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A APPENDIX

A.1 MOTIVATING QUESTIONS

Inspired by the appendix of (Karamcheti et al., 2023), in this section, we list some motivating ques-
tions that may arise from reading the main paper.

Q1. The experiments all consider preferences beyond task progress. If the end-user’s preference
is only progress, can RAPL achieve comparable performance compared to the SOTA TCC-based
visual reward (Zakka et al., 2022)?

TCCRAPL

Figure 10: X-Magical. Progress-only
reward success rate.

To investigate this, we return to the X-Magical group-
ing task (middle plots in Figure 2) where a short stick
robot needs to push two objects to goal. We removed the
grouping preference so the ground truth task reward is
consistent with the original benchmark in (Zakka et al.,
2022). We trained RAPL with 150 preference queries
and compare it with the TCC reward model trained us-
ing 500 demonstrations. In Figure 10, we show the pol-
icy evaluation success rate during policy learning. We see
that RAPL has comparable final success rate compared to
TCC and has a more stable policy training, showing that it can learn a superset of preferences when
compared to TCC.

Q2. What makes RAPL different from prior robot learning works that use optimal transport (OT)
based visual rewards?

Indeed, OT-based visual rewards have become increasingly popular for learning robot manipulation
(Haldar et al., 2023b;a; Guzey et al., 2023). However, key to making the OT-based visual reward
successful in Haldar et al. (2023b) is fine-tuning the representation model via behavior cloning tasks.
This helps the model to capture some task-relevant information at the cost of requiring action labels.
Furthermore, by relying on action labels, it is unclear if the learned reward can generalize to a
different embodiment. Instead, our approach learns the representation only using preference queries
(no action labels) and can generalize to embodiments.

Q2. Why do MVP-OT and TCC-OT achieve near 0 success rate in the robot manipulation experi-
ments in Figure 6 and Figure 9?

Recall that both MVP-OT and TCC-OT use optimal transport to match the embedding distribu-
tion of the robot and the expert, but they vary which visual representation they use to obtain the
embedding.

The MVP encoder is trained via masked autoencoding (He et al., 2022) to reconstruct heavily
masked video frames. As such, it captures representations amenable to per-pixel reconstruction.
Prior work (Karamcheti et al., 2023) has demonstrated that this representation struggles with higher-
level problems (e.g., language-based imitation). We hypothesize this is why MVP-OT struggles to
capture preference-relevant features and does not lead to aligned robot behaviors. Our results are
also consistent with the experiments in (Haldar et al., 2023b) where an OT-based visual reward with
a pre-trained MVP representation model gives near 0 success rate for manipulation tasks.

The TCC encoder is trained via temporal cycle-consistency constraints, and as such captures repre-
sentations that encode solely task progress (e.g., distance to the goal image). Such a representation
works well when goal reaching is the only preference of the end user. In our tabletop grouping task,
the end user cares about goal reaching, but they also prefer moving the two objects together to goal
region over moving the objects one-by-one. Thus if the robot happens to push one object towards the
goal during policy learning, TCC-OT will reward this behavior (since this image is getting “closer”
to the goal image) even though this is not preferred by the user.

A.2 EXTENDED RELATED WORK

Visual robot rewards promise to capture task preferences directly from videos. Self-supervised
approaches leverage task progress inherent in video demonstrations to learn how “far” the robot
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is from completing the task (Zakka et al., 2022; Kumar et al., 2023; Ma et al., 2023) while other
approaches identify task segments and measure distance to these subgoals (Sermanet et al., 2016;
Tanwani et al., 2020; Shao et al., 2020; Chen et al., 2021). However, these approaches fail to model
preferences during task execution that go beyond progress (e.g., spatial regions to avoid during
movement). Fundamental work in IRL uses feature matching between the expert and the learner
in terms of the expected state visitation distribution to infer rewards (Abbeel & Ng, 2004; Ziebart
et al., 2008), and recent work in optimal transport has shown how to scale this matching to high
dimensional state spaces (Xiao et al., 2019; Dadashi et al., 2021; Papagiannis & Li, 2022; Luo et al.,
2023). However, key to making this matching work from high-dimensional visual input spaces is a
good visual embedding. Previous works used proxy tasks, such as behavior cloning (Haldar et al.,
2023a;b) or temporal cycle-consistency learning (Dadashi et al., 2021), to train the robot’s visual
representation. In contrast to prior works that rely on hard-to-obtain action labels or using only self-
supervised signal, we propose an OT-based visual reward that is trained purely on videos (no action
labels needed) that ranked by the end-user’s preferences.

Preference-based learning. While demonstrations have been the data of choice for reward learning
in the past, an increasingly popular approach is to use preference-based learning (Christiano et al.,
2017; Sadigh et al., 2017; Biyik & Sadigh, 2018; Wirth et al., 2017; Brown et al., 2019; Shin et al.,
2023; Stiennon et al., 2020). Here the human is asked to compare two (or more) trajectories, and
then the robot infers a map from ranked trajectories to a scalar reward. This feedback is often eas-
ier for people to give than kinesthetic teaching or fine-grained feedback (Shin et al., 2023). At the
same time, prior works and our experiments show that directly predicting the reward from prefer-
ence queries and high-dimensional input suffers from high sample inefficiency and causal confusion
(Bobu et al., 2023b; Tien et al., 2022). To mitigate this issue, (Brown et al., 2020) augments multiple
self-supervised objectives like inverse dynamics prediction or enforcing temporal cycle-consistency
with the preference learning loss, but this requires additional signals like actions and the additional
self-supervised objective may bias the learned rewards towards capturing spurious correlations.

Representation alignment in robot learning. Representation alignment studies the agreement
between the representations of two learning agents. As robots will ultimately operate in service
of people, representation alignment is becoming increasingly important for robots to interpret the
world in the same way as we do. Previous work has leveraged user feedback, such as human-driven
feature selection (Bullard et al., 2018; Luu-Duc & Miura, 2019), interactive feature construction
(Bobu et al., 2021; Katz et al., 2021), or similarity-implicit representation learning (Bobu et al.,
2023a), to learn aligned representations for robot behavior learning. But they either operate on a
manually defined feature set or learning features in state space settings. In visual domain, (Zhang
et al., 2020) directly uses per-image reward signal to align image representation with the human
preference encoded in the reward signal, while directly accessing such a preference signal is not
practical. Our work utilizes human preference feedback that naturally contains human preference to
align robot’s visual representations with the end user.

A.3 OPTIMAL TRANSPORT BASED REWARD

Setup. Let o = {ot}t=T
t=1 be a trajectory of observations, where T is the trajectory length. Let

D+ ⊂ SϕH be a dataset of preferred videos from the preference video dataset and DR be the set of
videos induced by a given robot policy πR. We denote ϕ : Rh,w,3 → Rne as an observation encoder
that maps a h × w RGB image to a ne dimensional embedding. For any video o, let the induced
empirical embedding distribution be ρ = 1

T

∑T
t=0 δϕR(ot), where δϕR(ot) is a Dirac distribution

centered on ϕR(o
t).

Background. Optimal transport finds the optimal coupling µ∗ ∈ RT×T that transports the robot
embedding distribution, ρR, of a robot video oR ∈ DR to the expert video embedding distribution,
ρ+ for o+ ∈ D+, with minimal cost (as measured by a distance function, e.g. cosine distance). This
comes down to an optimization problem that minimizes the Wasserstein distance between the two
distributions:

µ∗ = argmin
µ∈M(ρR,ρ+)

T∑
t=1

T∑
t′=1

c
(
ϕ(otR), ϕ(o

t′

+)
)
µt,t′ . (8)

where M(ρR, ρ+) = {µ ∈ RT×T : µ1 = ρR, µ
T1 = ρ+} is the set of coupling matrices and

c : RnR × Rn+ → R is a cost function defined in the embedding space (e.g., cosine distance).
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The optimal transport plan gives rise to the following reward signal that incentivizes the robot to
stay within the expert demonstration distribution by explicitly minimizing the distance between the
observation distribution and expert distribution:

r(otR;ϕR) = −
T∑

t′=1

c
(
ϕR(o

t
R), ϕR(o

t′

+)
)
µ∗
t,t′ . (9)

Regularized optimal transport. Solving the above optimization in Equation 8 exactly is generally
intractable for high dimensional distributions. In practice, we solve a entropy regularized version
of the problem following the Sinkhorn algorithm (Peyré et al., 2019) which is convex in µ and
amenable to fast optimization:

µ∗ = argmin
µ∈M(ρR,ρ+)

T∑
t=1

T∑
t′=1

c
(
ϕ(otR), ϕ(o

t
+)

)
µt,t′ − ϵH(µ), (10)

where H denotes the entropy term that regularizes the optimization and ϵ is the associated weight.

Choosing an o+ to match with πR. The reward (9) requires matching the robot to an expert
observation video. To choose this expert observation, we follow the approach from (Haldar et al.,
2023a). During policy optimization, given a robot’s trajectory’s observation oR induced by the robot
policy πR, we select the the “closest” expert demonstration o∗

+ ∈ D+ to match the robot behavior
with. This demonstration selection happens via:

o∗
+ = argmin

o+∈D+

min
µ∈M(ρR,ρ+)

T∑
t=1

T∑
t′=1

c
(
ϕ(otR), ϕ(o

t′

+)
)
µt,t′ . (11)

A.4 ATTENTION MAP FOR RAPL AND RLHF

Figure 11: Manipulation: Attention Map. Visualization of attention map for RLHF-150 demos,
RLHF-300 demos, and RAPL with 150 demos for both Kuka and Franka (cross-embodiment) im-
ages. Each entry of the figure shows two image snapshots from the relevant demonstration set with
the attention map overlaid. Bright yellow areas indicate image patches that contribute most to the
final embedding; darker purple patches indicate less contribution.

A.5 ADDITIONAL RLHF RESULTS

In Sec.5.2, it’s surprising that RLHF fails to learn a robot policy in a more realistic environment
since its objective is similar to ours, but without explicitly considering representation alignment.
To further investigate this, we apply a linear probe on the final embedding and visualize the image
heatmap of what RAPL’s (our representation model trained with 150 training samples), RLHF-
150’s (RLHF trained with 150 samples), and RLHF-300’s (RLHF trained with 300 samples sam-
ples) final embedding pays attention to in Figure 11.
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Figure 12: Manipulation. RAPL out-
performs RLHF by 75% with 50% less
training data.

We see that ϕRAPL learns to focus on the objects, the
contact region, and the goal region while paying less at-
tention to the robot arm; ϕRLHF−300 is biased towards
irrelevant areas that easily induce “spurious” correlations
such as the robot arm and background are; ϕRLHF−300’s
attention is slightly shifted to objects while still pays high
attention to the robot embodiment.

When deploying ϕRLHF−300 in Franka manipulation
policy learning, we observe that policy performance is
slightly improved (indicating that with more feedback
data, preference-based reward prediction could yield to
an aligned policy), but RAPL still outperforms RLHF
by 75% with 50% less training data, supporting the hy-
pothesis: RAPL outperforms RLHF with lower amounts of human preference queries.

A.6 ADDITIONAL CROSS-EMBODIMENT LEARNING RESULTS

Figure 13 shows the rewards over time for the three cross-embodiment video observations (marked
as preferred by the end- user’s ground-truth reward or disliked) in the avoid (left) and group task
(right). Across all examples, RAPL ’s rewards are highly correlated with the GT rewards even
when deployed on a cross-embodiment robot.

Figure 14 shows the rewards over time for the two cross-embodiment video observations (marked as
preferred by the end- user’s ground-truth reward or disliked). Across all examples, RAPL ’s rewards
are highly correlated with the GT rewards even when deployed on a cross-embodiment robot.

TCCRLHFRAPLGTCross-Embodiment: Avoiding

never makes progress

pushes two objects together

Cross-Embodiment: Grouping

Disliked

Preferred

(A) (B)

(C) (D)

(E) (F)

never makes progress

Disliked

enters user's "off limits" areaDisliked

achieves task w/o entering "off limits" areaPreferred

Disliked only pushes one target

Figure 13: Cross-Embodiment: X-Magical. RAPL can distinguish preferred and disliked videos
in the cross-embodiment setting.
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Figure 14: Cross-Embodiment: Manipulation. (left) Reward over time for a Kuka preferred and
disliked video. (center) Expert video on Franka robot, preferred video on Kuka, and disliked Kuka
video demo. (right) OT plan for each representation. Columns are embedded frames of expert
demo. Rows of top matrices are embedded frames of preferred demo; rows of bottom matrices are
embedded frames of disliked demo. Peaks exactly along the diagonal indicate that the frames of the
two videos are aligned in the latent space; uniform values in the matrix indicate that the two videos
cannot be aligned (i.e., all frames are equally “similar” to the next). RAPL matches this structure:
diagonal peaks for expert-and-preferred and uniform for expert-and-disliked, while baselines show
diffused values no matter the videos being compared.
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