1)

QS(S)
− Q(S | vjx = −1)QV (vjx = −1)

QS(S)

∣∣∣∣]
(iii)
=

1

2

∣∣∣∣φ(x− jx + 1/2

K

)∣∣∣∣TV(Q(S | vjx = 1),Q(S | vjx = −1)), (15)

where (i) follows since Pv(1 | x) = (1+vjxφ(x− (jx+1/2)/K))/2 and by marginalizing Q(v | S)585

over the indices j 6= jx, (ii) follows by using Bayes’ rule and (iii) follows since the total-variation586

distance is half the `1 distance. Now by the Bretagnolle–Huber inequality [see 4, Corollary 4] we get587

that,588

TV(Q(S | vjx = 1),Q(S | vjx = −1))

≤ 1− exp(−KL(Q(S | vjx = 1)‖Q(S | vjx = −1)))

2
. (16)

Combining Eqs. (14)-(16) we get that589

RV

≥ 1

2
− 1

2

∫ 1

0

Ptest(x)

∣∣∣∣φ(x− jx + 1/2

K

)∣∣∣∣ dx

+
1

4

∫ 1

0

Ptest(x)

∣∣∣∣φ(x− jx + 1/2

K

)∣∣∣∣ exp(−KL(Q(S | vjx = 1)‖Q(S | vjx = −1))) dx. (17)

Upper bound on BV : The Bayes error is590

BV = EV [R(f?(PV );PV )]

= EV
[
inf
f

E(x,y)∼Pv,test
1(f(x) 6= y)

]

= EV

inf
f

∫ 1

x=0

∑
y∈{−1,1}

Ptest(x)PV,test(y | x)1(f(x) = −y)


= EV

[∫ 1

x=0

Ptest(x) min
y∈{−1,1}

PV,test(y | x)

]
(i)
= EV

[
1

2

(
1−

∫ 1

x=0

Ptest(x)|PV,test(1 | x)− PV,test(−1 | x)| dx
)]

(ii)
= EV

[
1

2

(
1−

∫ 1

x=0

Ptest(x)

∣∣∣∣φ(x− jx + 1/2

K

)∣∣∣∣ dx

)]
=

1

2
− 1

2

∫ 1

x=0

Ptest(x)

∣∣∣∣φ(x− jx + 1/2

K

)∣∣∣∣ dx, (18)

where (i) follows since Pv(1 | x) = 1− Pv(−1 | x) and min{s, 1− s} = (1− |1− 2s|)/2 for all591

s ∈ [0, 1], and (ii) follows by our construction of Pv above along with the fact that Pv(1 | x) =592

1− Pv(−1 | x).593
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Putting things together: Combining Eqs. (17) and (18) allows us to conclude that594

Minimax Excess Risk(PGS(τ))

≥ 1

4

∫ 1

0

Ptest(x)

∣∣∣∣φ(x− jx + 1/2

K

)∣∣∣∣ exp(−KL(Q(S | vjx = 1)‖Q(S | vjx = −1))) dx

=
1

4

K∑
j=1

∫ j
K

j−1
K

Ptest(x)

∣∣∣∣φ(x− j + 1/2

K

)∣∣∣∣ exp(−KL(Q(S | vj = 1)‖Q(S | vj = −1))) dx

=
1

4

K∑
j=1

exp(−KL(Q(S | vj = 1)‖Q(S | vj = −1)))

[∫ j
K

j−1
K

Ptest(x)

∣∣∣∣φ(x− j + 1/2

K

)∣∣∣∣ dx

]

(i)
=

1

32K2

K∑
j=1

exp(−KL(Q(S | vj = 1)‖Q(S | vj = −1))),

where (i) follows by using Lemma A.2 along with the fact that Ptest(x) = 1 in our construction to595

show that the integral in the square brackets is equal to 1/8K2. This proves the result.596

The next lemma upper bounds the KL divergence between Q(S | vj = 1) and Q(S | vj = −1) for597

each j ∈ {1, . . . ,K}. It shows that the KL divergence between these two posteriors is larger when598

the expected number of samples in that bin is larger.599

Lemma C.2. Suppose that v is drawn uniformly from the set {−1, 1}K , and that S | v is drawn600

from P
nmaj

v,maj × Pnmin

v,min. Then for any j ∈ {1, . . . ,K/2} and any τ ∈ [0, 1],601

KL(Q(S | vj = 1)‖Q(S | vj = −1)) ≤ nmaj(2− τ) + nminτ

3K3
,

and for any j ∈ {K/2 + 1, . . . ,K}602

KL(Q(S | vj = 1)‖Q(S | vj = −1)) ≤ nmajτ + nmin(2− τ)

3K3
.

Proof. Let us consider the case when j = 1. The bound for all other j ∈ {2, . . . ,K} shall follow603

analogously.604

Given samples S, let S = (S1, S̄1) be a partition where S1 are the samples that fall in the interval I1,605

and S̄1 be the other samples. Similarly, given a vector v ∈ {−1, 1}, let v = (v1, v̄1), where v1 is the606

first component and v̄1 denotes the other components (2, . . . ,K) of v.607

First, we will show that608

Q(S | v1) = Q(S1 | v1)Q(S̄1).

To see this, observe that609

Q(S | v1) = Q((S1, S̄1) | v1) = Q(S1 | v1)Q(S̄1 | v1, S1).

Further, if v is chosen uniformly over the hypercube {−1, 1}K , then610

Q(S̄1 | v1, S1) =
∑
v̄1

Q(S̄1, v̄1 | v1, S1)

=
∑
v̄1

Q(S̄1 | v1, v̄1, S1)Q(v̄1 | v1, S1)

(i)
=
∑
v̄1

Q(S̄1 | v1, v̄1, S1)Q(v̄1)

(ii)
=
∑
v̄1

Q(S̄1 | v1, v̄1)Q(v̄1)

(iii)
=
∑
v̄1

Q(S̄1 | v̄1)Q(v̄1)

= Q(S̄1),
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where (i) follows since by Bayes’ rule611

Q(v̄1 | v1, S1) =
Q(v̄1 | v1)Q(S1 | v1, v̄1)

Q(S1 | v1)

=
Q(v̄1)Q(S1 | v1, v̄1)

Q(S1 | v1)
(since v̄1 is independent of v1)

=
Q(v̄1)Q(S1 | v1)

Q(S1 | v1)
= Q(v̄1) (the samples in S1 depend only on v1).

Inequality (ii) follows since the samples are drawn independently given v = (v1, v̄1). Finally, (iii)612

follows since S̄1 (the samples that lie outside the interval I1) only depend on v̄1 since the marginal613

distribution of x is independent of v and the distribution of y | x depends only on the value of v614

corresponding to the interval in which x lies.615

Thus since, Q(S | v1) = Q(S1 | v1)Q(S̄1) we have that616

KL(Q(S | v1 = 1)‖Q(S | v1 = −1)) = KL(Q(S1 | v1 = 1)‖Q(S1 | v1 = −1)). (19)

To bound this KL divergence, let us condition of the number of samples in S1 from group a, (the617

majority group) n1,a and the number of samples from group b (the minority group), n1,b. Now since618

n1,a and n1,b are independent of v1 (which only affects the labels) we have that,619

Q(S1 | v1) =
∑

n1,a,n1,b

Q(n1,a, n1,b | v1)Q(S1 | v1, n1,a, n1,b)

=
∑

n1,a,n1,b

Q(n1,a, n1,b)Q(S1 | v1, n1,a, n1,b)

= En1,a,n1,b
[Q(S1 | v1, n1,a, n1,b)] .

Therefore, by the joint convexity of the KL-divergence and by Jensen’s inequality we have that,620

KL(Q(S1 | v1 = 1)‖Q(S1 | v1 = −1))

≤ En1,a,n1,b
[KL(Q(S1 | v1 = 1, n1,a, n1,b)‖Q(S1 | v1 = −1, n1,a, n1,b))] . (20)

Now conditioned on v1, n1,a and n1,b, samples in S1 are composed of 2 groups of samples (S1,a, S1,b).621

The samples in each group (S1,a, S1,b) are drawn independently from the distributions Pa(x | x ∈622

I1)Pv(y | x) and Pb(x | x ∈ I1)Pv(y | x) respectively. Therefore,623

KL(Q(S1 | v1 = 1, n1,a, n1,b)‖Q(S1 | v1 = −1, n1,a, n1,b))

(i)
= n1,aKL(Pa(x | x ∈ I1)Pv1=1(y | x)‖Pa(x | x ∈ I1)Pv1=−1(y | x))

+ n1,bKL(Pb(x | x ∈ I1)Pv1=1(y | x)‖Pb(x | x ∈ I1)Pv1=−1(y | x))

(ii)
= (n1,a + n1,b)Ex∼Unif(I1) [KL(Pv1=1(y | x)‖Pv1=−1(y | x))]

(iii)
=

n1,a + n1,b

2
Ex∼Unif(I1)

 ∑
y∈{−1,1}

(
1 + yφ

(
x− 1

2K

))
log

((
1 + yφ

(
x− 1

2K

))(
1 + yφ

(
x− 1

2K

)))


=
n1,a + n1,b

2

∑
y∈{−1,1}

Ex∼Unif(I1)

[(
1 + yφ

(
x− 1

2K

))
log

((
1 + yφ

(
x− 1

2K

))(
1 + yφ

(
x− 1

2K

)))]

=
n1,a + n1,b

2K

∑
y∈{−1,1}

∫ 1
K

x=0

[(
1 + yφ

(
x− 1

2K

))
log

((
1 + yφ

(
x− 1

2K

))(
1 + yφ

(
x− 1

2K

)))] dx

(iv)

≤ n1,a + n1,b

3K2
, (21)

where in (i) we let Pv1 denote the conditional distribution of y for x ∈ I1 given v1, (ii) follows since624

both Pa and Pb are constant in the interval, (iii) follows by our construction of Pv above, and finally625

(iv) follows by invoking Lemma A.3 that ensures that the integral is bounded by 1/3K2.626
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Using this bound in Eq. (20), along with Eq. (19) we get that627

KL(Q(S | v1 = 1)‖Q(S | v1 = −1)) ≤ E [n1,a + n2,b]

3K2
.

Now there are nmaj samples from group a in S and nmin samples from group b. Therefore,628

E [n1,a] = nmajP[Pa(x ∈ I1)] =
nmaj(2− τ)

K
,

E [n1,b] = nminP[Pb(x ∈ I1)] =
nminτ

K
.

Plugging this bound into Eq. (21) completes the proof by the first interval. An identical argument629

holds for j ∈ {2, . . . ,K/2}. For j ∈ {K/2 + 1, . . . ,K} the only change is that630

E [nj,a] = nmajP[Pa(x ∈ Ij)] =
nmajτ

K
,

E [nj,b] = nminP[Pb(x ∈ Ij)] =
nmin(2− τ)

K
.

631

Next, we combine the previous two lemmas to establish our stated lower bound. We first restate it632

here.633

Theorem 4.2. Consider the group shift setting described in Section 3.2.2. Given any overlap634

τ ∈ [0, 1] recall that PGS(τ) is the class of distributions such that Overlap(Pmaj,Pmin) ≥ τ . The635

minimax excess risk in this setting is lower bounded as follows:636

Minimax Excess Risk(PGS(τ)) = inf
A

sup
(Pmaj,Pmin)∈PGS(τ)

Excess Risk[A; (Pmaj,Pmin)]

≥ c

(nmin · (2− τ) + nmaj · τ)1/3
≥ c

nmin
1/3(ρ · τ + 2)1/3

, (4)

where ρ = nmaj/nmin > 1.637

Proof. First, by Lemma C.1 we know that638

Minimax Excess Risk(PGS(τ)) ≥ 1

32K2

K∑
j=1

exp(−KL(Q(S | vj = 1)‖Q(S | vj = −1))).

Next, by invoking the bound on the KL divergences in the equation above by Lemma C.2 we get that639

Minimax Excess Risk(PGS(τ))

≥ 1

64K

[
exp

(
−nmaj(2− τ) + nminτ

3K3

)
+ exp

(
−nmin(2− τ) + nmajτ

3K3

)]
≥ 1

64K

[
exp

(
−nmin(2− τ) + nmajτ

3K3

)]
Setting K = d(nmin(2− τ) + nmajτ)1/3e and recalling that τ ≤ 1 we get that640

Minimax Excess Risk(PGS(τ))

≥ 1

64d(nmin(2− τ) + nmajτ)1/3e

[
exp

(
− nmin(2− τ) + nmajτ

3d(nmin(2− τ) + nmajτ)1/3e3
)]

≥ c′

64d(nmin(2− τ) + nmajτ)1/3e
≥ c

(nmin(2− τ) + nmajτ)1/3
,

which completes the proof.641
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C.2 Proof of Theorem 5.2642

In this section, we derive an upper bound on the excess risk of the undersampled binning estimator643

AUSB (Eq. (5)). Recall that given a dataset S this estimator first calculates the undersampled dataset644

SUS, where the number of points from the minority group (nmin) is equal to the number of points from645

the majority group (nmin), and the size of the dataset is 2nmin. Throughout this section, (Pmaj,Pmin)646

shall be an arbitrary element of PGS(τ) for any τ ∈ [0, 1]. In this section, whenever we shall often647

denote Excess Risk(A; (Pmaj,Pmin)) by simply Excess Risk(A).648

Before we proceed, we introduce some additional notation. For any j ∈ {1, . . . ,K} and Ij =649

[ j−1
K , jK ] let650

qj,1 := Ptest(y = 1 | x ∈ Ij) =

∫
x∈Ij

P(y = 1 | x)Ptest(x | x ∈ Ij) dx, (22a)

qj,1 := Ptest(y = 1 | x ∈ Ij) =

∫
x∈Ij

P(y = 1 | x)Ptest(x | x ∈ Ij) dx. (22b)

For the undersampled binning estimator AUSB (defined above in Eq. (5)), define the excess risk in an651

interval Ij as follows:652

Rj(ASUSB) := p
(
y = −ASj | x ∈ Ij

)
−min {Ptest(y = 1 | x ∈ Ij),Ptest(y = −1 | x ∈ Ij)}

= qj,−ASj −min{qj,1, qj,−1}.
The proof of the upper bound shall proceed in steps. First, in Lemma C.3 we will show that the653

excess risk is equal to sum the excess risk over the intervals up to a factor of 2/K on account of the654

distribution being 1-Lipschitz. Next, in Lemma C.4 we upper bound the risk over each interval. We655

put these two together and to upper bound the risk.656

Lemma C.3. The expected excess risk of undersampled binning estimator AUSB can be decomposed657

as follows658

Excess Risk(AUSB) ≤
K−1∑
j=0

ES∼Pnmaj
maj ×P

nmin
min

[
Rj(ASUSB)

]
· Ptest(Ij) +

2

K
,

where Ptest(Ij) :=
∫
x∈Ij Ptest(x) dx.659

Proof. Recall that by definition, the expected excess risk is660

ES∼Pnmaj
maj ×P

nmin
min

[
R(AS ;Ptest)−R(f?;Ptest)

]
.

Let us first decompose the Bayes risk R(f?),661

R(f?) = inf
f

E(x,y)∼Ptest
[1(f(x) 6= y)]

= inf
f

∫ 1

x=0

∑
y∈{−1,1}

1(f(x) 6= y)Ptest(y | x)Ptest(x) dx

=

∫ 1

x=0

inf
f(x)∈{−1,1}

∑
y∈{−1,1}

1(f(x) 6= y)Ptest(y | x)Ptest(x) dx

=

∫ 1

x=0

inf
f(x)∈{−1,1}

Ptest(y = −f(x) | x)Ptest(x) dx

=

∫ 1

x=0

min {Ptest(y = 1 | x),Ptest(y = −1 | x)}Ptest(x) dx. (23)

The risk of the undersampled binning algorithm AUSB is given by662

R(ASUSB) =

∫ 1

x=0

∑
y∈{−1,1}

1(ASUSB(x) 6= y)Ptest(y | x)Ptest(x) dx

=

∫ 1

x=0

Ptest(y = −ASUSB(x) | x)Ptest(x) dx.
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Next, recall that the undersampled binning estimator is constant over the intervals Ij for j ∈663

{1, . . . ,K} where it takes the value ASj (to ease notation let us simply denote it by Aj below), and664

therefore665

R(ASUSB) =

K−1∑
j=0

∫
x∈Ij

Ptest(y = −Aj |x)Ptest(x) dx.

This combined with Eq. (23) tells us that666

R(ASUSB)−R(f?)

=

K−1∑
j=0

∫
x∈Ij

(
Ptest(y = −Aj |x)−min {Ptest(y = 1 | x),Ptest(y = −1 | x)}

)
Ptest(x) dx. (24)

Recall the definition of qj,1 and qj,−1 from Eqs. (22a)-(22b) above. For any x ∈ Ij = [ j−1
K , jK ],667

|Ptest(y | x)−qj,y| ≤ 1/K, since the distribution Ptest(y | x) is 1-Lipschitz and qj,y is its conditional668

mean. Therefore,669

R(ASUSB)−R(f?)

≤
K−1∑
j=0

∫
x∈Ij

(
qj,−Aj

−min {qj,1, qj,−1}
)
Ptest(x) dx+

2

K

K−1∑
j=0

∫
x∈Ij

Ptest(x) dx

=

K−1∑
j=0

∫
x∈Ij

Rj(ASUSB)Ptest(x) dx+
2

K
.

Taking expectation over the training samples S (where nmin samples are drawn independently from670

Pmin and nmaj samples are drawn independently from Pmaj) concludes the proof.671

Next we provide an upper bound on the expected excess risk is an interval Rj(ASUSB).672

Lemma C.4. For any j ∈ {1, . . . ,K} with Ij = [ j−1
K , jK ],673

ES∼Pnmaj
maj ×P

nmin
min

[
Rj(ASUSB)

]
≤ c√

nminPtest(Ij)
+

c

K
,

where c is an absolute constant, and Ptest(Ij) :=
∫
x∈Ij Ptest(x) dx.674

Proof. Consider an arbitrary bucket j ∈ {1, . . . ,K}.675

Let us introduce some notation that shall be useful in the remainder of the proof. Analogous to qj,1676

and qj,−1 defined above (see Eqs. (22a)-(22b)), define qaj,1 and qbj,1 as follows:677

qaj,1 := Pa(y = 1 | x ∈ Ij) =

∫
x∈Ij

P(y = 1 | x)Pa(x | x ∈ Ij) dx, (25a)

qbj,1 := Pb(y = 1 | x ∈ Ij) =

∫
x∈Ij

P(y = 1 | x)Pb(x | x ∈ Ij) dx. (25b)

Essentially, qaj,1 is the probability that a sample is from group a and has label 1, conditioned on the678

event that the sample falls in the interval Ij . Since679

Ptest(x | x ∈ Ij) =
1

2
[Pa(x | x ∈ Ij) + Pb(x | x ∈ Ij)] ,

therefore680

|qj,1 − qaj,1| =
∣∣∣∣∣
∫
x∈Ij

P(y = 1 | x)Ptest(x | x ∈ Ij) dx−
∫
x∈Ij

P(y = 1 | x)Pa(x | x ∈ Ij) dx

∣∣∣∣∣
≤ 1

K
. (26)
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This follows since P(y | x) is 1-Lipschitz and therefore can fluctuate by at most 1/K in the interval681

Ij . Of course the same bound also holds for |qj,1 − qbj,1|.682

With this notation in place let us present a bound on the expected value of Rj(ASUSB). By definition683

Rj(ASUSB) = qj,−ASj −min{qj,1, qj,−1}.

First, note that qj,1 := Ptest(y = 1 | x ∈ Ij) = 1 − qj,−1. Suppose that qj,1 < 1/2 and therefore684

qj,−1 > 1/2 (the same bound shall hold in the other case). In this case, risk is incurred only when685

ASj = 1. That is,686

ES∼Pnmaj
maj ×P

nmin
min

[
Rj(ASUSB)

]
= |qj,−1 − qj,1|PS [ASj = 1]

= |1− 2qj,1|PS [ASj = 1]. (27)

Now by the definition of the undersampled binning estimator (see Eq. (5)), ASj = 1 only when there687

are more samples in the interval Ij with label 1 than −1. However, we can bound the probability of688

this happening since qj,1 is smaller than qj,−1.689

Let nj be the number of samples in the undersampled sample set SUS in the interval Ij . Let n1,j be690

the number of these samples with label 1, and n−1,j = nj − n1,j be the number of samples with691

label −1. Further, let na,j be the number of samples in from group a such that they fall in the interval692

Ij , and define mb,j analogously.693

The probability of incurring risk is given by694

P[Aj = 1] =

2nmin∑
s=1

P[Aj = 1 | nj = s]P[nj = s], (28)

where the sum is up to 2nmin since the size of the undersample dataset |SUS| is equal to 2nmin.695

Conditioned on the event that nj = s the probability of incurring risk is696

P [Aj = 1 | nj = s] = P [m1,j > n−1,j | nj = s] = P [n1,j > nj/2 | nj = s]

= P [n1,j > s/2 | nj = s] . (29)

Now, note that nj = na,j + nb,j . Thus continuing, we have that697

P [n1,j > s/2 | nj = s] =
∑
s′≤s

P [n1,j > s/2 | nj = s, nb,j = s′]P[nb,j = s′]

=
∑
s′≤s

P [n1,j > s/2 | na,j = s− s′, nb,j = s′]P[nb,j = s′].

In light of this previous equation, we want to control the probability that the number of samples with698

label 1 in the interval Ij conditioned on the event that the number of samples from group a in this699

interval is s− s′ and the number of samples from group b in this interval is s′. Recall that qaj,1 and700

qbj,1 the probabilities of the label of the sample being 1 conditioned the event that sample is in the701

interval Ij when it is group a and b respectively. So we define the random variables:702

za[s− s′] ∼ Bin(s− s′, qaj,1), zb[s
′] ∼ Bin(s′, qbj,1), z[s] ∼ Bin(s,max

{
qaj,1, q

b
j,1

}
).
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Then,703

P [n1,j > s/2 | nj = s]

=
∑
s′≤s

P [n1,j > s/2 | nj,a = s− s′, nj,b = s′]P[nj,b = s′]

=
∑
s′≤s

P [za[s− s′] + zb[s
′]) > s/2 | na,j = s− s′, nb,j = s′]P[nb,j = s′]

≤
∑
s′≤s

P [z[s] > s/2 | na,j = s− s′, nb,j = s′]P[nb,j = s′]

=
∑
s′≤s

P [z[s] > s/2]P[nb,j = s′]

= P [z[s] > s/2]

(i)

≤ exp
(
−s

2
(1− 2 max

{
qaj,1, q

b
j,1

}
)2
)
, (30)

where (i) follows by invoking Hoeffding’s inequality[22, Proposition 2.5]. Combining this with704

Eqs. (28) and (29) we get that705

P[Aj = 1] ≤
2nmin∑
s=1

exp
(
−s

2
(1− 2 max

{
qaj,1, q

b
j,1

}
)2
)
P[nj = s].

Now nj , which is the number of samples that lands in the interval Ij is equal to na,j +nb,j . Now each706

of na,j and nb,j (the number of samples in this interval from each of the groups) are random variables707

with distributions Bin(nmin,Pa(Ij)) and Bin(nmin,Pb(Ij)), where Pa(Ij) =
∫
x∈Ij Pa(x) dx and708

Pb(Ij) =
∫
x∈Ij Pa(x) dx. Therefore, nj is distributed as a sum of two binomial distribution and is709

therefore Poisson binomially distributed [26]. Using the formula for the moment generating function710

(MGF) of a Poisson binomially distributed random variable we infer that,711

P[Aj = 1] ≤
(

1− Pa(Ij) + Pa(Ij) exp

(
−

(1− 2 max
{
qaj,1, q

b
j,1

}
)2

2

))nmin

×(
1− Pb(Ij) + Pb(Ij) exp

(
−

(1− 2 max
{
qaj,1, q

b
j,1

}
)2

2

))nmin

.

Plugging this into Eq. (28) we get that,712

ES∼Pnmaj
maj ×P

nmin
min

[
Rj(ASUSB)

]
≤ |1− 2qj,1|

[
1− Pa(Ij) + Pa(Ij) exp

(
−

(1− 2 max
{
qaj,1, q

b
j,1

}
)2

2

)]nmin

×[
1− Pb(Ij) + Pb(Ij) exp

(
−

(1− 2 max
{
qaj,1, q

b
j,1

}
)2

2

)]nmin

= |1− 2qj,1|
[

1− Pa(Ij)

(
1− exp

(
−

(1− 2 max
{
qaj,1, q

b
j,1

}
)2

2

))]nmin

×[
1− Pb(Ij)

(
1− exp

(
−

(1− 2 max
{
qaj,1, q

b
j,1

}
)2

2

))]nmin

.

Since |1− 2 max
{
qaj,1, q

b
j,1

}
| ≤ 1,713

1− exp

(
−

(1− 2 max
{
qaj,1, q

b
j,1

}
)2

2

)
≥

(1− 2 max
{
qaj,1, q

b
j,1

}
)2

4
,
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and therefore714

ES∼Pnmaj
maj ×P

nmin
min

[
Rj(ASUSB)

]
≤ |1− 2qj,1|

[
1− Pa(Ij)

(1− 2 max
{
qaj,1, q

b
j,1

}
)2

2

]nmin

×[
1− Pb(Ij)

(1− 2 max
{
qaj,1, q

b
j,1

}
)2

2

]nmin

(i)

≤ |1− 2qj,1|
[
1− Pa(Ij)

(1− 2qj,1 − 2γ)2

2

]nmin

×[
1− Pb(Ij)

(1− 2qj,1 − 2γ)2

2

]nmin

(ii)

≤ |1− 2qj,1| exp

(
−nmin(Pa(Ij) + Pb(Ij))

(1− 2qj,1 − 2γ)2

2

)
,

where (i) follows since |max{qaj,1, qbj,1}−qj,1| ≤ 1/K by Eq. (26) and γ is such that |γ| ≤ 1/K, and715

(ii) follows since (1 + z)b ≤ exp(bz). Now the RHS above is maximized when (1− 2qj,1 − 2γ)2 =716
c

nmin(Pa(Ij)+Pb(Ij)) , for some constant c. Plugging this into the equation above we get that717

ES∼Pnmaj
maj ×P

nmin
min

[
Rj(ASUSB)

]
≤ c′√

nmin(Pa(Ij) + Pb(Ij))
+ c′|γ|

≤ c′√
nmin(Pa(Ij) + Pb(Ij))

+
c′

K
.

Finally, noting that Ptest(Ij) = (Pa(Ij) + Pb(Ij))/2 completes the proof.718

By combining the previous two lemmas we can now prove our upper bound on the risk of the719

undersampled binning estimator. We begin by restating it.720

Theorem 5.2. Consider the group shift setting described in Section 3.2.2. For any overlap τ ∈ [0, 1]721

and for any (Pmaj,Pmin) ∈ PGS(τ) the expected excess risk of the Undersampling Binning Estimator722

(Eq. (5)) with number of bins with K = dnmin
1/3e is723

Excess Risk[AUSB; (Pmaj,Pmin)] = ES∼Pnmaj
maj ×P

nmin
min

[
R(ASUSB;Ptest))−R(f?;Ptest)

]
≤ C

nmin
1/3

.

Proof. First by Lemma C.3 we know that724

Excess Risk[AUSB] ≤
K−1∑
j=0

ES∼Pnmaj
maj ×P

nmin
min

[
Rj(ASUSB)

]
· Ptest(Ij) +

2

K
.

Next by using the bound on ES∼Pnmaj
maj ×P

nmin
min

[
Rj(ASUSB)

]
established in Lemma C.4 we get that,725

Excess Risk(AUSB) ≤ c
K−1∑
j=0

1√
nminPtest(Ij)

Ptest(Ij) +
c

K

=
c√
nmin

K−1∑
j=0

√
Ptest(Ij) +

c

K

(i)

≤ c√
nmin

√
K

K−1∑
j=0

Ptest(Ij) +
c

K

= c

√
K

nmin
+

c

K
.

where (i) follows since for any vector z ∈ RK , ‖z‖1 ≤
√
K‖z‖2. Maximizing over K yields the726

choice K = dnmin
1/3e, completing the proof.727

728
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D Experimental Details for Figure 2729

We construct our label shift dataset from the original CIFAR10 dataset. We create a binary classi-730

fication task using the “cat” and “dog” classes. We use the official test examples as the balanced731

test set with 1000 cats and 1000 dogs. To form the initial train and validation sets, we use 2500 cat732

examples (half of the training set) and 500 dog examples, corresponding to a 5:1 label imbalance. We733

use 80% of those examples for training and the rest for validation. We are left with 2500 additional734

cat examples and 4500 dog examples from the original train set which we add into our training set to735

generate Figure 2.736

We use the same convolutional neural network architecture as [3, 24] with random initializations for737

this dataset. We train this model using SGD for 400 epochs with batchsize 64, a constant learning738

rate 0.001 and momentum 0.9.739

For the VS loss [13] we set τ = 3 and γ = 0.3, the best hyperparameters identified by Wang et al.740

[24] on this dataset for this neural network architecture. The importance weights used upweight the741

minority class samples in the training loss and validation loss is calculated to be #Cat Train Examples
#Dog Train Examples .742

We note that all of the experiments were performed on an internal cluster on 8 GPUs.743
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