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ABSTRACT

Masked diffusion models (MDMs) have emerged as a popular research topic
for generative modeling of discrete data, thanks to their superior performance
over other discrete diffusion models, and are rivaling the auto-regressive models
(ARMs) for language modeling tasks. The recent effort in simplifying the masked
diffusion framework further leads to alignment with continuous-space diffusion
models and more principled training and sampling recipes. In this paper, how-
ever, we reveal that both training and sampling of MDMs are theoretically free
from the time variable, arguably the key signature of diffusion models, and are
instead equivalent to masked models. The connection on the sampling aspect is
drawn by our proposed first-hitting sampler (FHS). Specifically, we show that the
FHS is theoretically equivalent to MDMs’ original generation process while sig-
nificantly alleviating the time-consuming categorical sampling and achieving a
20× speedup. In addition, our investigation raises doubts about whether MDMs
can truly beat ARMs in text generation. We identify, for the first time, an underly-
ing numerical issue, even with the commonly used 32-bit floating-point precision,
which results in inaccurate categorical sampling. We show that it lowers the ef-
fective temperature both theoretically and empirically, and the resulting decrease
in token diversity makes previous evaluations, which assess the generation quality
solely through the incomplete generative perplexity metric, somewhat unfair.

1 INTRODUCTION

Discrete

Diffusion

MDM

Masked 

Model
ARM

Time-Agnostic
Token-by-Token

We prove: MDM = Masked Model

Figure 1: Trilemma of generative
modeling for discrete data.

There are three primary paradigms of generative models.
Diffusion models (Ho et al., 2020; Song et al., 2021c) have
been the prevalent way for generative modeling of continu-
ous data with both theoretical and empirical success. They
are SOTA in image, speech, video synthesis (Dhariwal &
Nichol, 2021; Karras et al., 2022; Chen et al., 2021; Ho
et al., 2022) and serve as the cornerstone of large-scale
text-to-image (Rombach et al., 2022; Balaji et al., 2022;
Esser et al., 2024) and text-to-video (Gupta et al., 2023; Bao
et al., 2024) generation systems. Auto-regressive models
(ARMs) have dominated the generation of discrete data es-
pecially languages (Radford et al., 2018; 2019; Brown et al.,
2020; Achiam et al., 2023; Touvron et al., 2023), due to the
scalability and generalizability of the straightforward next-
token-prediction mechanism based on transformer architec-
tures (Vaswani et al., 2017). Masked models, such as BERT (Devlin et al., 2019) for masked lan-
guage modeling and MaskGIT (Chang et al., 2022) for masked image generation, are trained to
reconstruct randomly masked tokens and sampled by order-agnostic decoding. They are an alterna-
tive approach to model discrete data while suffering from insufficient theoretical foundations.

Diffusion models have been extended to discrete data spaces with principled training and sam-
pling (Austin et al., 2021; Campbell et al., 2022; Meng et al., 2022; Lou et al., 2023). Compared to
ARMs, they predict all the tokens simultaneously and offer a favorable trade-off between generation
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quality and sampling efficiency. Recently, masked diffusion models (MDMs), the leading variant
among discrete diffusion formulations, are emerging as a promising contender of ARMs (Lou et al.,
2023). Recent works (Shi et al., 2024; Sahoo et al., 2024) have simplified MDMs to align with the
design space of the diffusion models via continuous-time forward processes, training objectives, and
sampling procedures, resulting in a unified view and empirical improvements.

However, we argue that the current understanding of MDMs is still quite limited. Positioned at the
intersection of diffusion models and masked models, MDMs inherit both the theoretical principles
from diffusion models and the simple mechanism from masked models. It remains to be explored
how the diffusion theory supports masked models and whether well-established training and sam-
pling recipes of diffusion models can be adapted to enhance MDMs.

In this paper, we dive deeper into the theoretical essence of MDMs. We highlight our key find-
ings: (1) MDMs, in both training and sampling, are essentially time-agnostic masked models (or
order-agnostic auto-regressive models), enjoying 20× faster sampling and diverging from the de-
sign choices of diffusion models. This also justifies the theoretical foundation of masked models
as they are equivalent and simpler formulations of the more principled MDMs. (2) We challenge
previous claims that MDMs can surpass ARMs in text generation by identifying a hidden but critical
numerical issue that reduces the token diversity and renders previous evaluations unfair. After fixing
it, we find MDMs significantly lagging behind ARMs in generative perplexity.

For training, we prove that the continuous-time evidence lower bound (ELBO) objective of MDMs
can be expressed by the number of masked tokens with an implicitly defined mixture-of-experts
model. It provides a discrete ELBO for masked models and coincides with the ELBO previously
derived for order-agnostic auto-regressive models (Uria et al., 2014; Hoogeboom et al., 2021a).

For sampling, by analytically sampling the time when any mask token is first unmasked, we pro-
pose a theoretically equivalent first-hitting sampler (FHS) to avoid most of the time-consuming
categorical sampling and perform decoding token by token with no approximation errors. It is fur-
ther extended to enable parallel decoding and incorporate high-order approximations, achieving a
20× speedup compared to previous MDM sampling procedures. When the parameterized model is
independent of the time variable, we recover the sampling of masked models.

For evaluation, we discover that while MDMs exhibit extremely low generative perplexity with
numerous sampling steps, the generation quality is compromised by reduced token diversity. By ex-
amining the numerical precision during sampling, we identify a previously unrecognized issue with
Gumbel-based categorical sampling. Specifically, reducing the floating-point precision from 64-bit
to 32-bit significantly truncates the Gumbel variables, which theoretically lowers the temperature
and empirically improves the generative perplexity of pretrained models (Lou et al., 2023; Sahoo
et al., 2024) from 126.11 to 31.24, but with a decreased sentence entropy from 5.66 to 5.17.

2 BACKGROUND: MASKED DIFFUSION MODELS (MDMS)

Let X = {0, 1, . . . ,m − 1} be the discrete data space, with an extra mask token m added to X .
Denote ∆m = {π ∈ Rm+1|

∑m
i=0 πi = 1,π ≥ 0} as the standard m-simplex. For any data token

or mask token x ∈ X , denote ex ∈ Rm+1 as the corresponding one-hot vector. Continuous-time
discrete-space masked diffusion models (MDMs) (Shi et al., 2024; Sahoo et al., 2024) can be defined
akin to diffusion models, with a continuous-time forward noising process

qt|0(xt|x0) = Cat(αtex0
+ (1− αt)em) (1)

where αt is the predefined noise schedule function satisfying α0 ≈ 1, α1 ≈ 0, and Cat(π) denotes
the categorical distribution over the class probabilities π ∈ ∆m. The forward process has a time
reversal for s < t given x0:

qs|t,0(xs|xt, x0) =

{
Cat(ext

), xt ̸= m

Cat
(

(1−αs)em+(αs−αt)ex0

1−αt

)
, xt = m

(2)

Following DDPM (Ho et al., 2020), the parameterized model is defined by replacing ex0
in the

reversal with a data prediction model µθ : X × R 7→ ∆m:

pθ(xs|xt) := q(xs|xt, ex0 ← µθ(xt, t)) (3)
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and µθ is further parameterized by fθ : X × R 7→ Rm as

µθ(xt, t) =

{
[softmax(fθ(xt, t)), 0], xt = m

ext , xt ̸= m
(4)

so that it satisfies (1) the predicted vector contains valid class probabilities sum to 1; (2) the predicted
x0 has zero probability of being the mask token; (3) if a token is already unmasked, it no longer
changes. When α0 → 1, α1 → 0 and the number of timesteps tends to infinity, it is proven that the
parameterized model pθ has an evidence lower bound (ELBO) log pθ(x0) ≥ −L∞, where

L∞ =

∫ 1

0

α′t
1− αt

Eqt|0(xt|x0)

[
δxt,me⊤x0

logµθ(xt, t)
]
dt (5)

is a time-weighted cross-entropy loss, α′t =
dαt

dt , and δxt,m is a indicator function. We refer to L∞,
the training objective, as the negative ELBO (NELBO).

Multi-Dimensional Case For a token sequence x ∈ XL = {0, 1, . . . ,m − 1,m}L of length
L, MDMs choose a factorized forward process qt|0(xt|x0) =

∏L
l=1 qt|0(x

(l)
t |x

(l)
0 ) over different

dimensions, where x(l) denotes the l-th token of x. As a result, the reversal qs|t,0(xs|xt,x0) =∏L
l=1 qs|t,0(x

(l)
s |x(l)

t , x
(l)
0 ) and the parameterized model pθ(xs|xt) =

∏L
l=1 q(x

(l)
s |x(l)

t , e
x
(l)
0
←

µ
(l)
θ (xt, t)) also factorize. Here the network µθ : XL × R 7→ (∆m)L predicts the probabilities at

all positions at a time, and we use µ
(l)
θ to denote the l-th column of µθ. The ELBO loss in Eqn. (5)

under multi-dimension can be written as

L(L)
∞ =

∫ 1

0

α′t
1− αt

Eqt|0(xt|x0)

[∑
l:x

(l)
t =m

e⊤
x
(l)
0

logµ
(l)
θ (xt, t)

]
dt (6)

Context of Discrete Diffusion Models MDMs described above are a simplified version of the
best-performing masked (or absorbing) case in discrete-space diffusion models. Discrete diffu-
sion models, originated from D3PM (Austin et al., 2021), rely on discrete-time or continuous-time
Markov chains to model transitions in discrete space. Notably, concrete score (Meng et al., 2022) in
discrete diffusion acts as an analog of the score function in continuous diffusion, and a recent work
SEDD (Lou et al., 2023) proposes score entropy for robust and scalable learning of the concrete
score. The model definition (Markov chain, score parameterization), training objective (diffusion-
weighted denoising score entropy) and sampling procedure (Tweedie τ -leaping) of SEDD Absorb
can be proven equivalent to the simplified expressions (Eqn. (1) (3) (4) (5)) in MDMs. Interested
readers can refer to Appendix D for further details.

3 REVISITING THE TRAINING OF MDMS

MDMs are defined and trained by the continuous-time forward process (Eqn. (1)), time-dependent
network parameterization (Eqn. (4)) and continuous-time ELBO (Eqn. (5)). However, different from
continuous-time diffusion models (Song et al., 2021c), the evolution of xt is discrete. In the forward
process, any token remains the same until it is masked at some time, and then the masked token no
longer changes. The evolution trajectories of (xt, t) are like pairs of “phenotype" and “genotype",
where the continuous changes in time t may not be reflected on the observable traits of xt.

In this section, we aim to disentangle the internal time variable t and the external traits of the masked
sequence xt at time t in the training of MDMs.

3.1 REFORMULATING THE ELBO WITH THE NUMBER OF MASKED TOKENS

Previous works (Shi et al., 2024; Sahoo et al., 2024) show the invariance of the ELBO to the noise
schedule αt by performing the time change-of-variable γ = log(1−αt) or λ = log αt

1−αt
following

VDM (Kingma et al., 2021). However, this does not get to the essence as they still rely on an internal
continuous time. In the following proposition, we show that the sequence NELBO of MDMs can be
expressed as a partition by the number of masked tokens instead of the continuous time.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Proposition 3.1 (ELBO by the Number of Masked Tokens). For x0 with sequence length L, denote
xn as a sequence with n masked tokens, and q̃(xn|x0) as the discrete forward process which ran-
domly and uniformly masks n tokens of x0. Suppose the noise schedule αt satisfies α0 = 1, α1 = 0.
The sequence NELBO in Eqn. (6) can be reformulated as

L(L)
∞ = −

L∑
n=1

Eq̃n|0(xn|x0)

[
1

n

∑
l:x

(l)
n =m

e⊤
x
(l)
0

log µ̄
(l)
θ (xn)

]
(7)

where
log µ̄θ(xn) = Eαn∼B(L−n+1,n)

[
logµθ(xn, α

−1(αn))
]
, (8)

α−1 is the inverse function of αt satisfying α−1(αt) = t, and B(a, b) denotes the Beta distribution
with shape parameters a, b > 0.

This expression offers two aspects of theoretical insights:
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Figure 2: Probability density
function (PDF) ofB(L−n+1, n)
with L = 1024.

Mixture of Experts From Eqn. (8), the time-dependent net-
work µθ(x, t) implicitly parameterizes a time-independent network
µ̄θ(x) by aggregating the logarithm at the same x but different t,
which can be seen as mixture of experts. The time t is sampled un-
evenly so that αt follows a Beta distribution B(L− n+ 1, n). This
distribution has the mode (peak) L−n

L−1 and variance n(L−n+1)
(L+1)2(L+2) ≤

1
4(L+2) . With a large sequence length L, the variance is small
and the distribution is concentrated around the mode, as illustrated
in Figure 2. Moreover, under the best-performing linear schedule
αt = 1 − t in MDMs (Lou et al., 2023; Shi et al., 2024; Sahoo et al., 2024), we have t = 1 − αt

and the mode of t is n−1
L−1 , close to the masked ratio n

L . Therefore, the time variable t can be seen
as a continuous relaxation and smoothing of the masked ratio, and we can directly use the discretely
distributed masked ratio as the network condition instead of the continuous time (Appendix I.1).

Discrete ELBO From Eqn. (7), the sequence NELBO can be expressed discretely with the time-
agnostic network µ̄θ(x). Therefore, Eqn. (7) can serve as a NELBO of masked models in a straight-
forward approach: uniformly choose the number of masked tokens n from {1, . . . , L}, uniformly
mask n random tokens in x0 to obtain xn, and compute the average cross-entropy loss of µ̄θ(x) on
these n positions. The weighting 1

n in this NELBO resembles the likelihood weighting in diffusion
models (Song et al., 2021b; Kingma et al., 2021; Lu et al., 2022a; Zheng et al., 2023b), facilitating
maximum likelihood training of masked models. Note that early works on order-agnostic auto-
regressive models (Uria et al., 2014; Hoogeboom et al., 2021a) already reveal this weighting from
a different perspective1. While in the context of masked models, there are few discussions on the
ELBO. Discussions on related work are placed in Appendix B.

3.2 TIME-INDEPENDENT NETWORK PARAMETERIZATION

When the original network µθ is parameterized without the time input, we have µ̄θ = µθ in Eqn (7).
In this case, the training of MDMs is completely free from the time variable and behaves like masked
models. The rationality of time-independent network parameterization has been discussed in recent
works (Ou et al., 2024; Sahoo et al., 2024). Here we restate this conclusion with our simplified
notations from the perspective of the optimal model.

Proposition 3.2 (Optimal Masked Diffusion Model). Given unlimited model capacity, the optimal
network θ∗ that minimizes the NELBO in Eqn. (6) satisfies

µ
(l)
θ∗ (x, t) = Eq̃0|N(x)(x0|x)

[
e
x
(l)
0

]
(9)

where N(x) is a deterministic function that counts the number of masked tokens in x, and
q̃0|n(x0|xn) is the posterior distribution of the discrete forward process q̃n|0(xn|x0).

1The relation between ELBOs of order-agnostic ARMs and MDMs was also mentioned in a recent work (Ou
et al., 2024), while they only consider an originally time-agnostic network instead of mixture-of-experts.
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From the above expression, the optimal MDM is irrelevant to the time variable, justifying the fea-
sibility of removing the time input. Besides, it can be extended to a general weighted cross-entropy

loss L(L)
w = −

∑L
n=1 wnEq̃n|0(xn|x0)

[∑
l:x

(l)
n =m

e⊤
x
(l)
0

logµ
(l)
θ (xn)

]
of masked models. L(L)

w with

arbitrary positive weights w > 0 yields the same optimal solution as Eqn. (9), thus acting as a sur-
rogate objective of the NELBO. This theoretically supports a wide range of objectives for training
masked models, such as the loss in MaskGIT (Chang et al., 2022).

3.3 PRACTICAL CONSIDERATIONS

While there are theoretically equivalent variants for training MDMs (continuous-time/discrete
ELBO, time-conditioned/time-independent network), these choices may have practical implications
due to differences in network inputs and loss variances. We present some training comparisons and
our attempts to improve training (e.g., variance reduction, flow matching) in Appendix I.1. Overall,
all options yield similar performance, and the low-discrepancy sampler (Kingma et al., 2021), when
applied to time or the number of masked tokens, can significantly reduce the loss variance.

Note that while several works (Lou et al., 2023; Shi et al., 2024) suggest that MDMs are compet-
itive with ARMs in language modeling (beating GPT-2 (Radford et al., 2019) when measured by
test/zero-shot perplexity), a more fair comparison (retraining ARMs with the same configurations,
Appendix I.1) (Sahoo et al., 2024) indicates that MDMs are only advantageous in language under-
standing tasks (surpassing ARMs and BERT on the GLUE metric (Wang et al., 2018)).

4 REVISITING THE SAMPLING OF MDMS

In the previous section, we demonstrate how the training of MDMs, from both theoretical and em-
pirical perspectives, can be disentangled with the continuous time variable and behave like masked
models. In this section, we turn our attention to the sampling of MDMs, which is also performed in
continuous time and seems distinct from masked models. We aim to address its current inefficiency
problem as well as establish essential insights into its connection with masked models.

4.1 INEFFICIENCY OF CURRENT SAMPLING

MDMs are sampled in an ancestral way following the parameterized reverse-time process in
Eqn. (3). Specifically, the sampling step xt → xs from time t to s < t can be expressed as

x(l)
s

= x
(l)
t , x

(l)
t ̸= m

∼ Cat
(

(1−αs)em+(αs−αt)µ
(l)
θ (xt,t)

1−αt

)
, x

(l)
t = m

, for every l (10)

Given the number of sampling steps N , the sampling process involves first discretizing the timesteps
as 0 = t0 < t1 < · · · < tN = 1, and then performing reverse steps tN → tN−1 → · · · → t0
according to Eqn. (10). Notable characteristics of MDM’s sampling include: (1) Any mask token
can only be unmasked once with no further changes. (2) Each sampling step requires a forward pass
through the network µθ and conducting at most L times of |X |-dimensional categorical sampling,
where L is the sequence length and |X | is the vocabulary size. (3) The number of sampling steps
N can be significantly larger than L, and a single sampling step may result in no changes to any
token in the sequence. (4) As MDMs are trained with the continuous-time ELBO which assumes
an infinite number of reverse steps, sampling with finite N theoretically introduces discretization
errors. Sampling with a larger N more faithfully reflects the true generation results of MDMs.

Recent works propose a simple caching strategy (Ou et al., 2024; Sahoo et al., 2024) to speedup the
sampling of MDMs: when the network µθ is parameterized without time input2, and the sequence
is not changed in a sampling step t→ s (i.e., xs = xt), we can reuse the network output at the last
step as µθ(xs) = µθ(xt). As the sequence changes at most L times during sampling, the number of
function evaluations (NFE) can be reduced to no more than L. However, sampling with the caching
strategy still suffers from two major inefficiency problems:

2In our practice, the time-dependent network also exhibits no performance degradation with the caching
strategy, so this assumption is unnecessary.

5
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Figure 4: Illustration of the first-hitting sampler in comparison to the original sampling procedure.

Categorical Sampling is Time-Consuming In diffusion models, NFE is an efficient indicator of
the sampling speed, as the computation overhead beyond the network forward passes is negligi-
ble. However, in MDMs, the Gumbel-based3 categorical sampling, which requires sampling a total
number ofO(NL|X |) uniform variables and performing logarithmic operations on them, can be ex-
pensive compared to network evaluations. As illustrated in Figure 3a, when the number of sampling
steps N ≫ L, the sampling time scales with N instead of the NFE. Categorical sampling steps that
do not result in token changes are wasted, as they contribute no information gain.
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Figure 3: Illustration of sampling ineffciency using pre-
trained models of MDLM (Sahoo et al., 2024) (L = 1024).

Caching Strategy Degrades in
Batched Sampling When using
the caching strategy in batched
sampling, the network output can
only be reused directly when all
the sequences in the batch re-
main unchanged after a sampling
step4. Suppose the batch size is
B, and the default linear noise
schedule αt = 1 − t as well as
uniform timesteps tk = k

N is
used. The expected NFE under the
caching strategy can be derived as
N(1 − (1 − 1

N )BL) (proof in Appendix E) , similar to the B = 1 case in Ou et al. (2024). As
limN→∞N(1 − (1 − 1

N )BL) = BL, the NFE is no longer upper bounded by the sequence length
but scales with the batch size (Figure 3b).

4.2 FIRST-HITTING SAMPLER
Algorithm 1 First-Hitting Sampling of MDMs
Require: the sequence length L, the vocabulary X = {0, . . . ,m −
1,m}where m is the mask token, the noise schedule αt and its inverse
function α−1, the pretrained masked diffusion model µθ

1: xL ← [mm . . . m]
2: τL ← 1
3: for n← L to 1 do
4: Sample un ∼ U(0, 1)
5: τn−1 ← α−1(1− u1/n

n (1− ατn ))

6: µn ← µθ(xn, τn−1)

7: Randomly and uniformly select an index l from {i : x(i)
n =

m} (i.e., masked positions in xn)
8: xn−1 ← xn, x

(l)
n−1 ← x ∼ Cat(µ(l)

n )

9: end for
Output: x0

The current sampling methods of MDMs, in-
cluding the caching strategy, are neither effi-
cient nor insightful into the essence of MDMs.
To address this, we reexamine the sampling
step in Eqn. (10).

When the number of sampling steps N → ∞
and the maximum step size max1≤i≤N |ti −
ti−1| → 0, Eqn. (10) tends to an infinitesimal
jump. In this case, the reverse sampling pro-
cess becomes a continuous-time Markov chain
(or Markov process), where each mask token is unmasked at some moment according to the network
prediction. Our key insight involves three folds: (1) Whether a mask token will transit or not during
a time interval [s, t] is independent of the network. The network output only determines which token
is the transition target given the condition that the transition happens. (2) The transition probability
αs−αt

1−αt
is equal for masked tokens at different positions. Therefore, each mask token has the same

probability of being first unmasked. (3) The first-hitting time, which denotes the first moment any
of the remaining masked tokens is unmasked, can be analytically sampled:
Proposition 4.1 (Analytic Sampling of First-Hitting Time). Denote τL = 1 as the initial time.
Suppose there are n masked tokens, and the last time a token is unmasked happens at τn, then the

3We will introduce Gumbel-based categorical sampling in the next section.
4We can reuse only the unchanged part of a batch, but this potentially reduce parallel efficiency.
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Figure 5: Variants of the first-hitting sampler. xl denotes the sequence with l remaining mask tokens,
and µl = µθ(xl, τl−1) denotes the network prediction at the step l.

next time a token is unmasked can be analytically sampled by

τn−1 = α−1(1− u1/n
n (1− ατn)), un ∼ U(0, 1) (11)

where U(0, 1) is the uniform distribution on [0, 1].

As outlined in Algorithm 1, by recursively sampling the next time when any of the remaining mask
tokens is first unmasked, then uniformly choosing a mask token and unmasking it according to
the network output, we obtain a token-by-token sampling procedure of MDMs. Denote xn as the
sequence with n remaining mask tokens. Since the transition xn → xn−1 can be considered to
happen in the infinitesimal step τn−1 + dt → τn−1, using the network output µθ(xn, τn−1) at
time τn−1 incurs no approximation errors. Therefore, the first-hitting sampler (FHS) is theoretically
equivalent as simulating the continuous-time reverse Markov sampling process. We illustrate the
comparison between the FHS and the original sampling procedure in Figure 4.

The FHS demonstrates appealing properties:

Tackling the Sampling Inefficiency The FHS can tackle the two inefficiency problems described
in Section 4.1. Firstly, as the categorical sampling is only conducted for determining the transition
target of the single chosen mask token at each step, the total computation cost is reduced toO(L|X |).
Secondly, the first-hitting time τn can be sampled independently and asynchronously across different
samples in a batch, avoiding performance degradation in batched sampling.

Connection to the Sampling of Masked Models When the network parameterization is inde-
pendent of the time, the FHS in Algorithm 1 can be completely free from the time and become a
token-by-token decoding process akin to masked models. This connection serves as supporting ev-
idence for the typical sampling procedure of masked models, as it is theoretically equivalent to the
more principled reverse Markov sampling process of MDMs.

4.3 PARALLEL DECODING AND HIGH-ORDER VARIANTS

The token-by-token decoding process of MDMs can be extended to parallel decoding by unmasking
multiple tokens per step, as the network µθ predicts tokens at all positions. This enables speed-
quality trade-offs similar to diffusion models. As illustrated in Figure 5, parallel decoding essentially
reuses the previous network output to reduce the NFE, thus functioning as an approximation method.

To reduce the approximation error, we follow the recipes of high-order diffusion solvers (Karras
et al., 2022; Zhang & Chen, 2022; Lu et al., 2022b; Zheng et al., 2023a) to develop high-order
samplers of MDMs. We propose two variants: one based on extrapolating previous network outputs,
and the other utilizing a predictor-corrector method to refine the samples. Algorithms of parallel
decoding and high-order variants are presented in Appendix G.1.

5 ARE MDMS BETTER THAN ARMS? A CRITICAL FAULT IN
LOW-PRECISION GUMBEL-BASED CATEGORICAL SAMPLING

Before we proceed to verify the effectiveness of our proposed first-hitting sampler, we have to point
out a critical fault in MDMs’ original sampling. As suggested by previous works (Lou et al., 2023;
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There is the following definition:
The “right lane” on the lane lane lane. From the lane lane lane from lane lane to lane lane on a lane
in lane lane on a front lane.
From lane lane lane the lane lane lane on the right lane from lane front lane lane to top lane.
From the right lane from a lane lane lane with the lane on the lane lane lane. The “that lane lane” on
the rear lane.

Figure 6: Segment of generated text by SEDD Absorb (Lou et al., 2023) at 50k sampling steps.

Table 1: Maximum Gumbel under different floating-point precisions.

Data Type Structure (bits) Maximum Value (< 1) Representable Maximum GumbelSign Exponent Fraction

float32 1 8 23 1− 2−24 ≈ 0.9999999404 − log(− log(1− 2−24)) ≈ 16.6355
float64 1 11 52 1− 2−53 ≈ 0.999999999999999889 − log(− log(1− 2−53)) ≈ 36.7368

Shi et al., 2024; Sahoo et al., 2024), MDMs seem to surpass ARMs with a sufficient number of
sampling steps when measured by the generative perplexity (Gen PPL)5, as shown in Figure 7a.
However, in this section, we identify for the first time a hidden implementation issue existing in
previous codebases that makes this observation questionable.

5.1 LOW TOKEN DIVERSITY UNDER NUMEROUS SAMPLING STEPS
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(b) Entropy
Figure 7: Comparisons of different models (AR, SEDD Ab-
sorb (Lou et al., 2023), MDLM (Sahoo et al., 2024)) trained on
OpenWebText (Gokaslan et al., 2019) with the same network ar-
chitecture and configurations. We generate 64 samples using their
original codebase on a single NVIDIA RTX A6000 GPU, and vary
the sampling steps N ∈ {100, 500, 1000, 5000, 10000}.

Theoretically, the performance of
MDMs is more faithfully reflected
with an increased number of sam-
pling steps. Empirically, we also ob-
serve a reduction in generative per-
plexity. Notably, an exceptionally
low generative perplexity (< 15) is
achieved when the number of sam-
pling steps approaches 50k.

However, when we check the gen-
erated content, we discover that the
quality is compromised by low token
diversity (an extreme case is shown
in Figure 6). We further quantify this
phenomenon by measuring the sen-
tence entropy (Figure 7b). With the original sampler, the Gen PPL of MDMs surpasses ARMs
at around 2k steps, but the entropy is always lower and keeps decreasing.

5.2 IDENTIFYING THE NUMERICAL PRECISION PROBLEM

This low generation quality is unexpected, as theory suggests that the approximation error should
decrease with more sampling steps. Consequently, samples generated over numerous steps should
reflect the true performance of MDMs. We therefore consider this a hidden implementation issue
and investigate further to identify the root cause.

Our key observation is that, when we alter the floating-point precision during sampling from 32-
bit to 64-bit, the entropy returns to a normal level similar to ARMs, but with a generative per-
plexity ≈ 100. After careful ablations, we identify the root cause as the inaccuracy in previous
Gumbel-based categorical sampling. To sample from a categorical distribution with class prob-
abilities {πi}Ki=1, Gumbel-max trick6 is used by first sampling K independent uniform variables
ui ∼ U(0, 1), then transforming them into samples from the standard Gumbel distribution G(0, 1)
by gi = − log(− log ui), and finally obtaining the categorical sample n = argmaxi(log πi + gi).
The operation g = − log(− log u) theoretically maps u ∈ [0, 1] to g ∈ (−∞,+∞). But due to
the limited representation ability of floating-point numbers in implementation, u is constrained to

5The evaluation metrics used in this paper are introduced in Appendix H.1.
6A brief introduction to Gumbel tricks is provided in Appendix F
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def sample_categorical_Gumbel(probs):

u = torch.rand(
*probs.shape,
device=probs.device,
dtype=...
...

return (probs / (-u.log())).argmax(dim=-1)

torch.rand(...dtype=torch.float64)

torch.rand(...dtype=torch.float32)

torch.rand(...dtype=torch.float64) * 0.9999999404

32-bit

64-bit

64-bit + truncation

Figure 8: Code for different versions of Gumbel-based categorical sampling. The operation
argmaxi(log πi− log(− log ui)) is simplified to argmaxi(πi/(− log ui)) to save computation cost.

[0, 1 − ϵ] and g is constrained to (−∞,M ], as shown in Table 1. Therefore, the sample g instead
follows a truncated Gumbel distribution, denoted T G(0, 1,M), which refers to the Gumbel distri-
bution G(0, 1) conditioned on g ≤ M . This tricky difference theoretically makes the categorical
sampling inaccurate, i.e., argmaxi(log πi + gi) no longer follows the class probabilities {πi}Ki=1.

Table 2: Results with different
versions of categorical sampling.

Version Gen PPL Entropy

32-bit 31.24 5.17
64-bit 126.11 5.66
64-bit + trunc 28.64 5.12

To verify that truncation is the fundamental issue, we conduct abla-
tions by only modifying the categorical sampling code. As shown
in Figure 8, we manually scale 64-bit uniform samples to match the
truncation in the 32-bit case. We then randomly generate 8 sam-
ples with 2048 steps and compare the average generative perplexity
and entropy in Table 2. The similar results between the 32-bit and
truncated 64-bit cases confirm the impact of truncation.
Remark 5.1. Note that auto-regressive LLMs like Llama (Touvron et al., 2023) and Mistral (Jiang
et al., 2023) use torch.multinomial for categorical sampling, which is also implemented with
the Gumbel-max trick in the low-level C++ code of PyTorch. In contrast, we find the token-by-token
decoding process of ARMs and MDMs (by our first-hitting sampler) does not suffer from notable
numerical issues under 32-bit precision (illustrations and explanations in Appendix I.2.2).

5.3 CATEGORICAL SAMPLING WITH TRUNCATED GUMBEL

In the previous section, we empirically observe that truncated Gumbel-based categorical sampling
reduces token diversity. Surprisingly, such effects can be precisely depicted in closed-form.

Proposition 5.2 (Closed-Form Categorical Sampling with Truncated Gumbel). Suppose the class
probabilities are sorted as π1 ≤ · · · ≤ πK , and gi ∼ T G(0, 1,M) are truncated Gumbel samples
with maximum value M . Denote π0 = 0. For 1 ≤ n ≤ K, we have P (argmaxi(log πi + gi) =
n) = πn

∑n
i=1 β(i), where

β(i) =
e

(
K+1−i−

∑K
k=i πk
πi

)
e−M

− e

(
K+1−i−

∑K
k=i πk
πi−1

)
e−M

∑K
k=i πk

≥ 0 (12)

To the best of our knowledge, this formulation has not been revealed in previous works. Intuitively,
with truncated Gumbel, the original class probabilities πn are shifted to π′n = πn

∑n
i=1 β(i). This

has two main implications: (1) As β(i) ≥ 0 and πn are sorted, if πn1
> πn2

, then the adjusted

class probabilities satisfy
π′
n1

π′
n2

>
πn1

πn2
. This indicates that relatively larger probabilities are further

amplified, creating an effect similar to lowering the temperature. (2) In the sampling step, the
probability of unmasking is adjusted based on the network output, resulting in unequal unmasking
probabilities at different positions in a sequence. This implies that some tokens are prioritized to be
unmasked, further reducing the randomness and overall entropy.

In both aspects, the inaccurate categorical sampling deviates from theoretical correctness and re-
duces the generation diversity, leading to unfair evaluations of MDMs’ generative performance.

6 A FAIR EVALUATION OF MDMS’ GENERATION

In this section, we will fairly evaluate the generation performance of MDMs and examine the im-
pact of our proposed sampler and the temperature. Our experiments are based on the codebase of

9
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MDLM (Sahoo et al., 2024) which is inherited from SEDD (Lou et al., 2023). We fix the categor-
ical sampling to 64-bit floating-point precision so that the numerical truncation is negligible. We
directly use pretrained models (AR, SEDD Absorb, MDLM) provided by MDLM, which share the
same network architecture and were trained with the same configuration. Additional experiment
details are provided in Appendix H. We display some generated text in Appendix I.2.3 to illustrate
the token diversity under different sampling strategies.

6.1 ORIGINAL SAMPLER V.S. FIRST-HITTING SAMPLER
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Figure 9: Comparisons of different models after fixing the categorical sampling to 64-bit. We addi-
tional compare our propose first-hitting sampler with steps N ∈ {64, 128, 256, 512, 1024}.

Figure 9 compares both the generative perplexity and the entropy of different models. For the base-
lines, SEDD is sampled by their analytic sampler (Tweedie τ -leaping), and MDLM is sampled with
and without the caching strategy. For our first-hitting sampler, the parallel decoding is performed by
unmasking the same number of tokens per step. High-order variants employ the extrapolation strat-
egy when the number of sampling steps N ≤ 128, and the predictor-corrector strategy otherwise.

After the numerical problem is fixed, the entropy returns to a normal level (5.60∼5.70) for all mod-
els. Besides, our sampler can be up to 20× faster than previous sampling strategies of MDMs in
terms of the wall-clock time. Despite the notable speedup, the true generative perplexity of MDMs
is revealed to be around 100, significantly lagging behind that of counterpart ARMs (< 40).

6.2 TRADING OFF GENERATIVE PERPLEXITY AND ENTROPY VIA TEMPERATURE
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Figure 10: Trade-off of genera-
tive perplexity and entropy.

The truncation effect of 32-bit floating-point numbers creates a
trade-off between generative perplexity and entropy by varying the
number of sampling steps (Figure 7). This trade-off arises from
a tricky interplay of inaccurate categorical sampling and the ap-
proximation error at limited discretization steps. In Figure 10, we
demonstrate that this trade-off can be achieved at a lower time cost
by using the correct sampling (our 1024-step high-order sampler)
and manually adjusting the temperature within the range [0.8, 1.0].
The trade-off curve of our method is slightly better than the original
MDM sampling, while still significantly lagging behind ARMs.

7 CONCLUSION

In this work, we advance our understanding of masked diffusion models (MDMs) by revealing their
theoretical equivalence to masked models and addressing a hidden implementation issue that com-
promised the fairness of previous evaluations of MDMs’ generative performance. Our investigation
challenges earlier claims that MDMs can surpass ARMs in text generation. Despite our negative
findings, we acknowledge that our text-based experiments may inherently favor ARMs, as text nat-
urally follows a left-to-right order that ARMs are better suited to model. We believe that MDMs are
potentially well-suited for applications where the data’s order-agnostic nature is a key prior.
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x A scalar representing a discrete token

x A vector representing a sequence of discrete tokens

x(l) The l-th element of x

xt,xt The state(s) at time t

xn The sequence with n masked tokens

t The continuous time

m The mask token

n The number of masked tokens in a sequence

µ A matrix, where the l-th column represents the predicted transition prob-
abilities at the l-th position in a sequence

µ(l) The l-th column of µ

π The class probabilities

πi The i-th element of π

L The sequence length

N The number of sampling steps

B The batch size

θ The neural network parameters

τ The first-hitting time

L∞ The continuous-time NELBO loss for a single token

L(L)
∞ The continuous-time NELBO loss for a sequence of length L

Sets

R The set of real numbers

X The discrete data space (vocabulary) {0, 1, . . . ,m}where m is the added
mask token

∆m The standard m-simplex {π ∈ Rm+1|
∑m

i=0 πi = 1,π ≥ 0}

Functions

αt The pre-defined noise schedule, which is a decreasing function of time t

α′t The derivative of the noise schedule w.r.t. the time

α−1(a) The inverse function of the noise schedule satisfying αα−1(a) = a

δx,y The indicator function (1 when x = y and 0 when x ̸= y)

ex The one-hot vector of the token x

µθ(x, t) The network prediction given the sequence x and the time t as input

softmax(z) The Softmax operation to transform logits into class probabilities

logµ The element-wise natural logarithm

N(x) The function counting the number of masked tokens in the sequence x

|X | The size of the vocabulary X

Distributions
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q The continuous-time forward process

q̃ The discrete forward process

pθ The parameterized reverse process

U(a, b) The uniform distribution on the interval [a, b]

B(a, b) The Beta distribution with parameters a, b > 0

G(0, 1) The standard Gumbel distribution

T G(0, 1,M) The right-truncated standard Gumbel distribution with threshold M

Cat(π) The categorical distribution over the class probabilities π

Abbreviations

MDMs Masked Diffusion Models

ARMs Auto-Regressive Models

(N)ELBO (Negative) Evidence Lower Bound

NFE The Number of Function Evaluations

PPL Perplexity

Gen PPL Generative Perplexity

B RELATED WORK

Discrete Diffusion Models Diffusion models are originally built on discrete-time continuous-
space Markov chains with Gaussian transition kernels (Sohl-Dickstein et al., 2015; Ho et al., 2020).
They are later extended to continuous time with the theory of stochastic processes and score match-
ing (Song et al., 2021c).

Discrete diffusion models arise from similar contexts of Markov chains but with discrete data
space (Sohl-Dickstein et al., 2015; Hoogeboom et al., 2021b). D3PM (Austin et al., 2021) con-
siders discrete-time Markov chains with several types of transition matrices (uniform, absorbing,
discretized Gaussian) and derives the discrete-time variational objective (or ELBO), which is fur-
ther extended to continuous-time Markov chain (CTMC) and the corresponding ELBO(Campbell
et al., 2022). They employ the mean-parameterization to learn the reverse density q0|t.

Another line of work (Meng et al., 2022; Lou et al., 2023) argues that D3PM implicitly learns
the ratio of the marginal distributions qt(x̂)

qt(x)
, which is referred to as the concrete score—a discrete

analog to the score function in continuous diffusion. This ratio is proposed to be directly learned
via a regression objective known as concrete score matching (Meng et al., 2022), similar to score
matching in continuous diffusion. However, this approach faces challenges in practice due to the
incompatibility of the L2 loss and the fact that the ratio qt(x̂)

qt(x)
must be positive. To address this

issue, SEDD (Lou et al., 2023) introduces the score entropy objective as a theoretically more robust
surrogate, which also connects the concrete score with the continuous-time ELBO.

Though SEDD considers two types of transitions (uniform, absorb), the absorbing case (masked
diffusion) is much more performant in practice. It involves adding a [MASK] token as the absorbing
state and modeling the simple transitions between the mask state and unmasked states, akin to the
mechanism of masked models. Recent studies (Shi et al., 2024; Sahoo et al., 2024) have further
aligned the masked diffusion framework with continuous diffusion, resulting in simple and prin-
cipled training and sampling recipes. This not only provides a unified understanding of masked
diffusion models but also enables both theoretical and empirical advancements through improved
parameterization and engineering techniques. We mainly follow their framework in this work.

Masked Models and Order-Agnostic Auto-regressive Models Learning to reconstruct masked
tokens (or patches) is an efficient self-supervised manner for both representation learning and gen-
erative modeling. The masked modeling paradigm, originally introduced by BERT (Devlin et al.,

18
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2019), was not initially designed for generative purposes. BERT masks a fixed portion (15%) of
tokens at random7, which supports representation learning and language understanding rather than
generating text from scratch. Similarly, the masked autoencoder (MAE) (He et al., 2022) adopts this
approach for image representation learning but employs a higher masked ratio (75%).

Masked models can be generative when trained on sequences with a range of masked ratios. Mask-
Predict (Ghazvininejad et al., 2019) extends the number of masked tokens seen during training in
BERT and uses the following objective to train a language generation model:

Lmask = −En∼p(n)Eq̃n|0(xn|x0)

[∑
l:x

(l)
n =m

e⊤
x
(l)
0

logµ
(l)
θ (xn))

]
(13)

where p(n) is the uniform distribution over the sequence length L. MaskGIT (Chang et al., 2022)
uses a similar objective for image generation, but selects the number of masked tokens n according
to a mask scheduling function γ(t): sample t ∼ U(0, 1), and set n = ⌈γ(t)L⌉. Both Mask-Predict
and MaskGIT generate samples by parallel decoding. Compared to MDMs, these methods have less
theoretical grounding in training and sampling. Specifically, there is no discussion of the ELBO
(Eqn. (7)) where the likelihood weighting 1

n is necessary. Nevertheless, as discussed in Section 3.2,
their objectives can still lead to the same optimal solution.

The ELBO of masked models is instead revealed in the context of order-agnostic auto-regressive
models (Uria et al., 2014; Hoogeboom et al., 2021a). They factorize the model distribution as
pθ(x0) = Eσ∼U(SL)

∏L
n=1 pθ(x

σ(n)
0 |xσ(<n)

0 ) in the style of ARMs, but with an additional expecta-
tion over the index permutation σ sampled from the uniform distribution on the set of L-permutations
SL. By applying Jensen’s inequality, the ELBO can be derived as:

log pθ(x0) ≥ Eσ∼U(SL)

L∑
n=1

log pθ(x
σ(n)
0 |xσ(<n)

0 )

= Eσ∼U(SL)

L∑
n=1

1

L− n+ 1

∑
k∈σ(≥n)

log pθ(x
(k)
0 |x

σ(<n)
0 )

(14)

Here log pθ(x
(k)
0 |x

σ(<n)
0 ) (predicted data probability given known tokens) is an equivalent expres-

sion for the cross-entropy term e⊤
x
(k)
0

logµ
(k)
θ (x

σ(<n)
0 ): the cross-entropy extracts the x

(k)
0 -th ele-

ment, µ(k)
θ (x

σ(<n)
0 )

x
(k)
0

, from the network prediction µ
(k)
θ (x

σ(<n)
0 ) as pθ(x

(k)
0 |x

σ(<n)
0 ). This can

be interpreted as a masked prediction where x
σ(<n)
0 (the first n − 1 tokens) is known and x

σ(≥n)
0

(the remaining L− n+ 1 tokens) is masked and to be predicted. The cross-entropy loss is averaged
over the masked positions. As the last L−n+1 positions in a random permutation are equivalent to
L− n+1 random positions without permutation, this ELBO is equivalent to the ELBO in Eqn. (7).

Training and Sampling Improvements of Diffusion Models Since the inception of diffusion
models (Ho et al., 2020; Song et al., 2021c), numerous efforts have been undertaken to enhance
their performance, leading to well-established training and sampling recipes.

Prevalent training improvements include designing noise schedules, modifying the parameterization
and applying variance reduction techniques (Nichol & Dhariwal, 2021; Kingma et al., 2021). No-
tably, flow matching (Lipman et al., 2022) provides a theoretically equivalent variant of diffusion
models by employing the straight-line diffusion paths and velocity parameterization. These tech-
niques have been validated in likelihood training of diffusion models, achieving improved density
estimation results on image benchmarks (Zheng et al., 2023b). The state-of-the-art image diffusion
model, EDM (Karras et al., 2022), designs the parameterization according to their proposed precon-
ditioning and first principles, which is deeply connected to velocity parameterization (Zheng et al.,
2023b). When targeted at maximum likelihood training with the ELBO, instead of improving gen-
eration quality (such as FID of generated images), the design space is relatively limited. This is also
the case in discrete diffusion for text generation as the perplexity metric is based on likelihood.

Training-free accelerations of diffusion sampling mainly focus on two aspects: reducing stochastic-
ity in the sampling process and leveraging higher-order information. DDIM (Song et al., 2021a),

7More specifically, among the 15% tokens, 80% are replaced with the [MASK] token, 10% are replaced
with random tokens, and 10% remain unchanged.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

along with the extension to diffusion bridges (Zheng et al., 2024), generalizes the diffusion process
to non-Markovian ones with lower levels of stochasticity, enabling faster sampling. Later works
connect it to the probability flow ordinary differential equation (PF-ODE) formulations of diffu-
sion models, and build dedicated high-order numerical differential equation solvers (Zhang & Chen,
2022; Lu et al., 2022b; Zheng et al., 2023a; Gonzalez et al., 2024).

However, adapting these sampling recipes to discrete diffusion is not feasible, as the underlying
evolution process of discrete data cannot be described by an ODE. Designing effective samplers
for discrete diffusion requires a specialized inspection of the reverse-time Markov chain. Previous
works (Chen & Ying, 2024; Chen et al., 2023) leverage the uniformization to convert continuous-
time Markov chains into discrete ones, while still requiring time discretizations or approximations
of the transition time distribution. Our study is the first to demonstrate that the transition time in
MDMs can be sampled analytically without hyperparameter tuning or approximation errors.

C PROOF

C.1 PROOF OF PROPOSITION 3.1

Proof. Denote nt = N(xt) as the number of masked tokens at time t. According to the forward
process in Eqn. (1), each token is independently masked with a probability 1 − αt, and nt follows
the Binomial distribution B(L, 1− αt). The probability mass function is

pt(nt) =

(
L

nt

)
(1− αt)

ntαL−nt
t , nt = 0, 1, . . . , L (15)

We can rearrange the sequence NELBO in Eqn. (6) as a partition by the number of masked tokens:

L(L)
∞ =

∫ 1

0

α′t
1− αt

Eqt|0(xt|x0)

[∑
l:x

(l)
t =m

e⊤
x
(l)
0

logµ
(l)
θ (xt, t)

]
dt

=

∫ 1

0

α′t
1− αt

Ept(nt)Eq̃nt|0(xt|x0)

[∑
l:x

(l)
t =m

e⊤
x
(l)
0

logµ
(l)
θ (xt, t)

]
dt

=

L∑
n=1

∫ 1

0

α′t
1− αt

pt(n)Eq̃n|0(xn|x0)

[∑
l:x

(l)
n =m

e⊤
x
(l)
0

logµ
(l)
θ (xn, t)

]
dt

=

L∑
n=1

Eq̃n|0(xn|x0)

[∑
l:x

(l)
n =m

e⊤
x
(l)
0

[∫ 1

0

α′t
1− αt

pt(n) logµθ(xn, t)dt︸ ︷︷ ︸
time-related term

](l)]
(16)

The time-related term can be further simplified as∫ 1

0

α′t
1− αt

pt(n) logµθ(xn, t)dt

=

∫ 1

0

α′t
1− αt

(
L

n

)
(1− αt)

nαL−n
t logµθ(xn, t)dt

=

(
L

n

)∫ α1

α0

(1− αt)
n−1αL−n

t logµθ(xn, t)dαt

=−
(
L

n

)∫ 1

0

(1− αt)
n−1αL−n

t logµθ(xn, t)dαt

=−
(
L

n

)
(n− 1)!(L− n)!

L!
Eαn∼B(L−n+1,n)

[
logµθ(xn, α

−1(αn))
]

=− 1

n
Eαn∼B(L−n+1,n)

[
logµθ(xn, α

−1(αn))
]︸ ︷︷ ︸

:=log µ̄θ(xn)

(17)

which completes the proof.
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C.2 PROOF OF PROPOSITION 3.2

Proof. We consider minimizing the sequence NELBO (Eqn. (6)) under the expectation of the data
distribution q0(x0):

min
θ

Eq0(x0)L
(L)
∞ =

∫ 1

0

α′t
1− αt

Eq0(x0)Eqt|0(xt|x0)

[∑
l:x

(l)
t =m

e⊤
x
(l)
0

logµ
(l)
θ (xt, t)

]
dt

=

∫ 1

0

α′t
1− αt

Eqt(xt)Eq0|t(x0|xt)

[∑
l:x

(l)
t =m

e⊤
x
(l)
0

logµ
(l)
θ (xt, t)

]
dt

=

∫ 1

0

α′t
1− αt

Eqt(xt)

[∑
l:x

(l)
t =m

Eq0|t(x0|xt)

[
e
x
(l)
0

]⊤
logµ

(l)
θ (xt, t)

]
dt

(18)

The objective is an aggregation of cross-entropy terms over different t,xt, l. The global minimum
is achieved when each cross-entropy term is optimal:

min
θ
−Eq0|t(x0|xt)

[
e
x
(l)
0

]⊤
logµ

(l)
θ (xt, t) (19)

Note that µ
(l)
θ = softmax(f

(l)
θ ) is a set of valid class probabilities that sum to 1, and

Eq0|t(x0|xt)

[
e
x
(l)
0

]
also sum to 1. Denote them as P and P̂ respectively, we are essentially mini-

mizing −P log P̂ = DKL(P ∥ P̂ ) +H(P ) ≥ H(P ), where DKL(· ∥ ·) is the Kullback–Leibler
(KL) divergence and H(·) is the entropy. According to the property of KL divergence, the equality
holds if and only if P̂ = P . This implies that the optimal θ∗ satisfies

µ
(l)
θ∗ (xt, t) = Eq0|t(x0|xt)

[
e
x
(l)
0

]
(20)

This expression is similar to continuous diffusion, where the optimal data predictor is µθ∗(xt, t) =
Eq0|t(x0|xt) [x0]. The key difference is that, the posterior q0|t(x0|xt) in MDMs only depends on xt

and is irrelevant to the time t. Denote nt as the number of masked tokens at time t, we have

q0|t(x0|xt) =
q0(x0)qt|0(xt|x0)

qt(xt)
=

q0(x0)qt|0(xt|x0)∑
x0

q0(x0)qt|0(xt|x0)
=

q0(x0)Ept(nt)[q̃nt|0(xt|x0)]∑
x0

q0(x0)Ept(nt)[q̃nt|0(xt|x0)]
(21)

where pt(nt) is distribution of nt at time t, and q̃nt|0 is the discrete forward process that ran-
domly masks nt tokens. As xt is known, the number of masked tokens is fixed as N(xt), and
q̃nt|0(xt|x0) = 0 for nt ̸= N(xt). Therefore,

q0|t(x0|xt) =
q0(x0)pt(N(xt))q̃N(xt)|0(xt|x0)∑
x0

q0(x0)pt(N(xt))q̃N(xt)|0(xt|x0)
= q̃0|N(xt)(x0|xt) (22)

which completes the proof.

C.3 PROOF OF PROPOSITION 4.1

We first present a lemma that enables sequential sampling of order statistics and supports the recur-
sive process for sampling the first hitting time.
Lemma C.1 (Uniform Distribution Conditioned on the Maximum). Suppose n random variables
u1, u2, . . . , un are independent samples from the uniform distribution U(0, θ) (θ > 0). Given the
condition that u = max{u1, · · · , un}, the remaining variables ui (ui ̸= u) follow the distribution
U(0, u).

Proof. Without loss of generality, we derive the conditional distribution of u1. Other remaining
variables follow the same distribution due to symmetry. For x ≤ y ≤ θ, we have

P (u1 ≤ x, u ≤ y) = P (u1 ≤ x, u2 ≤ y, . . . un ≤ y) = P (u1 ≤ x)

n∏
i=2

P (ui ≤ y) =
xyn−1

θn

(23)
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P (u1 ≤ x, u ≤ y|u1 = u) = P (u ≤ x) = P (u1 ≤ x, . . . , un ≤ x) =

n∏
i=1

P (ui ≤ x) =
xn

θn
(24)

and

P (u1 = u) =
1

n
, P (u1 ̸= u) =

n− 1

n
(25)

Therefore,

P (u1 ≤ x, u ≤ y|u1 ̸= u) =
P (u1 ≤ x, u ≤ y)− P (u1 = u)P (u1 ≤ x, u ≤ y|u1 = u)

P (u1 ̸= u)

=
n

n− 1

xyn−1

θn
− 1

n− 1

xn

θn

(26)

By taking derivatives w.r.t. x and y, we obtain the density p(u1 = x, u = y|u1 ̸= u) = nyy−2

θn .

Similarly, P (u ≤ y) = yn

θn , and the density p(u = y) = nyn−1

θn . Therefore

p(u1 = x|u = y, u1 ̸= u) =
p(u1 = x, u = y|u1 ̸= u)

p(u = y)
=

1

y
(27)

We conclude that u1 (u1 ̸= u) follows a uniform distribution over the interval [0, u].

Then we prove Proposition 4.1 below.

Proof. We first consider the case of a single token undergoing the reverse process described in
Eqn. (10). Starting from time t, when xt = m is the mask token, we denote τ as the time at which
the unmasking transition occurs (i.e., xτ+dt = m and xτ ̸= m). The transition time τ is a random
variable, whose cumulative distribution function (CDF) is available:

P (τ ≤ s) = pθ(xs = m|xt = m) =
1− αs

1− αt
(28)

Therefore, using inverse transform sampling, τ can be analytically sampled by (1) drawing u ∼
U(0, 1), and (2) solving the equation 1−ατ

1−αt
= u.

Next, we consider the case of multiple tokens in a sequence of length L. Thanks to the theoretical as-
sumptions of MDMs, the transition times of different tokens are independent in the reverse process.
However, to enable token-by-token decoding, we need to sample the L transition times in descend-
ing order, i.e., 1 > τL−1 > · · · > τ0. Starting from t = 1 with α1 = 0, each transition time τ can
be sampled by drawing u ∼ U(0, 1) and solving 1− ατ = u according to the single token case. In
order to sample τ sequentially, we are essentially drawing the order statistics u(L−1) > · · · > u(0)

of L independent uniform variables on [0, 1].

According to Lemma C.1, this process can be conducted in a recursive manner without sorting.
Suppose there are currently n remaining masked tokens, and the most recent unmasking occurred
at time τn. The transition time τn corresponds to the n-th smallest uniform variable u(n) through
the relation 1 − ατn = u(n). To obtain the next transition time τn−1, we need to sample the
next order statistic u(n−1). By recursively applying Lemma C.1, we know that the remaining n
smallest uniform variables follow the distribution U(0, u(n)), if not considering their relative order.
Furthermore, u(n−1), as the maximum of these n variables, has the CDF P (u(n−1) ≤ x) = xn

un
(n)

and

can be sampled by solving
un
(n−1)

un
(n)

= un, where un ∼ U(0, 1) (using inverse transform sampling).

Therefore, the next transition time τn−1 satisfies

1− ατn−1
= u(n−1) = u(n)u

1
n
n = (1− ατn)u

1
n
n (29)

which is equivalent to Eqn. (10) using the inverse noise schedule function τn−1 = α−1(ατn−1).
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C.4 PROOF OF PROPOSITION 5.2

Proof. The truncated standard Gumbel distribution T G(0, 1,M) has the probability density function
(PDF) and cumulative distribution function (CDF) defined as follows:

f̂(x) =
f(x)

F (M)
Ix≤M , F̂ (x) = min

{
F (x)

F (M)
, 1

}
(30)

where
f(x) = e−x−e

−x

, F (x) = e−e
−x

(31)

are the PDF and CDF of the standard Gumbel distribution G(0, 1), and M is the right truncation
point. Suppose the class probabilities are sorted as π1 ≤ · · · ≤ πK , and denote π0 = 0, θn = log πn

for simplicity. To conduct truncated Gumbel-based categorical sampling, K i.i.d. samples {gi}Ki=1
are drawn from T G(0, 1,M). The resulting categorical probability of class n is

P (argmax(θi + gi) = n) =

∫ +∞

−∞
f̂(g)

∏
k ̸=n

P (θk + gk ≤ θn + g)dg

=

∫ M

−∞
f̂(g)

∏
k ̸=n

F̂ (θn + g − θk)dg

= eKe−M

∫ M

−∞
e−g−e

−g ∏
k ̸=n

min{e−e
−M

, e−e
−θn−g+θk }dg

= eKe−M

∫ M

−∞
e−g−e

−g

e−
∑

k ̸=n e−min{g+θn−θk,M}
dg

= eKe−M
n∑

i=1

∫ θi+M−θn

θi−1+M−θn
e−ge−(

∑K
k=i e

θk−θn )e−g

e−(i−1)e
−M

dg

(32)

where the integral has a closed-form solution by∫
e−ge−Ae−g

dg =
e−Ae−g

A
+ C (33)

With this, Eqn. (32) can be further simplified to

P (argmax(θi + gi) = n)

=eKe−M
n∑

i=1

e−(
∑K

k=i e
θk−θn )eθn−θi−M − e−(

∑K
k=i e

θk−θn )eθn−θi−1−M∑K
k=i e

θk−θn
e−(i−1)e

−M

=eKe−M

πn

n∑
i=1

e
−

∑K
k=i πk
πi

e−M

− e
−

∑K
k=i πk

πi−1
e−M∑K

k=i πk

e−(i−1)e
−M

=πn

n∑
i=1

e

(
K+1−i−

∑K
k=i πk
πi

)
e−M

− e

(
K+1−i−

∑K
k=i πk
πi−1

)
e−M

∑K
k=i πk

(34)

Therefore, the original class probabilities {πn}Kn=1 are shifted to {π′n}Kn=1 if the Gumbel variables
used in categorical sampling are right-truncated to M . π′n is given by

π′n = πn

n∑
i=1

e

(
K+1−i−

∑K
k=i πk
πi

)
e−M

− e

(
K+1−i−

∑K
k=i πk
πi−1

)
e−M

∑K
k=i πk

= πn

n∑
i=1

e

(
K−i−

∑K
k=i+1 πk

πi

)
e−M

− e

(
K−(i−1)−

∑K
k=i πk
πi−1

)
e−M

∑K
k=i πk

(35)
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We can verify that {π′n}Kn=1 are valid class probabilities that sum to 1:

K∑
n=1

π′n =

K∑
n=1

πn

n∑
i=1

e

(
K−i−

∑K
k=i+1 πk

πi

)
e−M

− e

(
K−(i−1)−

∑K
k=i πk
πi−1

)
e−M

∑K
k=i πk

=

K∑
i=1

K∑
n=i

πn
e

(
K−i−

∑K
k=i+1 πk

πi

)
e−M

− e

(
K−(i−1)−

∑K
k=i πk
πi−1

)
e−M

∑K
k=i πk

=

K∑
i=1

e

(
K−i−

∑K
k=i+1 πk

πi

)
e−M

− e

(
K−(i−1)−

∑K
k=i πk
πi−1

)
e−M

= e(K−K)e−M

− e

(
K− 1

π0

)
e−M

= 1

(36)

where π0 = 0 and e

(
K− 1

π0

)
e−M

= 0.

D RELATIONSHIP BETWEEN MASKED DIFFUSION MODELS AND PREVIOUS
DISCRETE DIFFUSION MODELS

Our framework and notations are based on recent studies of MDMs (Shi et al., 2024; Sahoo
et al., 2024), which offer a theoretically simplified and empirically improved version of the best-
performing absorbing case in discrete diffusion models (Austin et al., 2021; Campbell et al., 2022;
Lou et al., 2023). In this section, we present a summary of some background information on pre-
vious formulations: generative modeling of discrete data via continuous-time Markov chains (Sec-
tion D.1), robust and principled training and sampling with score parameterization (Section D.2),
and their equivalence to MDMs (Section D.3).

D.1 DISCRETE DIFFUSION VIA CONTINUOUS-TIME MARKOV CHAINS

Continuous-time Markov chains (CTMCs) (Anderson, 2012) are a fundamental concept in stochastic
processes used to model systems that transition between discrete states continuously over time.

Forward Process Denote X as the state space and x ∈ X as a state. The probability of tran-
sitioning from one state x to another state x̂ near time t is governed by the transition rate matrix
Qt ∈ R|X |×|X|. Specifically, denote Qt(x, x̂) as the transition rate from x to x̂, the transition
probability during a small time interval ∆t is

pt+∆t|t(x̂|x) = δx,x̂ +Qt(x, x̂)∆t+O((∆t)2) (37)

The off-diagonal elements Qt(x, x̂) (x ̸= x̂) are non-negative, and the diagonal elements Qt(x, x) =
−
∑

x̂ ̸=x Qt(x, x̂) ≤ 0, ensuring that each row of Qt sums to zero (so that pt does not gain or lose
total mass). Equivalently, the transition rate can be defined by the transition probability as

Qt(x, x̂) = lim
∆t→0

pt+∆t|t(x̂|x)− δx,x̂

∆t
(38)

Denote pt = {pt(x)}x∈X as the marginal distributions of all states at time t, and Pt|s ∈ R|X |×|X|
as the forward transition matrix from time s to time t satisfying Pt|s(x, x̂) = pt|s(x̂|x). The Kol-
mogorov forward (or Fokker-Planck) equations describe the evolution of both the marginals pt

(starting from the data distribution) and the transition matrix Pt|s:

dpt

dt
= ptQt,

dPt|s

dt
= Pt|sQt (39)

In practice, the forward process is designed to be simple degradation (Campbell et al., 2022; Lou
et al., 2023), such that pt approaches a stationary distribution pbase that is easy to sample from as t
increases, akin to the Gaussian noising process in continuous diffusion. Specifically, the transition
rate matrix Qt is set to σ(t)Q where σ(t) is a scalar noise schedule function and Q is a constant
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matrix with low ranks. In this case, the transition matrix can be solved analytically as Pt|s =

e(σ̄(t)−σ̄(s))Q where σ̄(t) =
∫ t

0
σ(τ)dτ . Common choices of Q (Lou et al., 2023) include:

Quniform =


1−N 1 · · · 1

1 1−N · · · 1
...

...
. . .

...

1 1 · · · 1−N

 , Qabsorb =



−1 0 · · · 0 1

0 −1 · · · 0 1
...

...
. . .

...
...

0 0 · · · −1 1

0 0 · · · 0 0


(40)

The former disturbs the data distribution into a uniform one, and the latter additionally adds a
[MASK] token as the absorbing state.

Time Reversal Similar to continuous diffusion, discrete diffusion defined above has a time rever-
sal (Kelly, 2011; Sun et al., 2022) described by the reverse transition rate matrix Q̄t which satisfies

Q̄t(x, x̂) =


pt(x̂)

pt(x)
Qt(x̂, x), x̂ ̸= x

−
∑

y ̸=x Q̄t(x, y), x̂ = x
(41)

The intractable ratio pt(x̂)
pt(x)

, named concrete score (Meng et al., 2022), acts as an analog to the score
function (Song et al., 2021c) in continuous diffusion. The reverse process can be described as

dps

ds
= −psQ̄s,

dPs|t

ds
= −Ps|tQ̄s (42)

which evolves backward in time with s decreasing to 0 and s < t. It is sufficient to simulate the
whole process as long as the concrete score, the only unknown term in Q̄t, is estimated.

D.2 SCORE-ENTROPY DISCRETE DIFFUSION (SEDD)

SEDD (Lou et al., 2023) provides principled, robust and scalable techniques for score-based training
and sampling of discrete diffusion models.

Parameterization SEDD parameterizes a score prediction network sθ(x, t) ∈ R|X | to learn the
unknown concrete score

{
pt(x̂)
pt(x)

}
x̂∈X

. We use sθ(x, t)y to denote its y-th element.

Training Objective SEDD proposes the diffusion-weighted denoising score entropy (DWDSE)
objective to optimize sθ(x, t):

LDWDSE(x0) =

∫ T

0

Ext∼pt|0(·|x0)

∑
x̂t ̸=xt

Qt (x̂t, xt) I

(
sθ (xt, t)x̂t

,
pt|0 (x̂t | x0)

pt|0 (xt | x0)

)
dt (43)

where I(a, b) := a − b log a + K(b), and K(b) := b log b − b is a normalizing constant function
that ensures I(a, b) ≥ 0. Eqn. (43) not only admits the optimal solution as the concrete score,
but also serves as a NELBO for discrete diffusion models by − log pθ0(x0) ≤ LDWDSE(x0) +
DKL(pT |0(·|x0) ∥ pbase), where pbase is the stationary distribution when T →∞.

Sampling Procedures Denote st(x) =
{

pt(x̂)
pt(x)

}
x̂∈X

as the ground-truth concrete score, and

st(x)y as its y-th element. We use st(x) to demonstrate the sampling process, while in practice
it is replaced with the learned score sθ(x, t). SEDD offers two sampling procedures: Euler sam-
pling and analytic sampling with Tweedie τ -Leaping.

Euler sampling applies the Euler discretization to the reverse process (Eqn. (42)), producing a re-
verse transition similar to the forward transition in Eqn. (37):

pEuler
s|t (xs|xt) = δxt,xs + Q̄t(xt, xs)(t− s) (44)

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

It can be expressed by the concrete score st as

pEuler
s|t (xs|xt) =

{
(t− s)Qt(xs, xt)st(xt)xs , xs ̸= xt

1−
∑

y ̸=xt
pEuler
s|t (y|xt), xs = xt

(45)

The Euler sampling implicitly assumes a constant reverse rate matrix Q̄τ = Q̄t for τ ∈ [s, t],
producing approximation errors and even resulting in negative probabilities at xs = xt.

Tweedie τ -leaping operates similarly to the posterior sampling in DDPM (Ho et al., 2020), by ana-
lytically solving the posterior ps|t(xs|xt) given the ground-truth concrete score. Specifically,

pTweedie
s|t (xs|xt) =

pt|s(xt|xs)ps(xs)

pt(xt)
(46)

Under the special choice Qt = σ(t)Q described in the previous section, we have

pt|s(xt|xs) =
(
Pt|s

)
xs,xt

=
(
e(σ̄(t)−σ̄(s))Q

)
xs,xt

(47)

and
ps(xs) = (ps)xs

=
(
ptP

−1
t|s

)
xs

=
(
pte
−(σ̄(t)−σ̄(s))Q

)
xs

(48)

Therefore,

pTweedie
s|t (xs|xt) =

(
e(σ̄(t)−σ̄(s))Q

)
xs,xt

(
pt

pt(xt)
e−(σ̄(t)−σ̄(s))Q

)
xs

=
(
e(σ̄(t)−σ̄(s))Q

)
xs,xt

(
st(xt)e

−(σ̄(t)−σ̄(s))Q
)
xs

(49)

Multi-Dimensional Case For a token sequence x ∈ XL of length L, we use −l to denote the
indexes of all tokens except the l-th one. The concrete score st(x) ∈ R|X |×L is defined between
sequences that differ by a Hamming distance of 1:

st(x)x̂,l =
pt(x̂)

pt(x)
, s.t. x̂(l) = x̂, x̂(−l) = x(−l) (50)

The forward and reverse processes are factorized across dimensions in the same manner as in MDMs
described in the main text. The parameterized score network sθ(x, t) ∈ R|X |×L also predicts
the scores at all positions at a time. Consequently, both the training and sampling are conducted
simultaneously and independently for all dimensions, except that the network input x contains the
current sequence information.

D.3 CONNECTION BETWEEN MDMS AND SEDD ABSORB

The absorbing case (Q = Qabsorb) of discrete diffusion has demonstrated both simple formulations
and superior performance. As revealed in previous and concurrent works (Shi et al., 2024; Ou et al.,
2024), SEDD Absorb is theoretically equivalent to MDMs in multiple aspects. For simplicity, we
focus on the single-token case, as the factorization approach used in both MDMs and SEDD Absorb
ensures that equivalence in one dimension implies equivalence in multiple dimensions.

D.3.1 EQUIVALENCE OF TRAINING

Relation between Forward Processes The forward transition matrix of SEDD Absorb is Pt|0 =

eσ̄(t)Qabsorb . It can be verified by mathematical induction that Qn
absorb = (−1)n−1Qabsorb for any

positive integer n. With this identity, Pt|0 can be simplified as

Pt|0 = eσ̄(t)Qabsorb = I +

∞∑
k=1

σ̄(t)kQk
absorb

k!
= I −

∞∑
k=1

(−σ̄(t))k

k!
Qabsorb

=I +
(
1− e−σ̄(t)

)
Qabsorb

(51)

This is equivalent to the forward process (Eqn. (1)) in MDMs with the relation αt = e−σ̄(t).
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Relation between Parameterizations For coherence, we use m to denote the [MASK] token. We
only need to consider the concrete score st(m) at m, since st(x) for x ̸= m can be converted from
st(m) by st(x)x̂ = st(m)x̂

st(m)x
. We have

st(m)x =
pt(x)

pt(m)
=

(
p0Pt|0

)
x(

p0Pt|0
)
m

(52)

Substituting the expression of Pt|0 in Eqn. (51) into Eqn. (52), for x ̸= m, we have(
p0Pt|0

)
m

=
∑

x0∈X\{m}

p0(x0)pt|0(m|x0) = (1− αt)
∑

x0∈X\{m}

p0(x0) = 1− αt (53)

(
p0Pt|0

)
x
=

∑
x0∈X\{m}

p0(x0)pt|0(x|x0) =
∑

x0∈X\{m}

p0(x0)αtδx0,x = αtp0(x) (54)

and

st(m)x =

(
p0Pt|0

)
x(

p0Pt|0
)
m

=
αt

1− αt
p0(x) =

αt

1− αt

(
Ep0|t(x0|m) [ex0

]
)
x

(55)

This implies that the score parameterization is related to the mean parameterization µθ(x, t) in
MDMs (excluding the m-th dimension) by

sθ(x, t) =
αt

1− αt
µθ(x, t) (56)

Equivalence of ELBOs Substituting this relation between sθ and µθ into the score entropy ob-
jective of SEDD (Eqn. 43), we have

LDWDSE(x0) =

∫ T

0

Ext∼pt|0(·|x0)

δxt,m

∑
x̸=m

Qt (x,m) I

(
sθ (m, t)x ,

pt|0 (x | x0)

pt|0 (m | x0)

)dt

=

∫ T

0

σ(t)Ext∼pt|0(·|x0)

δxt,m

∑
x ̸=m

I

(
αt

1− αt
µθ (m, t)x , δx,x0

αt

1− αt

)dt

(57)
Observing that I(a, 0) = a,

∑
x ̸=m µθ(m, t)x = 1, we have∑

x ̸=m

I

(
αt

1− αt
µθ (m, t)x , δx,x0

αt

1− αt

)

=K

(
αt

1− αt

)
− αt

1− αt
log

(
αt

1− αt
µθ(m, t)x0

)
+

αt

1− αt

∑
x̸=m

µθ(m, t)x

=− αt

1− αt
logµθ(m, t)x0

(58)

Using α′t = −σ(t)αt, the objective LDWDSE(x0) can be simplified to

LDWDSE(x0) = −
∫ T

0

σ(t)Ext∼pt|0(·|x0)

[
δxt,m

αt

1− αt
logµθ(m, t)x0

]
dt

=

∫ T

0

α′t
1− αt

Ext∼pt|0(·|x0) [δxt,m logµθ(xt, t)x0
] dt

(59)

As logµθ(xt, t)x0 and e⊤x0
logµθ(xt, t) are equivalent expressions for the cross entropy, we con-

clude that LDWDSE(x0) is equal to the NELBO for MDMs (Eqn. (5)) when T = 1.

D.3.2 EQUIVALENCE OF SAMPLING

Euler Sampler and Tweedie τ -Leaping Sampler in SEDD are equivalent in the absorbing case
under the linear noise schedule αt = e−σ̄(t) = 1− t.
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On the one hand, the Euler sampler (Eqn. (45)) with score parameterization network sθ is

pEuler
s|t (xs|xt) =

{
(t− s)σ(t) (Qabsorb)xs,xt

sθ(xt, t)xs , xs ̸= xt

1−
∑

y ̸=xt
pEuler
s|t (y|xt), xs = xt

(60)

When xs ̸= xt, using the identities sθ(x, t)x = 1 and (Qabsorb)xs,xt
= δm,xt − δxs,xt , pEuler

s|t can
be simplified to

pEuler
s|t (xs|xt) =

{
0, xt ̸= m

(t− s)σ(t)sθ(xt, t)xs
, xt = m

(61)

When xs = xt, from Eqn. (56) we know
∑

x∈X\{m} sθ(m, t)x = αt

1−αt

∑
x∈X\{m} µθ(m, t)x =

αt

1−αt
. Hence, pEuler

s|t can be calculated as

pEuler
s|t (xs|xt) =

{
1, xt ̸= m

1− σ(t)e−σ̄(t)(t−s)
1−e−σ̄(t) , xt = m

(62)

Combining Eqn. (61) and Eqn. (62), the Euler sampler is simplified to

pEuler
s|t (xs|xt) =


δxs,xt

, xt ̸= m

(t− s)σ(t)sθ(xt, t)xs , xt = m,xs ̸= m

1− σ(t)e−σ̄(t)(t−s)
1−e−σ̄(t) , xt = m,xs = m

(63)

On the other hand, the Tweedie τ -Leaping sampler (Eqn. (49)) is

pTweedie
s|t (xs|xt) =

(
e(σ̄(t)−σ̄(s))Q

)
xs,xt

(
sθ(xt, t)e

−(σ̄(t)−σ̄(s))Q
)
xs

(64)

When Q = Qabsorb, similar to Eqn. (51), we have

e(σ̄(t)−σ̄(s))Q = I +
(
1− e−(σ̄(t)−σ̄(s))

)
Qabsorb

e−(σ̄(t)−σ̄(s))Q = I +
(
1− eσ̄(t)−σ̄(s)

)
Qabsorb

(65)

Using the identities sθ(x, t)x = 1 and (Qabsorb)xs,xt
= δm,xt

− δxs,xt
, we have(

e(σ̄(t)−σ̄(s))Q
)
xs,xt

= δxs,xt
+
(
1− e−(σ̄(t)−σ̄(s))

)
(Qabsorb)xs,xt

= e−(σ̄(t)−σ̄(s))δxs,xt
+
(
1− e−(σ̄(t)−σ̄(s))

)
δm,xt

(66)

and∑
y∈X

sθ(x, t)y =
∑
y∈X

sθ(m, t)y
sθ(m, t)x

= sθ(x, t)m

sθ(m, t)m +
∑

x∈X\{m}

sθ(m, t)x

 =
sθ(x, t)m
1− αt

(67)
Therefore,(

sθ(xt, t)e
−(σ̄(t)−σ̄(s))Q

)
xs

= sθ(xt, t)xs
+
(
1− eσ̄(t)−σ̄(s)

)
(sθ(xt, t)Qabsorb)xs

= sθ(xt, t)xs
+
(
1− eσ̄(t)−σ̄(s)

)∑
x∈X

sθ(xt, t)x (Qabsorb)x,xs

= eσ̄(t)−σ̄(s)sθ(xt, t)xs + δxs,m

(
1− eσ̄(t)−σ̄(s)

)∑
x∈X

sθ(xt, t)x

= eσ̄(t)−σ̄(s)sθ(xt, t)xs + δxs,m
1− eσ̄(t)−σ̄(s)

1− e−σ̄(t)
sθ(xt, t)m

(68)
Substituting Eqn. (66) and Eqn. (68) into Eqn. (64), the Tweedie τ -Leaping sampler is simplified to

pTweedie
s|t (xs|xt) =


δxs,xt

, xt ̸= m(
eσ̄(t)−σ̄(s) − 1

)
sθ(xt, t)xs , xt = m,xs ̸= m

1−e−σ̄(s)

1−e−σ̄(t) , xt = m,xs = m

(69)
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Under the linear noise schedule, as e−σ̄(t) = 1− t, we have σ̄(t) = − log(1− t) and σ(t) = 1
1−t =

eσ̄(t). Consequently, (t − s)σ(t) = eσ̄(t)−σ̄(s) − 1, and the Euler sampler in Eqn. (63) is the same
as Tweedie τ -Leaping sampler in Eqn. (69).

Tweedie τ -Leaping Sampler in SEDD and the Reverse Sampling Process in MDMs are equiv-
alent in the absorbing case. By the relation αt = e−σ̄(t) and sθ(xt, t)xs

= αt

1−αt
µθ(xt, t)xs

(xt =

m,xs ̸= m), the Tweedie τ -Leaping sampler in Eqn. (69) is converted to

pTweedie
s|t (xs|xt) =


δxs,xt , xt ̸= m
αs−αt

1−αt
µθ(xt, t)xs

, xt = m,xs ̸= m
1−αs

1−αt
, xt = m,xs = m

(70)

which is the same as the reverse process in MDMs (Eqn. (3)).

E EXPECTED NFE IN BATCHED SAMPLING USING THE CACHING STRATEGY

Suppose the sampling is performed on timesteps 1 = tN → tN−1 → · · · → t0 = 0, and denote
xt ∈ XBL as the concatenation of the batched sequences at time t. During the sampling step
ti → ti−1, the NFE increases by 1 when xti−1 ̸= xti , and remains the same otherwise. Therefore,
the expected NFE (E-NFE) can be expressed by

E-NFE = E

[
N∑
i=1

Ixti−1
̸=xti

]
=

N∑
i=1

E
[
Ixti−1

̸=xti

]
=

N∑
i=1

P
(
xti−1

̸= xti

)
=

N∑
i=1

(
1− P

(
xti−1

= xti

))
=

N∑
i=1

(
1− P

(
x
(l)
ti−1

= x
(l)
ti , l = 1, 2, . . . , BL

)) (71)

As noted in the main text, an unmasked token will no longer change, and whether a mask token
will change during a sampling step is independent of the network output. Given that the reverse
sampling process is factorized across dimensions, and the only interaction between dimensions is
through the sequence-conditioned network, which does not affect whether a token will change, we
conclude that the events {x(l)

ti−1
= x

(l)
ti } are independent for different l. Therefore, the probability

P
(
x
(l)
ti−1

= x
(l)
ti , l = 1, 2, . . . , BL

)
can be factorized as

∏BL
l=1 P

(
x
(l)
ti−1

= x
(l)
ti

)
, where

P
(
x
(l)
ti−1

= x
(l)
ti

)
= P

(
x
(l)
ti = m

)
P
(
x
(l)
ti−1

= m|x(l)
ti = m

)
+ P

(
x
(l)
ti ̸= m

)
=

1− αti

1− α1

1− αti−1

1− αti

+ 1− 1− αti

1− α1

= 1− (αti−1 − αti)

(72)

The expected NFE is finally simplified to

E-NFE =

N∑
i=1

(
1−

(
1− (αti−1 − αti)

)BL
)

(73)

Using the default linear noise schedule αt = 1 − t as well as uniform timesteps tk = k
N , we have

αti−1
− αti =

1
N , and the expected NFE is N

(
1− (1− 1

N )BL
)
.

F A BRIEF INTRODUCTION TO GUMBEL TRICKS

Gumbel tricks are widely used in machine learning and statistics to handle the challenges associated
with discrete random variables. Based on the properties of the Gumbel distribution, these techniques
offer powerful tools for approximating discrete distributions and optimizing over discrete spaces,
facilitating the integration of discrete variables into continuous models.
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F.1 THE GUMBEL DISTRIBUTION

The Gumbel distribution (Gumbel, 1935) is related to the extreme value theory and is commonly
used to model the distribution of the maximum of random variables. The Gumbel distribution
G(µ, β), with the location parameter µ and the scale parameter β, has the following PDF and CDF:

F (x;µ, β) = e−e
−(x−µ)/β

, f(x;µ, β) =
1

β
e−(x−µ)/β−e

−(x−µ)/β

(74)

A widely used special case is the standard Gumbel distribution G(0, 1), where µ = 0 and β = 1.
For this distribution, the CDF is given by P (g ≤ x) = e−e

−x

. Using inverse transform sampling,
a random variable g following G(0, 1) can be sampled by drawing u ∼ U(0, 1) and performing two
negative logarithm operations g = − log(− log u).

F.2 GUMBEL-MAX TRICK

The Gumbel-max trick (Gumbel, 1954) allows us to sample from a categorical distribution using
continuous random variables. It leverages the following property of the Gumbel distribution: for
π = (π1, π2, . . . , πK) satisfying π ≥ 0 and

∑K
i=1 πi > 0, and let g1, . . . , gK be independent

samples from G(0, 1), we have

max
i

(gi + log πi) ∼ G

(
log

K∑
i=1

πi, 1

)
(75)

and

argmax
i

(gi + log πi) ∼ Cat

(
π∑K
i=1 πi

)
(76)

This implies that sampling a discrete variable from a categorical distribution can be achieved by
operating on continuous variables that include the known class probabilities and the sampled Gum-
bel variables. Therefore, the Gumbel-max trick acts as the reparameterization trick for categorical
sampling, akin to the Gaussian case used in variational auto-encoders (Kingma & Welling, 2014).

F.3 GUMBEL-SOFTMAX DISTRIBUTION

The Gumbel-Softmax distribution (Jang et al., 2016) introduces a differentiable approximation to
the categorical distribution, facilitating gradient-based optimization in neural network training. It
smooths the non-differentiable argmax operation in the Gumbel-max trick by replacing it with
the differentiable Softmax function plus a temperature factor T . Specifically, the one-hot random
vector ex, where x ∼ Cat(π), is approximated by a continuous vector y defined as

yi =
e(log πi+gi)/T∑K
j=1 e

(log πj+gj)/T
, i = 1, 2, . . . ,K (77)

It approaches the one-hot representation of the categorical variable when T → 0, and tends to be
uniform when T →∞.

G IMPLEMENTATION DETAILS

G.1 ALGORITHMS

For parallel decoding, suppose the sampling step is N and the sequence length is L, we define a
decoding schedule {Ln}Nn=1 which satisfies

∑N
n=1 Ln = L to specify the number of tokens decoded

at each step. This includes the token-by-token decoding as a special case where N = L and Ln = 1.
In practice, we decode the same number of tokens per step so that L is divisible by N .

We present the parallel decoding procedure in Algorithm 2, which can be interpreted as a first-
order method. Algorithm 3 and Algorithm 4 describe two types of high-order extensions, inspired
by high-order numerical differential equation solvers in diffusion models. Algorithm 3 leverages

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Lagrange polynomials to interpolate the previous network outputs along the time axis, yielding an
approximate network prediction for the current time step. Our implementation only uses the two
most recent predictions, making it a second-order method, as we empirically find that higher-order
methods tend to degrade performance. Algorithm 4 employs a predictor-corrector approach, refining
the first-order decoding result at the last step using the current network prediction, also resulting in
a second-order method. After refining the intermediate sample, we avoid feeding it back into the
network for prediction updates, thus preventing extra NFEs.

Algorithm 2 First-Hitting Sampling of MDMs (parallel decoding)
Require: the sequence length L, the vocabulary X = {0, . . . ,m−1,m} where m is the mask token, the noise
schedule αt and its inverse function α−1, the pretrained masked diffusion model µθ , the number of sampling
steps N , the decoding schedule {Ln}Nn=1

1: xL ← [mm . . . m]
2: τL ← 1
3: l← L
4: for n← N to 1 do
5: for i← 1 to Ln do
6: Sample ul ∼ U(0, 1)
7: τl−1 ← α−1(1− u

1/l
l (1− ατl))

8: if i = 1 then
9: µ← µθ(xl, τl−1)

10: end if
11: Randomly and uniformly select an index k from {j : x

(j)
l = m} (i.e., masked positions in xl)

12: xl−1 ← xl, x
(k)
l−1 ← x ∼ Cat(µ(k))

13: l← l − 1
14: end for
15: end for
Output: x0

Algorithm 3 First-Hitting Sampling of MDMs (extrapolation)
Require: the sequence length L, the vocabulary X = {0, . . . ,m−1,m} where m is the mask token, the noise
schedule αt and its inverse function α−1, the pretrained masked diffusion model µθ , the number of sampling
steps N , the decoding schedule {Ln}Nn=1

1: xL ← [mm . . . m]
2: τL ← 1
3: l← L
4: for n← N to 1 do
5: for i← 1 to Ln do
6: Sample ul ∼ U(0, 1)
7: τl−1 ← α−1(1− u

1/l
l (1− ατl))

8: if i = 1 then
9: µ← µθ(xl, τl−1)

10: τ ← τl−1

11: end if
12: if n = N then
13: µ̂ = µ
14: else
15: µ̂ =

τl−1 − τ̃

τ − τ̃
µ+

τl−1 − τ

τ̃ − τ
µ̃ (Lagrange interpolation)

16: end if
17: Randomly and uniformly select an index k from {j : x

(j)
l = m} (i.e., masked positions in xl)

18: xl−1 ← xl, x
(k)
l−1 ← x ∼ Cat(µ̂(k))

19: l← l − 1
20: end for
21: µ̃← µ
22: τ̃ ← τ
23: end for
Output: x0
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Algorithm 4 First-Hitting Sampling of MDMs (predictor-corrector)
Require: the sequence length L, the vocabulary X = {0, . . . ,m−1,m} where m is the mask token, the noise
schedule αt and its inverse function α−1, the pretrained masked diffusion model µθ , the number of sampling
steps N , the decoding schedule {Ln}Nn=1

1: xL ← [mm . . . m]
2: τL ← 1
3: l← L
4: for n← N to 1 do
5: for i← 1 to Ln do
6: Sample ul ∼ U(0, 1)
7: τl−1 ← α−1(1− u

1/l
l (1− ατl))

8: if i = 1 then
9: µ← µθ(xl, τl−1)

10: if n < N then
11: xl ← x̂
12: for r ← 1 to Ln+1 do
13: Randomly and uniformly select an index k from {j : x

(j)
l = m}

14: x
(k)
l ← x ∼ Cat(µ(k))

15: end for
16: end if
17: x̂← xl

18: end if
19: Randomly and uniformly select an index k from {j : x

(j)
l = m} (i.e., masked positions in xl)

20: xl−1 ← xl, x
(k)
l−1 ← x ∼ Cat(µ(k))

21: l← l − 1
22: end for
23: end for
Output: x0

G.2 LOW-DISCREPANCY SAMPLER

VDM (Kingma et al., 2021) proposes a low-discrepancy sampler for batched sampling of uniformly
distributed continuous time variables, which reduces the loss variance in maximum likelihood train-
ing of diffusion models. Specifically, consider a batch of B timesteps t(i)

B−1
i=0 that needs to be

sampled from U(0, 1). Instead of sampling them independently, VDM generates correlated samples
using the formula t(i) = mod(u0 + i/B, 1), where u0 ∼ U(0, 1). This approach ensures that each
t(i) has the correct marginal distribution over multiple batches, while each batch of timesteps more
evenly covers the interval [0, 1].

MDLM (Sahoo et al., 2024) employs a slightly different low-discrepancy sampler where the sam-
pled timesteps are less correlated within a batch. Specifically, B independent uniform samples
{ui}B−1i=0 from U(0, 1) are mapped into B bins by t(i) = (ui + i)/B. We adopt this approach for
sampling continuous timesteps. Additionally, we extend this low-discrepancy sampler to handle dis-
crete timesteps {n(i)}B−1i=0 drawn from U({0, 1, . . . , L− 1}) (e.g., the number of masked tokens in
the discrete ELBO) by mapping the continuous time t(i) to n(i) = ⌈Lt(i)⌉.

H EXPERIMENT DETAILS

H.1 EVALUATION METRICS

Perplexity is a likelihood-related metric to evaluate how well a likelihood-based model is trained.
Denote the likelihood (i.e., the probability of the data under the parameterized model) for the data
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point x0 as pθ(x0). The log-likelihood can be expressed either exactly or through an ELBO:

Auto-regressive Models: log pθ(x0) =

L∑
n=1

log pθ(x
(n)
0 |x

(<n)
0 ) (78)

Masked Models: log pθ(x0) ≥
L∑

n=1

Eq̃n|0(xn|x0)

[
1

n

∑
l:x

(l)
n =m

log pθ(x
(l)
0 |xn)

]
(79)

Here we express the log-likelihood of masked models with our derived discrete ELBO. We use
log pθ(x

(l)
0 |xn) (predicted data probability given known tokens) as an alternative expression for

the cross-entropy term e⊤
x
(l)
0

logµ
(l)
θ (xn), aligning it with the common formulation in ARMs. The

perplexity (PPL) is defined as:

PPL = exp

(
Ex0∼pdata [− log pθ(x0)]

D

)
(80)

where D is the data dimension, and pdata is the data distribution (such as the validation/test set).

Generative Perplexity evaluates a model’s generation quality by measuring the perplexity of its
generated samples under some off-the-shelf model. It is related to both training and sampling. We
adopt GPT-2 Large as the off-the-shelf evaluator following previous works.

Entropy measures the diversity of tokens in a sequence. For a sequence of length L that contains K
distinct tokens, with each token k occurring Lk times, the entropy is computed as−

∑K
k=1 pk log pk,

where pk = Lk/L represents the probability of occurrence of token k.

H.2 MODEL AND DATASET DETAILS

Following SEDD (Lou et al., 2023) and MDLM (Sahoo et al., 2024), we utilize an encoder-only
transformer with a DDiT (Peebles & Xie, 2023) architecture, incorporating RoPE (Su et al., 2024).
We use the small-size model variant, which consists of 12 layers, 12 attention heads, a hidden
dimension of 768, and a timestep embedding dimension of 128, amounting to approximately 170M
parameters including the word embedding matrix.

Our experiments are conducted on the OpenWebText dataset (Gokaslan et al., 2019), which contains
around 8 million documents, with the last 100k reserved for validation. The dataset is tokenized
using the GPT-2 tokenizer, resulting in a vocabulary size of 50,257 (excluding the mask token).
Sequences are concatenated and wrapped to a length of 1024 tokens, with the first, last, and in-
between tokens of concatenated sequences set to eos.

H.3 TRAINING DETAILS

Following SEDD (Lou et al., 2023) and MDLM (Sahoo et al., 2024), we use the AdamW optimizer
with a batch size of 512 and a learning rate that is linearly warmed up from 0 to 3e-4 over the first
2,500 steps. We apply a dropout rate of 0.1, clip the gradient norm to 1, and utilize an exponential
moving average (EMA) with a rate of 0.9999. Mixed-precision training is enabled with bfloat16.

All our training experiments are conducted on 8 NVIDIA A100 40GB GPUs for slightly over 100k
iterations, which takes around 1.5 days.

H.4 SAMPLING DETAILS

We directly use the pretrained models (AR, SEDD Absorb, MDLM) trained on OpenWebText pro-
vided by MDLM8. These models share the same architecture and size (with the exception of the
final layer in AR). SEDD and MDLM are trained for 1M iterations, while the corresponding AR
baseline is trained for half as many steps to ensure a comparable number of tokens seen.

For the baselines, SEDD is sampled using its analytic sampler (Tweedie τ -leaping), and MDLM is
sampled both with and without the caching strategy. Their sampling timesteps are uniformly dis-
cretized. In our first-hitting sampler, parallel decoding is achieved by unmasking the same number

8https://github.com/kuleshov-group/mdlm/
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of tokens at each step. Although the pretrained MDLM model is claimed to be time-independent,
we find that adding the time condition slightly improves performance in our sampler. All sampling
experiments are conducted on a single NVIDIA RTX A6000 GPU, and the reported metrics are
averaged on 64 random samples.

I ADDITIONAL RESULTS

I.1 TRAINING RESULTS

I.1.1 COMPARISON OF TRAINING VARIANTS
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Figure 11: Comparison of training variants.

We compare different training variants (continuous-time/discrete ELBO, time-conditioned/time-
independent network) of MDMs. By default, we condition the network on time for continuous-time
ELBO and on the masked ratio for discrete ELBO. We also apply the low-discrepancy sampler de-
scribed in Appendix G.2. Providing the network with extra conditions as auxiliary information may
potentially facilitate the training process.

As shown in Figure 11, all variants exhibit similar performance in both training and validation.
Adding the time condition provides a slight improvement over the time-independent network, and
the discrete ELBO performs marginally worse than the continuous-time ELBO. However, these
differences are negligible. The low-discrepancy sampler notably reduces the variance in training
loss, though the validation perplexity curve remains relatively stable, likely due to the smoothing
effect of the EMA. Nonetheless, MDMs still significantly lag behind the counterpart ARM.

I.1.2 FAILED TRAINING ATTEMPTS

Training MDMs with the ELBO is analogous to maximum likelihood training of diffusion mod-
els (Song et al., 2021b; Kingma et al., 2021; Lu et al., 2022a; Zheng et al., 2023b). Therefore, we
borrow well-established techniques from the SOTA likelihood model i-DODE (Zheng et al., 2023b)
within the diffusion literature, including velocity parameterization and variance reduction.

Flow Matching/Preconditioning Different parameterizations are theoretically equivalent but
have distinct empirical implications in diffusion models. As an alternative to data or noise predic-
tion, velocity parameterization has proven effective in the maximum likelihood training of diffusion
models (Zheng et al., 2023b). It is also related to flow matching (Lipman et al., 2022) and the pre-
conditioning technique in EDM (Karras et al., 2022). As MDMs employ mean parameterization (or
data prediction), exploring alternative parameterizations may enhance training performance.

In diffusion models, different parameterizations can be understood as expressing the mean prediction
model µθ with a “skip-connection” style preconditioning:

µθ(xt, t) = atFθ(xt, t) + btxt (81)
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where at, bt are some specific time-related coefficients, and Fθ is a free-form network. In MDMs,
this general preconditioning can be formulated by the one-hot vector e

x
(l)
t

:

µ
(l)
θ (xt, t) = atF

(l)
θ (xt, t) + btex(l)

t
(82)

However, such a formulation in MDMs makes no difference to the training. µ
(l)
θ (xt, t) is only

trained when x
(l)
t = m to predict the data probabilities at dimensions 0 ∼ m − 1. Adding e

x
(l)
t

(which is 0 at dimension 0 ∼ m−1) to the model output does not impact the functional dimensions.

To tackle this, we attempt to employ a self-conditioning technique (Chen et al., 2022)

µθ(xt, t) := Fθ(xt, t,Fθ−(xt, t)) (83)

where θ− is the stop-gradient version of θ. For implementation, the extra condition Fθ− (1) is con-
catenated to the original input along the feature dimension (2) is replaced by blank with 50% prob-
ability during training, and substituted by the earlier model prediction during inference. However,
we empirically find this technique highly unstable during training, adding extra model parameters
and incurring excessive training costs.
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Figure 12: Variance reduction methods.

Variance Reduction via Importance Sampling The NELBO for both diffusion models and
MDMs can be expressed as an expectation L = Et [Lt] over uniformly distributed t, where t can
be either continuous (e.g., the continuous time) or discrete (e.g., the discrete time or the number of
masked tokens). Importance sampling (IS) for t can be introduced by rewriting the training loss with
a proposal distribution pt:

L = Et∼pt

[
L̃t

]
, L̃t =

Lt

pt
(84)

While the overall loss L remains invariant to the choice of pt, the variance of the loss, Vart∼pt

[
L̃t

]
,

is influenced by pt. We can optimize pt for variance minimization. For continuous t, the density
pt can be parameterized by a monotonic neural network and learned by gradient descent (Kingma
et al., 2021; Zheng et al., 2023b).

For simplicity, we instead consider the discrete case of t (the number of masked tokens in the dis-
crete ELBO). We adopt the adaptive IS proposed by Improved DDPM (Nichol & Dhariwal, 2021).
Specifically, as Vart∼pt

[
L̃t

]
= Et∼pt

[
L̃2
t

]
− L2, the optimal pt is given by pt ∝

√
E [L2

t ]. Given

that E
[
L2
t

]
is unknown in advance and may vary throughout training, we maintain a history of the

previous 10 values for each loss term and update this dynamically during training. At the beginning
of training, we sample t uniformly until we have 10 samples for every t.

We visualize the training curves and optimized importance weights at around 100k iterations in
Figure 12. Unfortunately, while the adaptive IS technique reduces the variance to a level comparable
to the low-discrepancy sampler, it also results in degraded performance. We hypothesize that the
dynamical updated pt may make the loss estimator biased.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

I.2 SAMPLING RESULTS

I.2.1 COMPARISON OF HIGH-ORDER VARIANTS
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Figure 13: Comparisons of high-order variants of the first-hitting sampler with steps N ∈
{32, 64, 128, 256, 512, 1024}.

In Figure 13, we compare the two high-order variants of our proposed first-hitting sampler. In
terms of the generative perplexity, The extrapolation strategy performs best when N ≤ 128, and the
predictor-corrector strategy is more effective when N ≥ 256. We also observe that lower generative
perplexity is associated with decreased entropy, indicating an inherent trade-off.

I.2.2 IMPACT OF NUMERICAL PRECISION ON OUR SAMPLER
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Figure 14: Impact of numerical precision on the first-hitting sampler with steps N ∈
{32, 64, 128, 256, 512, 1024}.

In Figure 14, we examine the impact of numerical precision on our first-hitting sampler by varying
the floating-point precision in categorical sampling between 32-bit and 64-bit. For the high-order
variants, we employ the extrapolation strategy when N ≤ 128 and the predictor-corrector strategy
when N ≥ 256. In contrast to the observations under MDM’s original sampler, the temperature-
lowering effect of the numerical truncation is significantly less influential under our sampler. No-
tably, the 32-bit second-order first-hitting sampler even results in slightly higher entropy compared
to its 64-bit counterpart when N ≥ 512.

Why the numerical issue is not notable in token-by-token decoding With our first-hitting sam-
pler, the inference of MDMs becomes a token-by-token decoding process, except that the time
variable is additionally handled. In this case, the numerical issue becomes negligible, and 32-bit
floating-point precision appears sufficient. We also observe that ARMs, which also adopt a token-by-
token sampling strategy, do not suffer from numerical issues under 32-bit precision. This suggests
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Figure 15: Illustration of prioritized unmasking.

that the numerical problem is a distinctive characteristic of the vanilla sampling process of MDMs
(Eqn. (10)) that performs inaccurate categorical sampling simultaneously on all mask positions.

This phenomenon can be explained as follows. As justified theoretically in Section 5.3, the implica-
tion of inaccurate categorical sampling includes two aspects: (1) temperature-lowering effect for a
single token position and (2) prioritized unmasking for different positions (Figure 15). Both factors
reduce the diversity and lower the entropy. However, when altering to token-by-token decoding, all
remaining mask tokens have equal probability to be first unmasked, and the diversity decrease be-
comes less pronounced. This suggests that the prioritized unmasking caused by shifted probabilities
at all individual positions is the major factor. This effect accumulates across numerous sampling
steps, eventually leading to notable diversity issues, even under 32-bit floating-point precision.

I.2.3 EXAMPLES OF GENERATED TEXT
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<|endoftext|> the new cars are crossovers.
AT&T Insurance Marketing Manager, Megan Maxwell, tells us that Model X was "reason-
ably priced, effective and inspires strong sentiment among consumers." She says:
Our GM car for discussion is shown as part of our drive 20 percent around the world and
even a competitor. Our GM for discussion alt shows as one of our most popular cars in the
world. We are in multiple countries introducing firmware for our new vehicles. While we
are confident in our prices, we rely upon GM Auto’s sales data and know we must adapt
this process to meet the needs of all customers.
The proposed pricing is similar to that of the cheaper Range Rover and other cheaper sport
utility vehicles, which are primarily offered through its dealerships. Alongside a Volt, Delphi
XE8 includes a plug-in hybrid version called Volt Energy.
"Dynamic pricing is our way to deliver owners of more attractive or more reasonable out-
comes or to find more marketable models that appeal to them more than their competitors,"
notes Maxwell.
Earlier this week, GM analyst Greg Clifford predicted that Intel Global Radical Charge
Power Savings (STB) would start at $3,300 over the product lifecycle with an adoption
rate of 50 percent by 2025.<|endoftext|>The Warner Bros. foreign distribution arm The
Weinstein Company tried to keep the Weinstein Company character Harvey Weinstein out
of The Bourne Identity, but now that the character has been ousted the distributor has
effectively banned him from the Middle East or North Africa.
Caici International Union of Arabic and Al-Ahly Travel Negotiations president Shadi Hamid
tweeted Thursday:
A merciful Allah lifts my people wherever they are, provided that I am safe and secure. —
Shadi Hamid (@shadihamid) June 26, 2014
An anonymous official familiar with the matter tells The Hollywood Reporter that the
tentative suspension of the sale was prompted by a request by Weinstein’s Company that
The Weinstein Company not use the #BourneCostabool hashtag or its photo that appeared
in the film. Weinstein’s studio says he hasn’t spoken with the history-making movie star after
the film was released on Nov. 19 but that Trump’s inauguration had somewhat diminished
the company’s image abroad. The awards-winning film grossed more than $411 million
globally.
EARLIER:
Original Screenplay for ‘The Bourne Identity’ Is Now Removed
Grisly Official Appointments Express for Harvey Weinstein Probing
Bourne Identity Alleged Tarantino Power Grab Shot with $42 Million Spent on Hollywood
Update: is just re-issued as The Weinstein Company ban shows nothing.
BREAKING: Mancini exits technicalities in Weinstein’s sale of Leadville to Columbia pic
dir. exec-to-branch. — Reginald Perag (@ReginaldCAeg) June 26, 2014
Leaked From Studio #BourneCostabool. I came out with it after #HarveyTurnedEmDown.
— Reginald Perag (@ReginaldCAeg) June 25, 2014<|endoftext|>NETWORK FINALS: H.
REILLARY KREATY & HARDBALL added extra 0.1 to final numbers. UNBELIEV-
ABLE INJURY narrowly lost 0.0 from last night. NEW MIX TAPE (9P) +11.0, CNN
NEWSROOM +10.6, LUTHER KING 5 +8.1, SOUTH PARK MIDDLE FIVE +2.4, DJ
Khaled +2.2, WES CRAFT +1.6, HOUSE HUNTERS INTL AROUND FOOD +0.4, TEEN
YEARS MOM 2015 +0.1, TINY HOUSE HUNTERS INTL +0.1, MLB TONIGHT +0.1,
FLCL +0.0, SEUDAS FAMILY -0.3, ANZE +0.1, TEEN TITANS GO! +0.1. 10/24/15
–0.3 1.49 ANNCOUNTERS. BARRIERE Z PACK +0.1, NYXY +0.0, OTHER VIEWERS
(-0.2) +1.0, A&E MOVIE FIXER UPPER -0.0
Broadcast Official Nationals Program Ratings Chart
CABLE HIGHLIGHTS: UBS CELEBRATES THE DAY! CLOUD CROSSWITCH was at
the top with dramatic 4.121, down 23% over last night (4/27), to #4. Football Night in
America was #2 (and barely a night after ending), with TIZARD (2.092, 0.919), MASTERS
OF KARMA (2.108, 0.914) and SOUTH

Figure 16: The counterpart ARM.
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<|endoftext|> I was striking out, he got it to the third out. I know it wasn’t really a catch
there, but he didn’t consider that at all. I knew what it wasn’t about. We scored by one
run, so it was a difficult thing for me to go to a “get-out,” but being on the board is not an
easy fact. I knew it was in play, and went to the third out that it needed to be thrown to.
I had nothing to say about it, and it was the only opportunity for me to get, to make an
appeal that might not come back, and it was the only time he saw that at that moment.
And so we continued.
“So we were sitting in the plus-five-and-plus-three-at-night, because we were up on an inning.
We were in pinch-hit early in the ninth. I looked at a guy and was very nervous and confused,
so when I looked at this man — I can’t remember what he was doing, but to double or dead-
se the bases for sure — I said you’ll be the first one up, then I’m out of the ballpark. I felt
like something had to be wrong with me, and he turned to me and told me, “that’s as bad
as the rest,” just like that — “I bet!” I said calmly. “I bet,’” “Gotta do your best! Do not
bet!’” “And when that happens, do you think I can be won by a one or two runs?” He stood
there and looked stunned. “You mean that?” “Yes, absolutely.” “‘Yeah, absolutely.” “Well,
is that a message to you?’“” And he looked back to me and said, “So we aren’t going out?”
“Well, yes,” said me, “but I believe so I believe.”” “I bet,” “Yeah, I bet, but when we’re on
the board, how much time are we gonna lose?” “Absolutely not,” “I bet,” “all right. I’m not
going out. It’s me, understand.” “I bet, I believe not.” “What happened?”” “It happened!”
“Did you hear a clue?” “I said, “Oh, no! I-I-I heard that fifth-dinger! Give me the clue!” The
players, myself, and the “Man, Man, Man, it’s just beyond hell!” murmurs of the players.
At the same time, I said, myself, “Young man, I’ve got to say — I won’t screw you right
here.” I went on, “You can take it. You’re not going to lose.”” I smiled. “You know what you
got to admit to yourself? This happened in baseball. I didn’t screw you in baseball, it don’t
matter, I’ll screw you in a way.” He took the fifth-dinger and said, “It’s the end in baseball,
it’s the end.” “That’s correct!” I said. “Yes, you can’t win in baseball,” I said. “But you’re
not winning in baseball.” He turned to me. “No, really, it’s alright whether you’re winning
or not.” — “I’m sure,” he said. “Good money!” — I cut off. “You’re not going to get this
out. You do.” Those were a few words. As I were thinking, “What an enterprise.”
“What are you in baseball?”
“Ah, and it’s a game, not a story and a number. If you believe the most in-the-30s stories
are about the when-they-had-to-be-done-as-cardinals-but-recan’t-they-get-in story?” I said
“suck,” and “We did stop listening to the number, and we had to come off with the number.”
“Exactly,” said Mike. <|endoftext|>

Figure 17: MDLM with the original sampler (32-bit), 50k steps.
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<|endoftext|>I know all about generators and that is one way to build an array.
def call () : # calls for (t.length, i) = 0: str += " false ",t = (TController person.list
objects) func("call".url("")for a,n = t.length: [T in t.T[n])): # def calls [a,n]: * str =
str32(T.setUserstr() for a, t & i in i): str += str28(n = [] t[n=i] # put in a list of objects: t
= tree() call [T in T.T[n i] = array(t.length) if t.length: [T[i]=[]): string d = [] t stracket3
= tail.stracket(string e) [modify: True] tarring = tail.filesPDF.print(dir: "./file") (piling:
True, takeAttempts: false): if hash == 0: print "failed" call r = slacktrace(): names =
t.names. relist(cherying) def up(,x, mtr) : p. stuff array. append(:xltr) # So they should
have this method def bits(.[1:2]: return "x;0".bit()) #3
Ok, now we want to create a simple list. Try. It’s just junk moves. This array can have all
of the objects arguments it packed in:
[5].add( {instance.new = new (instance = (instance.new)) (instance = (instance.new)) (con-
sole.join(instance.new)) func R[ 3]
In our example, [1, 2], [2, 3, 4, 5 and 8 . . . (0, 31’, 42‘’]’ lists contain more elements than in
normal arrays and other complex types. It might be significant to say the list includes each
engine constant size if it’s not slow, but not if it contains no elements. To summarize, we
get a list with 3 possible names and divide that list gradually between #3-4.
Now here’s how we’ll build an array with synthetic element references:
foo = Foo { 3:3:4 } observe a variable from (func yout int y) -> nil do [apply (number of])
assert false if not true # make references for foo bar x (map (variable x y = let x x as
par y x x as par y]) (strip ’uoy) print(’foo bar foo’)) """.add bar x """.add (print(’foo foo’))
{any,...} observe a tuple from (func (func xs) -> nil do let.add = let element if (element ==
tuple[numberOf]: 0): ".add(_) done if (done == 1) return "doDone"} ".add (j2.resolve(foo),
’(WhatWhy’.by’,’Call’.d somewhere?’),) end (waffle(j1, (j2.w2](require::John method ’call)(’
of [’Ref()’]])))))) } kilobyms aren’t practical with these from a memory perspective. And
don’t ask at the very end where lines are the lowest line when they won’t be allocated in
memory.
(map? # add integers for Lua Lua? # do arithmetic for Emacs) end Lua? def x() # retrieve
a++ list item (func (func list)) -> nil do (for method ’_of’, t) i a] puts t’m ”-L’,’N”3)) return
nil def drop_list #5
Added by clip :
Scratch
Now that you know it’s adding elements moves again, a lot of other tricks are used in some
Perl code. Common Lisp is the lone voice of the Emacs-Stuff. I should be careful just that
Lisp is good and can help out, it is easier to make the code readable even than it is to
express the tested is really pretty. Having a lot of clause numbers is good enough.
Still, you’ll find difficulties in extracting and adding the references pretty amazing. You have
to look at code to get it to work. Each line has to introduce a name for each variable and
its arguments. Combine the arguments with as1,2,2,3,4,5 . . . , changing this to one which
those argument arguments is called. When we are functional it’s correct to pass in multiple
elements from multiple lists:
[] (x, d) list.remove() d1 . . . (0, 3, (10, 6, 12) (list(or, r))))function () is identical to the
line<|endoftext|>

Figure 18: MDLM with the original sampler (64-bit), 50k steps.
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<|endoftext|> tough cases be property/private fields in Base class for example Class or with
struct containing member.
-Loose the logic to possible the entry point to a species tree:
class Terence__ = ‘sum__’ collections.create_species_tree( Age = Age(=’ab’). # Adult;
Reward = Class Agg::PopulationId( (’Founded by:’), - ’Age’;Biometric’,’Nominal’,’Possible
inhabit:’, Population’,’Life’) )
To construct a family tree then it uses join(members) creating a chain(MONS in a family
tree)
Using ((each ( urn__) multi-found 10..12 sequence heads { ’Master’: ’Maiar’: (any mem-
ber)? ’M’; members=BB[’Artefemp():3], col’y?’: export_to<table> - 12, ’BCG or Un-
right’= (’some point: NUMEGatsL’) -> X? ’B’; return unright; 1, 0, 3})))
Imple via Funrophy. . . What we need is our Fugai. Can create a tree class that knows a
couple other methods or the interface and generate its message. That’s the point. Generate
members are using they are ordered in a tuple as a of> from>, so that user will be told
member entries:
Garage: by an ’H": This ##group belongs to all mothers. Martin#being an infant Martin
= join(members)
2. Slimming the tree
it might look like this:
// Dont break the interface for the popular io.service and DoNot using iauto import strings =
new System.getParameter(>’strings’) case latermy new System.getParameter(i auto) (rest
= 0) case latermy new System.getParameter(strings, i)
-Left String, Group Deleted, Advanced
Identity collection removed because the collection was updated in memory. Its correctness
algorithm is to automatically append the family membership:
find(my) = from(System.Families).find(’kindles’) $ Member
To construct a separate one, say it wants to extract the locations of the following:
struct aity := behavior.shallow(location)}(object) any : implicit struct Aggido = this. cre-
ate("Addons") => implicit.add(”)
You can create the following manifest |RunningSeparative relation:
You should be able to embed an Aggido rule in the Image of the JSONs until You are
Aggido queries in json format. Adding Aggido rules for every queries should be such such
mechanism, for data is only shipped to rules on reusable entities and the Aggido behaviour.
Aggido application needs not register and read. Translation
So now, we have the # required fields, default priority and timestamp. Its type appropriate
(or so is a simpler version of FFTAPango and MessageGrid with pure vertical formatting)
but we also need another interface, range_rating. This means we can create a Category
initial that can be of any grade and its default value the same. FFTAPango also allows us
to combine use of two content names. For example:
public w = Long(’yes.txt’) doIf(SignatureCaseStaining(w).get_row...), doIf == ’heading’
p.as_on(0, ’Fuh.’) p.as_low(0,”dogs ’, ”, 1.2.1000’; end p.dec_of(’2.8’, 0.9, ”, ’Content’)
The simplified FFTAPang that follows has to be named as a tmuple with rvalue or an
Array() after the oui’ extension at class level:
public string name var nameeme = Long(’faju’) p.update_to(name,’Single Timothy’)
p.as_right(name,’The British’, \’, 0, \’, 0, 0.7’)
- Text expression with a """" parameter be used to generate list-expression for the word
column. It follows the same interface as the following but SQLite syntax is following: Select
a ’word with an Aff’ of x class on the top of the x indicate a particular word in the selected
word. list_expression = h[x], Long[’jobRemoval’: "Mf,gainfree’].
If named as ‘wordcolumn’ the following image follows:
public string p =Vector.Word<letter> { let a = t; // the second key p.values(’a’, ’I like w’,
t’, ’Even though’; p.split(’A better, english’,’Association of ’,’, 0, 0.7; end p[’word <|endof-
text|>

Figure 19: MDLM with our first-hitting predictor-corrector sampler, 1024 steps.
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