
Sampling without Replacement Leads to Faster Rates
in Finite-Sum Minimax Optimization

Aniket Das ∗

Indian Institute of Technology Kanpur
aniketd@iitk.ac.in

Bernhard Schölkopf
Max Planck Institute for Intelligent Systems

bs@tuebingen.mpg.de

Michael Muehlebach
Max Planck Institute for Intelligent Systems

michaelm@tuebingen.mpg.de

Abstract

We analyze the convergence rates of stochastic gradient algorithms for smooth
finite-sum minimax optimization and show that, for many such algorithms, sam-
pling the data points without replacement leads to faster convergence compared to
sampling with replacement. For the smooth and strongly convex-strongly concave
setting, we consider gradient descent ascent and the proximal point method, and
present a unified analysis of two popular without-replacement sampling strategies,
namely Random Reshuffling (RR), which shuffles the data every epoch, and Single
Shuffling or Shuffle Once (SO), which shuffles only at the beginning. We obtain
tight convergence rates for RR and SO and demonstrate that these strategies lead to
faster convergence than uniform sampling. Moving beyond convexity, we obtain
similar results for smooth nonconvex-nonconcave objectives satisfying a two-sided
Polyak-Łojasiewicz inequality. Finally, we demonstrate that our techniques are
general enough to analyze the effect of data-ordering attacks, where an adversary
manipulates the order in which data points are supplied to the optimizer. Our
analysis also recovers tight rates for the incremental gradient method, where the
data points are not shuffled at all.

1 Introduction

The approximate solution of large-scale optimization problems using first-order stochastic gradient
methods constitutes one of the foundations of classical machine learning. However, emerging
problems in machine learning go beyond pattern recognition and involve real-world decision making,
where learning algorithms interact with unknown or even adversarial environments or are deployed
in multi-agent settings. Decision making in such environments often involves solving a minimax
optimization problem of the form minx maxy F (x,y), whose analysis has been a focus of research
in mathematics, economics, and theoretical computer science [38, 13, 10]. Recent examples of its
applications in machine learning include adversarial learning [32, 52, 6], reinforcement learning [30,
58, 11, 42], imitation learning [14, 8, 24], and generative adversarial networks [18, 2]. In most of these
applications, the objective F (x,y) has a finite-sum structure, i.e., F (x,y) = 1/n

∑n
i=1 fi(x,y)

where n denotes the size of the dataset and each component function fi denotes the objective
associated with the ith data point. The resultant problem is known as finite-sum minimax optimization:

∗Currently at Google Research. Contact: ketd@google.com

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

min
x∈Rdx

max
y∈Rdy

1

n

n∑
i=1

fi(x,y). (1)

When n is large and the fi’s are differentiable (which holds for most applications), approximate
solutions to (1) are computed using stochastic gradient algorithms. These algorithms typically sample
an index i ∈ [n] at each iteration as per some specified sampling routine, and use the gradients of fi
to compute the next iterate. Among these methods, perhaps the simplest and most commonly used
algorithm is Stochastic Gradient Descent Ascent (SGDA), a natural extension of Stochastic Gradient
Descent (SGD) for minimax optimization.

Similar to the stochastic optimization literature, analysis of stochastic minimax optimization often
assumes that, at every iteration, the index i is sampled uniformly with replacement. Analysis of the
resulting algorithm closely parallels the analysis of SGD, and relies on the fact that uniform sampling
leads to unbiased gradient estimates. Recent works [20, 31] have also extended this paradigm to
i.i.d uniform sampling of mini-batches. While uniform sampling assumptions simplify theoretical
analysis, practical implementations of these algorithms often deviate from this paradigm, and instead
incorporate various heuristics, which are often empirically found to improve runtime. A common
and notable heuristic is to replace uniform sampling by procedures that perform multiple passes
over the entire dataset, and in each such pass (called an epoch), sample the data points without
replacement. Thus, each data point is sampled exactly once in every epoch. These procedures are
generally implemented using one of the following approaches:

Random Reshuffling (RR): Uniformly sample a random permutation of [n] at the start of every
epoch, and process the data points within that epoch as per the order specified by the permutation.

Single Shuffling or Shuffle Once (SO): Uniformly sample a random permutation at the beginning
and reuse it across all epochs to order the data points.

Incremental Gradient (IG): Do not permute the data points at all and follow a fixed deterministic
data ordering for every epoch.

Sampling without replacement is ubiquitous in both stochastic minimization [7, 48, 4] and stochastic
minimax optimization [18, 2] as it often exhibits faster runtime than uniform sampling. However,
these empirical benefits come at the cost of limited theoretical understanding, due to the absence of
provably unbiased gradient estimates.

It is well known in the optimization literature that SGD with replacement has a tight rate of O(1/nK)
for smooth and strongly convex minimization [44, 25], where n is the number of component functions
and K denotes the number of epochs. On the contrary, recent works on SGD without replacement
for smooth and strongly convex minimization [1, 36, 34, 39] show that both RR and SO achieve a
non-asymptotic rate of Õ(1/nK2), once the number of epochs K is larger than a certain threshold
K0 (usually polynomial in the condition number), and thereby converge faster than SGD with
replacement. These rates match the lower bound of Ω(1/nK2) for RR and SO established in prior
works [43, 48], modulo logarithmic factors. For RR, prior works have also established a similar
Õ(1/nK2) rate for nonconvex objectives satisfying the Polyak-Łojasiewicz (PŁ) inequality [1, 34].
While the asymptotic behavior of IG has been known to the community for a long time in both smooth
and non-smooth settings [5, 37], non-asymptotic Õ(1/K2) convergence rates have been established
quite recently [34, 39, 22], and are complemented by a matching Ω(1/K2) lower bound [48].

1.1 Contributions

Although the empirical benefits of sampling without replacement have been substantiated for min-
imization, analysis of these methods for minimax optimization have received much less attention,
despite being widely prevalent in many applications. Our work aims to fill this gap by analyzing
these methods for minimax optimization. To this end, our main contributions are as follows:

Unified analysis of RR and SO for smooth strongly convex-strongly concave problems: We
analyze RR and SO in conjunction with simultaneous Gradient Descent Ascent (GDA), calling
the resulting algorithms GDA-RR and GDA-SO, respectively. Assuming the components fi are
smooth and F is strongly convex-strongly concave, we present a unified analysis of GDA-RR/SO
and establish a convergence rate of Õ(exp(−K/5κ2) + 1/nK2) for both (where κ is the condition

2

number). Comparing with lower bounds, we show that our rates are nearly tight, i.e., they differ from
the lower bound only by an exponentially decaying term. Moreover, when K ≥ 10κ2 log(n1/2K),
the convergence rate matches the lower bounds for GDA-RR/SO, modulo logarithmic factors, and
also converges provably faster than SGDA with replacement. Under the same setting, we obtain
similar guarantees for the RR and SO variants of the Proximal Point Method (PPM), named PPM-RR
and PPM-SO respectively. Our analysis for both GDA-RR/SO and PPM-RR/SO is general enough
to cover smooth strongly monotone finite-sum variational inequalities, which covers minimization,
minimax optimization, and multiplayer games.

RR for smooth two-sided PŁ objectives: We consider a class of nonconvex-nonconcave problems
where the objective F satisfies a two-sided Polyak-Łojasiewicz inequality. For such problems, we
propose an algorithm that combines RR with two-timescale Alternating Gradient Descent Ascent
(AGDA), which we call AGDA-RR. We show that AGDA-RR has a nearly tight convergence
rate of Õ(exp(−K/365κ3) + 1/nK2) when the gradient variance is uniformly bounded. When
K ≥ 730κ3 log(n1/2K), this rate matches the lower bound (modulo logarithmic factors) and
improves on the best known rates of with-replacement algorithms for this class of problems.

Minimax optimization under data ordering attacks: Our techniques for analyzing RR/SO general-
ize to the analysis of finite-sum minimax optimization under data ordering attacks [51]. These attacks
target the inherent randomness assumptions of stochastic gradient algorithms, significantly increasing
training time and reducing model quality, only by manipulating the order in which the algorithm
receives data points, without performing any data contamination. To model these attacks, we propose
the Adversarial Shuffling (AS) setup, where the data points are shuffled every epoch by a computa-
tionally unrestricted adversary. In this setup, we show that GDA and PPM (now called GDA-AS and
PPM-AS) have a convergence rate of Õ(exp(−K/5κ2)+1/K2) for smooth strongly convex-strongly
concave objectives, and AGDA (now called AGDA-AS) has a rate of Õ(exp(−K/365κ3) + 1/K2)
for two-sided PŁ objectives. We note that, compared to RR and SO, the convergence rate worsens
by a factor of 1/n for large enough K. When n is large (true for most applications), this slowdown
significantly impacts convergence and thus, theoretically justifies the empirical observations in prior
work [51]. We also establish that our analysis in the AS regime also applies to the Incremental
Gradient (IG) variants of these algorithms (namely GDA-IG, PPM-IG, and AGDA-IG), and use this
to show that our obtained rates for GDA-RR and AGDA-RR are nearly tight.

To the best of our knowledge, our work is the first to: 1) analyze RR, SO, and IG for strongly monotone
unconstrained variational inequalities, 2) analyze RR and IG for a class of nonconvex-nonconcave
minimax problems, 3) provably demonstrate the advantages of sampling without replacement for
both these settings and justify its empirical benefits in a wide variety of problems ranging from
minimization, minimax optimization to smooth multiplayer games, 4) analyze sampling without
replacement under data-ordering attacks. Furthermore, unlike prior works on sampling without
replacement for minimax optimization [55, 33], which are restricted to random reshuffling and
require the component functions to be convex-concave, Lipschitz, and smooth, our analysis does not
impose any restrictions on the components fi other than smoothness, allowing them to be arbitrary
nonconvex-nonconcave functions.

2 Notation and Preliminaries

We work with Euclidean spaces (Rd, ⟨., .⟩) equipped with the standard inner product ⟨x1,x2⟩ and the
induced norm |x|. For any x ∈ Rdx and y ∈ Rdy , we denote z = (x,y) ∈ Rd where d = dx + dy.
Moreover, for any z1 = (x1,y1) ∈ Rd and z2 = (x2,y2) ∈ Rd, ⟨z1, z2⟩ = ⟨x1,x2⟩+ ⟨y1,y2⟩ and
|z1|2 = |x1|2 + |y1|2. Whenever z = (x,y) is clear from the context, we write f(x,y) as f(z). We
use Sn to denote the set of all permutations of [n] = {1, . . . , n}. For any matrix A, its operator norm
is denoted by |A| = sup|x|=1 |Ax|. We use the O notation to characterize the dependence of our
convergence rates on n and K, suppressing numerical and problem-specific constants such as κ, µ, σ,
etc. Additionally, we use the Õ notation to suppress logarithmic factors of n and K.

Our work studies finite-sum minimax optimization (1). Solutions to (1) are known as global minimax
points of F = 1/n

∑n
i=1 fi, which we assume to always exist. We also assume that the components

fi are continuously differentiable, and hence, the same applies to F . This allows us to define the

3

gradient operators ωi : Rd → Rd and ν : Rd → Rd as follows:

ωi(x,y) = [∇xfi(x,y),−∇yfi(x,y)], ν(x,y) = 1/n

n∑
i=1

ωi(x,y).

We also impose the following smoothness assumption on the components fi.
Assumption 1 (Component Smoothness). The component functions fi are l-smooth, i.e., each
gradient operator ωi is l-Lipschitz

|ωi(z2)− ωi(z1)| ≤ l |z2 − z1| .

Consequently, the operator ν is also l-Lipschitz, i.e., F is l-smooth.

3 Analysis for Strongly Convex-Strongly Concave Objectives

In this section, we analyze two very popular without-replacement algorithms for finite-sum minimax
optimization, Gradient Descent Ascent (GDA) without replacement and Proximal Point Method
(PPM) without replacement. For each of these, we present a unified analysis of the Random
Reshuffling (RR) and Shuffle Once (SO) variants (called GDA-RR/SO and PPM-RR/SO respectively).
For a fixed K > 0, GDA-RR/SO approximately solves (1) by iterating over the entire dataset for K
epochs, and within each epoch, uses the operators ωi to perform the following iterative update:

zki ← zki−1 − αωτk(i)(z
k
i−1) ∀i ∈ [n], (2)

where τk is a uniformly sampled random permutation of [n] and 0 < α < 1/l is a constant step-size.
GDA-RR resamples τk at the start of every epoch, whereas GDA-SO samples it only once in the
beginning. The details of both algorithms are presented in Algorithm 1. The Proximal Point Method
without replacement is a closely related algorithm which, instead of performing gradient descent-style
updates within an epoch, solves the following implicit update equation for zki :

zki = zki−1 − αωτk(i)(z
k
i) ∀i ∈ [n]. (3)

As before, τk is resampled at every epoch for PPM-RR, and sampled once and fixed for all epochs
for PPM-SO. We present the details in Algorithm 2. The l-smoothness of ωi along with the choice
of α < 1/l ensures that zki is uniquely defined, since it is a fixed point of the contraction mapping
ζ(z) = zki−1−αωτk(i)(z). This method is actually a generalization of the (stochastic) proximal point
method for minimization problems, and is popular for problems where (3) can be solved easily or in
closed form. We refer the readers to Rockafellar [47], Patrascu and Necoara [41] for a review of this
method and its connections to the original proximal point method for minimization.

3.1 Setting

We analyze GDA-RR/SO and PPM-RR/SO for smooth finite-sum strongly convex-strongly concave
(or SC-SC) objectives. This allows us to formulate the minimax optimization problem for F as a root
finding problem for the gradient operator ν, as described below.
Assumption 2 (Strong Convexity-Strong Concavity). The objective F is µ strongly convex-strongly
concave (or SC-SC), i.e., F (.,y) is µ-strongly convex for any y ∈ Rdy and −F (x, .) is µ-strongly
convex for any x ∈ Rdx .

Assumption 2 has the following consequences for the gradient operator ν:
Lemma 1. Let F satisfy Assumptions 1 and 2. Then, the gradient operator ν is µ-strongly monotone:

⟨ν(z1)− ν(z2), z1 − z2⟩ ≥ µ |z1 − z2|2 ∀ z1, z2 ∈ Rd.

Furthermore, (1) admits a unique solution z∗, which is also the unique solution of ν(z∗) = 0.

Lemma 1 allows us to recast (1) for SC-SC objectives as the following root finding problem:

Find z ∈ Rd such that ν(z) = 1/n

n∑
i=1

ωi(z) = 0. (4)

4

Algorithm 1: GDA-RR/SO/AS
Input :Number of epochs K,

step-size α > 0, and
initialization z0

Initialize z10 ← z0
SO: Sample τ ∼ Uniform(Sn)
for k ∈ [K] do

RR: Sample τk ∼ Uniform(Sn)
SO: τk ← τ
AS: Adversary chooses τk ∈ Sn
for i ∈ [n] do

zki ← zki−1 − αωτk(i)(z
k
i−1)

end
zk+1
0 ← zkn

end

Algorithm 2: PPM-RR/SO/AS
Input :Number of epochs K, step-size

α > 0, and initialization z0
Initialize z10 ← z0
SO: Sample τ ∼ Uniform(Sn)
for k ∈ [K] do

RR: Sample τk ∼ Uniform(Sn)
SO: τk ← τ
AS: Adversary chooses τk ∈ Sn
for i ∈ [n] do

Solve the implicit update for zki where,
zki = zki−1 − αωτk(i)(z

k
i)

end
zk+1
0 ← zkn

end

Figure 1: GDA-RR/SO/AS and PPM-RR/SO/AS for solving (4). Violet lines denote steps that are
only performed for RR, Olive lines denote the same for SO and Magenta for AS.

Problem (4) is more general than SC-SC minimax optimization, and is a special case of strongly
monotone variational inequalities [13] without constraints. Notably, (4) includes the Nash Equilibrium
problem for unconstrained multiplayer games with smooth strongly convex objectives [50] and is
sometimes called a finite-sum unconstrained variational inequality in the literature [31]. We also
highlight that smooth strongly convex optimization is a special case of (4). However, unlike the
optimization setting, ν is no longer restricted to be the gradient of a strongly convex function, which,
as we shall see, has important consequences for the attainable convergence rates of our algorithms.

3.2 Analysis of RR/SO

We now state the expected last-iterate convergence guarantees for Algorithms 1 and 2 for solving (4),
where the expecation is taken over the stochasticity of the sampled permutation(s).
Theorem 1 (Convergence of GDA-RR/SO and PPM-RR/SO). Consider Problem (4) for the µ-
strongly monotone operator ν(z) = 1/n

∑n
i=1 ωi(z) where each ωi is l-Lipschitz, but not necessarily

monotone. Let z∗ denote the unique root of ν. Then, there exists a step-size α ≤ µ/5nl2 for which
both GDA-RR/SO and PPM-RR/SO satisfy the following for any K ≥ 1:

E[|zK+1
0 −z∗|2] ≤ 2e

−K/5κ2 |z0−z∗|2+
2µ2 + 8κ2σ2

∗ log
3(|ν(z0)|n1/2K/µ)

µ2nK2
= Õ(e

−K/5κ2
+1/nK2),

where κ = l/µ is the condition number and σ2
∗ = 1/n

∑n
i=1 |ωi(z

∗)|2 is the gradient variance at z∗.

Proof. We present an outline for GDA-RR/SO and defer the full proof to Appendix C.2 (for GDA-
RR/SO) and Appendix D.2 (for PPM-RR/SO). Furthermore, we recall that the updates of GDA-RR/SO
are given by zki = zki−1 − αωτk(i)(z

k
i−1).

We begin with the following key insight from earlier works on sampling without replacement for
minimization [23, 1, 37, 22]: for small enough step-sizes, the epoch iterates zk0 of GD without
replacement approximately follow the trajectory of full-batch gradient descent. To this end, we derive
the following epoch-level update rule for GDA-RR/SO by linearizing ωτk(i)(z

k
i−1) around z∗:

zk+1
0 − z∗ = Hk(z

k
0 − z∗) + α2rk, (5)

where |Hk| ≤ 1 − nαµ/2 and rk =
∑n−1

i=1 Aτk(i)

∑i
j=1 ωτk(j)(z

∗) with
∣∣Aτk(i)

∣∣ ≤ le1/5. The
term rk encapsulates the noise of the stochastic gradient updates accumulated over an entire epoch.
To ensure convergence, we control the influence of the noise term rk by using standard properties
of without-replacement sample means to show that E[|rk|2] ≤ l2n3σ2

∗/4 for both RR and SO. We
then complete the proof by unrolling (5) for K epochs, substituting the upper bounds for |Hk| and
E[|rk|2] wherever necessary, and setting α = min{µ/5nl2, 2 log(|ν(z0)|n1/2K/µ)/µnK}.

5

As we show in Appendix C, the update rule (5) resembles the linearized update rule of full batch
GDA with added noise. In fact, for n = 1, rk = 0 and thus, we recover the rates of full-batch
GDA. Expressing GDA-RR/SO (and later AS) as noisy full-batch GDA in this fashion is a central
component of our unified analysis, and relies on the fact that

∑n
i=1 ωτk(i)(z

∗) = 0 ∀ τk ∈ Sn, which
is specific to sampling without replacement. Comparing to SGDA with replacement, we note that
sampling the components i.i.d. uniformly as u(i) ∼ Uniform([n]) gives rise to an additional noise
term αpk in the update rule, where pk =

∑n
i=1 ωu(i)(z

∗) vanishes only in expecation, and has a
variance of E[|pk|2] = nσ2

∗ . Subsequently, the dominant noise term for SGDA updates is O(α2nσ2
∗)

whereas that of GDA-RR/SO is O(α4n3σ2
∗), which qualitatively demonstrates the implicit variance

reduction of sampling without replacement. As we shall see in the complete proof, this allows RR/SO
to converge faster (for large enough K) by carefully selecting α.

Comparison with lower bounds: Since smooth strongly convex minimization is a special case
of (4), the Ω(1/nK2) lower bound established in prior works [48, 43] for smooth strongly convex
minimization using GD with RR/SO also applies to GDA-RR/SO. Comparing with this lower bound,
we note that the convergence rate of GDA-RR/SO is nearly tight, i.e., it differs from the lower bound
only by an exponentially decaying term. In fact, for K ≥ 10κ2 log(n1/2K), the convergence rate
becomes Õ(1/nK2), which precisely matches the lower bound, modulo logarithmic factors.

Comparison with uniform sampling: Similarly, the Ω(1/nK) lower bound of SGD with re-
placement for smooth and strongly convex functions [44] also applies to SGDA with replacement.
On the contrary, both GDA-RR and GDA-SO converge with a faster rate of Õ(1/nK2) when
K ≥ 10κ2 log(n1/2K). Thus, GDA-RR/SO provably outperform SGDA with replacement (modulo
logarithmic factors) when K ≥ 10κ2 log(n1/2K). As we show in Appendix C.2, the κ2 dependence
of this inequality cannot be improved for constant step-sizes. A similar argument also applies to
stochastic PPM. To the best of our knowledge, the fastest known convergence rate for stochastic PPM
is O(1/nK) for minimizing smooth strongly convex functions [41]. Hence, Theorem 1 suggests
that PPM-RR/SO enjoy a faster Õ(1/nK2) convergence rate for both minimization and minimax
optimization when K ≥ 10κ2 log(n1/2K).

3.3 Analysis in the Adversarial Shuffling Regime

We now consider without-replacement minimax optimization algorithms in an adversarial setting. We
focus on a novel class of training-time attacks known as data ordering attacks proposed by Shumailov
et al. [51]. These attacks differ from standard data-perturbation attacks [19] and exploit the fact that
most implementations of stochastic gradient optimizers do not verify whether the permutation τk
is truly sampled at random. Shumailov et al. [51] propose three distinct attack strategies, namely,
batch reordering, which changes the order in which mini-batches are supplied to the algorithm, batch
reshuffling, which changes the order in which individual data points are supplied, and replacing
which prevents certain data points from being observed by the algorithm by consistently replacing
them with other data points in the training set.

We analyze the convergence of without-replacement GDA and PPM under batch reshuffling attacks.
To this end, we consider an adversarial modification of RR/SO where the permutations τk, instead of
being sampled by the algorithm, are now selected by an adversary using a strategy unknown to the
algorithm. We also the assume that, while choosing τk, the adversary is computationally unrestricted
and has complete knowledge of all the components ωi, the minimax point z∗, and the iterates zki
observed so far. We call this setup Adversarial Shuffling (AS) and obtain convergence rates of GDA
and PPM (named GDA-AS and PPM-AS) when solving (4). Thus, our analysis naturally holds for
minimization, minimax optimization as well as finite-sum multiplayer games. The details are stated
in Algorithms 1 and 2, respectively. Our last iterate convergence guarantees are deterministic and
hold uniformly over any sequence of permutations τ1, . . . , τK that the adversary can choose.
Theorem 2 (Convergence of GDA-AS and PPM-AS). Consider Problem (4) for the µ-strongly mono-
tone operator ν(z) = 1/n

∑n
i=1 ωi(z) where each ωi is l-Lipschitz, but not necessarily monotone.

Let z∗ denote the unique root of ν. Then, there exists a step-size α ≤ µ/5nl2 for which both GDA-AS
and PPM-AS satisfy the following for any K ≥ 1:

max
τ1,...,τK∈Sn

|zK+1
0 −z∗|2≤2e

−K/5κ2 |z0−z∗|2+
2µ2+24κ2σ2

∗ log
3(|ν(z0)|K/µ)

µ2K2
=Õ(e

−K/5κ2
+1/K2),

6

where κ, σ2
∗ are as defined in Theorem 1 and τ1, . . . , τK are the permutations chosen by the adversary.

Convergence rates of IG and comparison with lower bounds: We note that the Incremental
Gradient and the Incremental Proximal Point Methods, which do not shuffle the data, are a special
case of GDA-AS/PPM-AS with τ1, . . . , τK = id. Thus, Theorem 2 also gives us convergence rates for
GDA-IG/PPM-IG. Moreover, since GDA-AS generalizes GDA-IG and (4) covers minimization, the
Ω(1/K2) lower bound of IG established in prior works [48] for smooth strongly convex minimization
also applies to GDA-AS. Thus, our obtained rate for GDA-AS is nearly tight and matches the lower
bound (modulo logarithmic factors) for K ≥ 10κ2 log(K).

Effectiveness of batch reshuffling: When K ≥ 10κ2 log(K), Õ(1/K2) becomes the dominant
term in the convergence rate of AS. This is worse than that of RR/SO by a factor of 1/n and causes a
significant slowdown in convergence, since, in many applications, the dataset size n is much larger
than K. Thus, our analysis justifies the effectiveness of batch reshuffling attacks in reducing model
accuracy and increasing training time, which is empirically verified by Shumailov et al. [51].

4 RR for Two-Sided PŁ Objectives

We now analyze RR for a class of smooth nonconvex-nonconcave problems where the objective F
satisfies a two-sided Polyak Łojasiewicz inequality, first proposed in Yang et al. [54]. We denote this
function class as 2PŁ and formally state the assumption as follows.
Assumption 3 (Two-sided Polyak Łojasiewicz Inequality or 2PŁ condition). For any x ∈ Rdx ,y ∈
Rdy , the sets argmaxỹ F (x, ỹ) and argminx̃ F (x̃,y) are non-empty. Furthermore, there exist
positive constants µ1, µ2 such that F satisfies the following:

|∇xF (x,y)|2 ≥ 2µ1[F (x,y)− min
x̃∈Rdx

F (x̃,y)], |∇yF (x,y)|2 ≥ 2µ2[max
ỹ∈Rdy

F (x, ỹ)− F (x,y)].

The 2PŁ condition is satisfied in several practical settings, including, but not limited to, robust least
squares [12], imitation learning for linear quadratic regulators [14, 8], and various other problems in
reinforcement learning and robust control [11, 8]. Clearly, any SC-SC function is 2PŁ. However, 2PŁ
functions need not be SC-SC, or even convex-concave. We refer the readers to Yang et al. [54] for a
detailed discussion of the 2PŁ class and its applications.

Analysis of RR for 2PŁ objectives is challenging not only due to nonconvexity-nonconcavity, but
also because F may not have a unique minimax point. Indeed, as we demonstrate in Appendix E.1, it
is possible to construct 2PŁ functions where the set of minimax points is an unbounded proper subset
of Rd. Hence, the notion of gradient variance at the minimax point, which we used in our earlier
analyses, is no longer meaningful. To overcome this, we impose the following assumption.
Assumption 4 (Bounded Gradient Variance). There exists a positive constant σ such that the
component gradient operators ωi satisfy the following for any z ∈ Rd:

1/n

n∑
i=1

|ωi(z)− ν(z)|2 ≤ σ2.

4.1 Analysis of AGDA-RR and AGDA-AS

In order to establish the provable benefits of RR for smooth finite-sum minimax optimization of 2PŁ
objectives, we propose the Alternating Gradient Descent Ascent with Random Reshuffling (AGDA-
RR) algorithm. AGDA-RR achieves near-optimal convergence guarantees for 2PŁ objectives by
combining RR with alternating updates [17, 57, 3] and timescale separation [29, 15, 16], two ideas
that have been very useful for improving convergence and stability in nonconvex-nonconcave minimax
optimization. Within each epoch k ∈ [K], AGDA-RR uniformly samples a random permutation τk,
makes one full pass over the dataset, and performs gradient descent (with RR) updates for the variable
x using the permutation τk. This is followed by sampling another permutation πk and performing
gradient ascent (with RR) updates for y using the permutation πk. The detailed procedure is stated
in Algorithm 3. We also analyze a variant of AGDA-RR in the adversarial shuffling setting, which
we call AGDA-AS. The procedure, as described in Algorithm 4, is almost identical to AGDA-RR,
except that the permutations τk and πk are chosen by an adversary.

7

Algorithm 3: AGDA-RR
Input :Number of epochs K, step-sizes

α, β > 0, and initialization (x0,y0)
Initialize (x1

0,y
1
0)← (x0,y0)

for k ∈ [K] do
Sample a permutation τk ∈ Sn
for i ∈ [n] do

xk
i ← xk

i−1 − α∇xfτk(i)(x
k
i−1,y

k
0)

end
Sample a permutation πk ∈ Sn
for i ∈ [n] do

yk
i ← yk

i−1 + β∇yfπk(i)(x
k
n,y

k
i−1)

end
(xk+1

0 ,yk+1
0)← (xk

n,y
k
n)

end

Algorithm 4: AGDA-AS
Input :Number of epochs K, step-sizes

α, β > 0, and initialization (x0,y0)
Initialize (x1

0,y
1
0)← (x0,y0)

for k ∈ [K] do
Adversary chooses a permutation τk ∈ Sn
for i ∈ [n] do

xk
i ← xk

i−1 − α∇xfτk(i)(x
k
i−1,y

k
0)

end
Adversary chooses a permutation πk ∈ Sn
for i ∈ [n] do

yk
i ← yk

i−1 + β∇yfπk(i)(x
k
n,y

k
i−1)

end
(xk+1

0 ,yk+1
0)← (xk

n,y
k
n)

end

Before presenting a convergence analysis, we highlight that the absence of a unique minimax point
prevents us from using the squared distance to the optimum as a Lyapunov function. To this end, we
use the Lyapunov function Vλ : Rd → R which was previously suggested by Yang et al. [54]. We
begin by first defining the best response function Φ : Rd → R and its minimum Φ∗ as follows,

Φ(x) = max
y∈Rdy

F (x,y), Φ∗ = min
x∈Rdx

Φ(x) = min
x∈Rdx

max
y∈Rdy

F (x,y).

Assumption 3 ensures that Φ is well defined and the existence of a global minimax point guarantees
that Φ∗ is finite. Subsequently, for any λ > 0, we define the Lyapunov function Vλ as

Vλ(x,y) = [Φ(x)− Φ∗] + λ[Φ(x)− F (x,y)].

By definition of Φ, Vλ is non-negative for any λ > 0 and Vλ(z) = 0 if and only if z is a minimax
point of F . Hence, we present our convergence proofs for AGDA-RR and AGDA-AS in terms of Vλ.
Theorem 3 (Convergence of AGDA-RR/AS). Let Assumptions 1, 3, and 4 hold and let η = 73l2/2µ2

2.
Then, there exists a step-size α ≤ 1/5ηnl such that for β = ηα, AGDA-RR satisfies the following for
λ = 1/10 and any K ≥ 1:

E[Vλ(z
K+1
0)] ≤ e

−K/365κ3
Vλ(z0) +

µ1 + cκ8σ2 log2(Vλ(z0)n
1/2K)

µ1nK2
= Õ(e

−K/365κ3
+ 1/nK2),

where κ = max{l/µ1, l/µ2} and c > 0 is a constant independent of κ, µ1, µ2, σ
2. Under the same

setting, AGDA-AS satisfies the following (ĉ > 0 is a constant independent of κ, µ1, µ2, σ
2):

max
τ1,π1,...,τK ,πK∈Sn

Vλ(z
K+1
0)≤e

−K/365κ3
Vλ(z0)+

µ1+ĉκ8σ2 log2(Vλ(z0)K)

µ1K2
=Õ(e

−K/365κ3
+1/K2),

where τ1, π1 . . . , τK , πK are the permutations chosen by the adversary.

Convergence to a Saddle Point: As demonstrated in Appendix E.4, the convergence guarantee of
Theorem 3, which is presented in terms of Vλ, can be easily translated into an equivalent convergence
guarantee in terms of dist(z,Z∗)2, where Z∗ denotes the set of saddle points of F . In particular,
Theorem 3 implies the following convergence guarantee for AGDA-RR:

E[dist(zK+1
0 ,Z∗)2] = Õ(e−

K/365κ3
+ 1/nK2),

as well as the following convergence rate for AGDA-AS:

max
τ1,π1,...,τK ,πK∈Sn

dist(zK+1
0 ,Z∗)2 = Õ(e−

K/365κ3
+ 1/K2),

Comparison with lower bounds: Strongly convex minimization is a special case of 2PŁ minimax
optimization, since minimizing the strongly convex function f is equivalent to minimax optimization
of the 2PŁ function F (x,y) = f(x)− ⟨y,y⟩. In fact, the x iterates of AGDA-RR for F are exactly

8

0 20 40 60 80 100
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Di
st

an
ce

 to
 M

in
im

ax
 P

oi
nt

SGDA
GDA-RR
GDA-SO
GDA-IG

(a) GDA

0 20 40 60 80 100
Epochs

10 4

10 3

10 2

10 1

100

Di
st

an
ce

 to
 M

in
im

ax
 P

oi
nt

SPPM
PPM-RR
PPM-SO
PPM-IG

(b) PPM

0 20 40 60 80 100
Epochs

10 5

10 4

10 3

10 2

10 1

100

Di
st

an
ce

 to
 M

in
im

ax
 P

oi
nt

Stochastic AGDA
AGDA-RR
AGDA-IG

(c) AGDA

Figure 2: Relative distance of the epoch iterates from the global minimax point (i.e. |zk0 − z∗|2/|z0−
z∗|2 vs k). The solid lines are the average over 50 runs and the shaded regions are 95% confidence
intervals. The y-axis of 3a is on a linear scale whereas that of 3b and 3c is on a logarithmic scale.

that of GD with RR for f . Hence, the Ω(1/nK2) lower bound for strongly convex minimization using
GD with RR also applies to AGDA-RR. Thus our convergence rate for AGDA-RR is nearly tight and
matches the lower bound (modulo logarithmic factors) for K ≥ 730κ3 log(n1/2K). Similarly, the
Incremental Gradient version of AGDA is a special case of AGDA-AS with τ1, π1, . . . , τK , πK = id
and hence, AGDA-AS is nearly tight and matches the Ω(1/K2) lower bound (modulo logarithmic
factors) for K ≥ 730κ3 log(K).

Comparison with stochastic AGDA: Similarly, the Ω(1/nK) lower bound of SGD with replacement
also holds for the Stochastic AGDA algorithm [54], which samples the component functions with
replacement and performs two-timescale alternating updates similar to AGDA-RR. Hence, Theorem 3
demonstrates that AGDA-RR provably outperforms stochastic AGDA when K ≥ 730κ3 log(n1/2K).

Bounded iterate assumption Assumption 4 is also used in analyzing RR for PŁ function mini-
mization [34]. In this setting, an alternative bounded iterate assumption, which assumes that all the
iterates zki lie within a compact set, has also been used [1]. As shown in Appendix E.2, our proof of
Theorem 3 easily adapts to this assumption. In the absence of either assumption, Li et al. [28] use
time-varying step-sizes to obtain asymptotic O(1/K2) rates for RR on PŁ (and more generally for
KŁ) minimization.

5 Experiments

We evaluate our theoretical results by benchmarking on finite-sum SC-SC quadratic minimax games.
This class of problems appears in several applications such as reinforcement learning [11], robust
regression, [12] and online learning [26]. The objective F and the components fi are given by:

F (x,y) = 1/n

n∑
i=1

fi(x,y) =
1

2
xTAx+ xTBy − 1

2
yTCy,

fi(x,y) =
1

2
xTAix+ xTBiy −

1

2
yTCiy − uT

i x− vT
i y,

where A and C are strictly positive definite. We generate the components fi randomly, such that∑n
i=1 ui =

∑n
i=1 vi = 0 and the expected singular values of B are larger than that of A and C.

This ensures that the bilinear coupling term xTBy is sufficiently strong, since a weak coupling
practically reduces to quadratic minimization, which has already been investigated in prior works.
Finally, to investigate how the presence of nonconvex-nonconcave components impacts convergence,
a few randomly chosen fi’s are allowed to be nonconvex-nonconcave quadratics. For each algorithm
analyzed in the text, we benchmark sampling without replacement against uniform sampling by
running each method for 100 epochs using constant step-sizes that are selected independently for
each method via grid search. Further details regarding the setup is discussed in Appendix G.

We present our results in Figure 2, where we plot the relative distance of the epoch iterates from the
minimax point, defined as |zk0−z∗|2/|z0−z∗|2, averaged over 50 independent runs. In agreement with
our theoretical findings, sampling without replacement consistently outperforms uniform sampling

9

0 20 40 60 80 100
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Di
st

an
ce

 to
 M

in
im

ax
 P

oi
nt

SGDA
GDA-RR
GDA-SO
GDA-IG

(a) GDA

0 20 40 60 80 100
Epochs

10 4

10 3

10 2

10 1

100

Di
st

an
ce

 to
 M

in
im

ax
 P

oi
nt

SPPM
PPM-RR
PPM-SO
PPM-IG

(b) PPM

0 20 40 60 80 100
Epochs

10 5

10 4

10 3

10 2

10 1

100

Di
st

an
ce

 to
 M

in
im

ax
 P

oi
nt

Stochastic AGDA
AGDA-RR
AGDA-IG

(c) AGDA

Figure 3: Convergence of GDA, PPM and AGDA averaged over 20 random instances. Shaded regions
represent 95% confidence intervals.

across all three setups. Furthermore, to demonstrate that our observations are not particular to one
specific instance, we repeat the experiment for 20 independently sampled quadratic games, and for
each instance, perform 5 independent runs of each algorithm and plot the average relative distance
of the epoch iterates from the minimax point. The results, presented in Figure 3, substantiates the
superior convergence of sampling without replacement across multiple instances.

6 Conclusion

We derived near optimal convergence rates for several without-replacement stochastic gradient
algorithms for finite-sum minimax optimization, and demonstrated that they converge faster than
algorithms that use uniform sampling. We considered two problem classes, strongly convex-strongly
concave problems (generalized to unconstrained strongly monotone variational inequalities) and
nonconvex-nonconcave problems with two-sided PŁ objectives. We also formally defined adversarial
shuffling, where an attacker can control the order in which data points are supplied to the optimizer,
and analyzed minimax optimization in this regime. Interesting future directions include the analysis
of inexact proximal point methods, more general function classes, and time-varying step-sizes.

Acknowledgements and Disclosure of Funding

Michael Muehlebach and Bernhard Schölkopf thank the German Research Foundation and the Branco
Weiss Fellowship, administered by ETH Zurich, for the generous support.

References
[1] K. Ahn, C. Yun, and S. Sra. SGD with shuffling: Optimal rates without component convexity

and large epoch requirements. In Advances in Neural Information Processing Systems, 2020.

[2] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In
Proceedings of the International Conference on Machine Learning, 2017.

[3] J. P. Bailey, G. Gidel, and G. Piliouras. Finite regret and cycles with fixed step-size via
alternating gradient descent-ascent. In Proceedings of the Conference on Learning Theory,
2020.

[4] Y. Bengio. Practical recommendations for gradient-based training of deep architectures. Neural
Networks: Tricks of the Trade: Second Edition, 2012.

[5] D. P. Bertsekas. Incremental gradient, subgradient, and proximal methods for convex optimiza-
tion: A survey. Report LIDS - 2848, Laboratory for Information and Decision Systems, MIT,
2011.

[6] J. Bose, G. Gidel, H. Berard, A. Cianflone, P. Vincent, S. Lacoste-Julien, and W. Hamilton.
Adversarial example games. In Advances in Neural Information Processing Systems, 2020.

10

[7] L. Bottou. Curiously fast convergence of some stochastic gradient descent algorithms. In
Proceedings of the Symposium on Learning and Data Science, 2009.

[8] Q. Cai, M. Hong, Y. Chen, and Z. Wang. On the global convergence of imitation learning: A
case for linear quadratic regulator. arXiv:1901.03674, 2019.

[9] W. G. Cochran. Sampling Techniques. Wiley, 1977.

[10] C. Daskalakis, S. Skoulakis, and M. Zampetakis. The complexity of constrained min-max
optimization. In Proceedings of the ACM SIGACT Symposium on the Theory of Computing,
2021.

[11] S. S. Du, J. Chen, L. Li, L. Xiao, and D. Zhou. Stochastic variance reduction methods for policy
evaluation. In Proceedings of the International Conference on Machine Learning, 2017.

[12] L. El Ghaoui and H. Lebret. Robust solutions to least-squares problems with uncertain data.
SIAM Journal on Matrix Analysis and Applications, 1997.

[13] F. Facchinei and J.-S. Pang. Finite-dimensional variational inequalities and complementarity
problems. Springer Science & Business Media, 2007.

[14] M. Fazel, R. Ge, S. Kakade, and M. Mesbahi. Global convergence of policy gradient methods
for the linear quadratic regulator. In Proceedings of the International Conference on Machine
Learning, 2018.

[15] T. Fiez and L. J. Ratliff. Local convergence analysis of gradient descent ascent with finite
timescale separation. In International Conference on Learning Representations, 2021.

[16] T. Fiez, L. Ratliff, E. Mazumdar, E. Faulkner, and A. Narang. Global convergence to local min-
max equilibrium in classes of nonconvex zero-sum games. In Advances in Neural Information
Processing Systems, 2021.

[17] G. Gidel, R. A. Hemmat, M. Pezeshki, R. L. Priol, G. Huang, S. Lacoste-Julien, and I. Mitliagkas.
Negative momentum for improved game dynamics. In Proceedings of the International Confer-
ence on Artificial Intelligence and Statistics, 2019.

[18] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative adversarial nets. In Advances in Neural Information Processing
Systems, 2014.

[19] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In
International Conference on Learning Representations, 2015.

[20] R. M. Gower, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, and P. Richtárik. SGD: General
analysis and improved rates. In Proceedings of the International Conference on Machine
Learning, 2019.

[21] M. Gürbüzbalaban, A. Ozdaglar, and P. A. Parrilo. Why random reshuffling beats stochastic
gradient descent. Mathematical Programming, 2019.

[22] M. Gürbüzbalaban, A. Ozdaglar, and P. A. Parrilo. Convergence rate of incremental gradient
and incremental Newton methods. SIAM Journal on Optimization, 2019.

[23] J. Haochen and S. Sra. Random shuffling beats SGD after finite epochs. In Proceedings of the
International Conference on Machine Learning, 2019.

[24] J. Ho and S. Ermon. Generative adversarial imitation learning. In Advances in Neural Informa-
tion Processing Systems, 2016.

[25] P. Jain, D. Nagaraj, and P. Netrapalli. Making the last iterate of SGD information theoretically
optimal. In Proceedings of the Conference on Learning Theory, 2019.

[26] W. M. Koolen, A. Malek, and P. L. Bartlett. Efficient minimax strategies for square loss games.
In Advances in Neural Information Processing Systems, 2014.

11

[27] Z. Lai and L.-H. Lim. Recht-Re noncommutative arithmetic-geometric mean conjecture is false.
In Proceedings of the International Conference on Machine Learning, 2020.

[28] X. Li, A. Milzarek, and J. Qiu. Convergence of random reshuffling under the Kurdyka-
Łojasiewicz inequality. arXiv:2110.04926, 2021.

[29] T. Lin, C. Jin, and M. I. Jordan. On gradient descent ascent for nonconvex-concave minimax
problems. In Proceedings of the International Conference on Machine Learning, 2020.

[30] M. Littman. Markov games as a framework for multi-agent reinforcement learning. In Proceed-
ings of the International Conference on Machine Learning, 1994.

[31] N. Loizou, H. Berard, G. Gidel, I. Mitliagkas, and S. Lacoste-Julien. Stochastic gradient
descent-ascent and consensus optimization for smooth games: Convergence analysis under
expected co-coercivity. In Advances in Neural Information Processing Systems, 2021.

[32] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models
resistant to adversarial attacks. In Proceedings of the International Conference on Learning
Representations, 2018.

[33] C. Maheshwari, C.-Y. Chiu, E. Mazumdar, S. Sastry, and L. Ratliff. Zeroth-order methods for
convex-concave minmax problems: applications to decision-dependent risk minimization. In
Proceedings of the International Conference on Artificial Intelligence and Statistics, 2022.

[34] K. Mishchenko, A. Khaled, and P. Richtárik. Random reshuffling: simple analysis with vast
improvements. In Advances in Neural Information Processing Systems, 2020.

[35] K. Mishchenko, A. Khaled, and P. Richtárik. Proximal and federated random reshuffling. In
Proceedings of the International Conference on Machine Learning, 2022.

[36] D. Nagaraj, P. Jain, and P. Netrapalli. SGD without replacement: sharper rates for general
smooth convex functions. In Proceedings of the International Conference on Machine Learning,
2019.

[37] A. Nedic and D. Bertsekas. Incremental subgradient methods for nondifferentiable optimization.
In Proceedings of the IEEE Conference on Decision and Control, 1999.

[38] J. v. Neumann and O. Morgenstern. Theory of games and economic behavior. Princeton
University Press, 1944.

[39] L. M. Nguyen, Q. Tran-Dinh, D. T. Phan, P. H. Nguyen, and M. v. Dijk. A unified convergence
analysis for shuffling-type gradient methods. Journal of Machine Learning Research, 2021.

[40] M. Nouiehed, M. Sanjabi, T. Huang, J. D. Lee, and M. Razaviyayn. Solving a class of non-
convex min-max games using iterative first order methods. In Advances in Neural Information
Processing Systems, 2019.

[41] A. Patrascu and I. Necoara. Nonasymptotic convergence of stochastic proximal point methods
for constrained convex optimization. Journal of Machine Learning Research, 2018.

[42] A. Rajeswaran, I. Mordatch, and V. Kumar. A game theoretic framework for model based
reinforcement learning. In Proceedings of the International Conference on Machine Learning,
2020.

[43] S. Rajput, A. Gupta, and D. Papailiopoulos. Closing the convergence gap of SGD without
replacement. In Proceedings of the International Conference on Machine Learning, 2020.

[44] A. Rakhlin, O. Shamir, and K. Sridharan. Making gradient descent optimal for strongly convex
stochastic optimization. In Proceedings of the International Conference on Machine Learning,
2012.

[45] B. Recht and C. Re. Toward a noncommutative arithmetic-geometric mean inequality: Conjec-
tures, case-studies, and consequences. In Proceedings of the Conference on Learning Theory,
2012.

12

[46] J. Rice. Mathematical Statistics and Data Analysis. Wadsworth, 1988.

[47] R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM Journal on
Control and Optimization, 1976.

[48] I. Safran and O. Shamir. How good is SGD with random shuffling? In Proceedings of the
Conference on Learning Theory, 2020.

[49] I. Safran and O. Shamir. Random shuffling beats SGD only after many epochs on ill-conditioned
problems. In Advances in Neural Information Processing Systems, 2021.

[50] G. Scutari, D. P. Palomar, F. Facchinei, and J.-S. Pang. Convex optimization, game theory, and
variational inequality theory. IEEE Signal Processing Magazine, 2010.

[51] I. Shumailov, Z. Shumaylov, D. Kazhdan, Y. Zhao, N. Papernot, M. A. Erdogdu, and R. J.
Anderson. Manipulating SGD with data ordering attacks. In Advances in Neural Information
Processing Systems, 2021.

[52] A. Sinha, H. Namkoong, and J. Duchi. Certifiable distributional robustness with principled ad-
versarial training. In Proceedings of the International Conference on Learning Representations,
2018.

[53] T. H. Tran, L. M. Nguyen, and Q. Tran-Dinh. SMG: A shuffling gradient-based method with
momentum. In Proceedings of the International Conference on Machine Learning, 2021.

[54] J. Yang, N. Kiyavash, and N. He. Global convergence and variance reduction for a class of
nonconvex-nonconcave minimax problems. In Advances in Neural Information Processing
Systems, 2020.

[55] Y. Yu, T. Lin, E. Mazumdar, and M. I. Jordan. Fast distributionally robust learning with variance
reduced min-max optimization. In Proceedings of the International Conference on Artificial
Intelligence and Statistics, 2022.

[56] C. Yun, S. Rajput, and S. Sra. Minibatch vs local SGD with shuffling: Tight convergence
bounds and beyond. In International Conference on Learning Representations, 2022.

[57] G. Zhang, P. Poupart, and Y. Yu. Optimality and stability in non-convex smooth games. Journal
of Machine Learning Research, 2022.

[58] K. Zhang, Z. Yang, and T. Başar. Multi-agent reinforcement learning: A selective overview of
theories and algorithms. Handbook of Reinforcement Learning and Control, 2019.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] Limitations such as structural

assumptions on the function class and noise variance are clearly stated wherever
appropriate.

(c) Did you discuss any potential negative societal impacts of your work? [No] The work
is purely of a theoretical nature and analyzes existing algorithms that are already widely
prevalent.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] Assumptions

are stated in Sections 2, 3 and 4.
(b) Did you include complete proofs of all theoretical results? [Yes] A proof sketch of the

main result is presented in Section 3.2 while full proofs are deferred to the appendix.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] They are
included in the supplementary material

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] .Key details are specified in Section 5 and further details are
specified in the appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] All results are reported with 95% confidence intervals.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] .These details are provided in the
appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

Appendix

Contents

1 Introduction 1

1.1 Contributions . 2

2 Notation and Preliminaries 3

3 Analysis for Strongly Convex-Strongly Concave Objectives 4

3.1 Setting . 4

3.2 Analysis of RR/SO . 5

3.3 Analysis in the Adversarial Shuffling Regime . 6

4 RR for Two-Sided PŁ Objectives 7

4.1 Analysis of AGDA-RR and AGDA-AS . 7

5 Experiments 9

6 Conclusion 10

A Notation 16

B Useful Lemmas 16

C Analysis of GDA without Replacement 18

C.1 Analysis of Full-batch GDA by Linearization . 19

C.2 A Unified Analysis of GDA-RR and GDA-SO . 20

C.3 Analysis of GDA-AS . 28

D Analysis of PPM without Replacement 30

D.1 Analysis of Full-batch PPM by Linearization . 31

D.2 A Unified Analysis of PPM-RR and PPM-SO . 32

D.3 Analysis of PPM-AS . 37

E Analysis of AGDA-RR and AGDA-AS 39

E.1 Properties of Two-sided PŁ Functions . 39

E.2 Analysis of AGDA-RR . 40

E.3 Analysis of AGDA-AS . 48

E.4 Convergence of AGDA-RR and AGDA-AS to a Saddle Point 51

F Literature Review 53

G Experimental Details 54

15

A Notation

In addition to the existing notation introduced in Section 2, we introduce the matrix product notation∏n
i=1 Mi = M1M2 . . .Mn where M1,M2, . . .Mn are square matrices of the same size. Since

matrix multiplication is not commutative, the ordering of the indices is important. To this end, we
denote the reverse ordered matrix product as follows:∏̃n

i=1
Mi = MnMn−1 . . .M1.

We highlight that the above product is not necessarily equal to
∏n

i=1 Mi due to the noncommutativity
of matrix products. Furthermore, we define the empty (reverse) matrix product (i.e. the matrix
product or reverse matrix product to be indexed over empty sets) to be the identity matrix I, where
the size of I is clear from the context. Finally, we use σmax(A) to denote the maximum singular
value of the matrix A (which is equal to its operator norm |A|) and σmin(A) to denote its minimum
singular value.

B Useful Lemmas

In this section, we present the proofs of some properties that are important for our convergence
analysis. We begin with a lemma on the differentiability properties of Lipschitz and strongly monotone
operators, which is repeatedly used in all our proofs.
Lemma B.1 (Differentiability properties of Lipschitz operators). Let ν : Rd → Rd be an l-Lipschitz
continuous operator. Then, ν is Lebesgue almost everywhere differentiable, i.e., the Jacobian∇ν(z)
is well defined everywhere outside of a set of Lebesgue measure zero and satisfies |∇ν(z)| ≤ l,
wherever it is defined. Additionally, if ν is µ-strongly monotone, then ν has a unique root, and
vT∇ν(z)v ≥ µ|v|2 for any v ∈ Rd and any z ∈ Rd such that ∇ν(z) is well defined.

Proof. The first statement of this lemma is a direct consequence of Rademacher’s Theorem which
states that any Lipschitz continuous function defined on Rd is differentiable everywhere outside of a
set of zero Lebesgue measure. The second statement is proved as follows:

Consider any z ∈ Rd such that ∇ν(z) is well defined and let v ∈ Rd be arbitrary. By the Lipschitz
continuity of ν, it follows that for any t ∈ R:

|ν(z+ tv)− ν(z)| ≤ l |tv| .
Rearranging and taking limits results in,

lim
t→0

∣∣∣∣ν(z+ tv)− ν(z)

t

∣∣∣∣ ≤ l |v| .

By the continuity of norms and the definition of the Jacobian, it follows that |∇ν(z)v| ≤ l |v| ∀ v ∈
Rd, which further implies that |∇ν(z)| ≤ l. This concludes the proof of the second statement.

For the proof of the third statement, we consider the operator ζ(z) = z− µ
l2 ν(z) and observe that

any fixed point of ζ is a root of ν and vice versa.

From the l-smoothness and µ-strong monotonicity of ν, we infer that for any z1, z2 ∈ Rd:

|ζ(z2)− ζ(z1)|2 = |z2 − z1|2 −
2µ

l2
⟨ν(z2)− ν(z1), z2 − z1⟩+

µ2

l4
|ν(z2)− ν(z1)|2

≤ (1− µ2

l2
) |z2 − z1|2 < |z2 − z1|2 .

Thus, ζ is a contraction mapping, and has a unique fixed point z∗ by the Banach Fixed Point Theorem,
which implies that z∗ is the unique root of ν. Finally, consider any z ∈ Rd such that ∇ν(z) is well
defined and let v ∈ Rd be arbitrary. By the strong monotonicity of ν, it follows that for any t ∈ R:

⟨ν(z+ tv)− ν(z), tv⟩ ≥ µ |tv|2 .
Rearranging and taking limits results in〈

v, lim
t→0

ν(z+ tv)− ν(z)

t

〉
≥ µ |v|2 .

16

By definition of the Jacobian and the continuity of inner products, it follows that vT∇ν(z)v ≥
µ |v|2.

We now present a lemma on the properties of the gradient operator of a strongly convex-strongly
concave function, which was earlier stated as Lemma 1 in Section 3.1. This lemma establishes the
equivalence between the minimax optimization problem for a smooth and strongly convex-strongly
concave function F and the root finding problem for its corresponding gradient operator ν.
Lemma B.2 (Equivalence of minimax optimization and root finding). Let F : Rdx ×
Rdy → R be an l-smooth and µ-strongly convex-strongly concave function and let ν(x,y) =
[∇xF (x,y),−∇yF (x,y)]. Then ν is l-Lipschitz continuous, µ-strongly monotone and has a unique
root z∗, which is also the unique global minimax point of F .

Proof. The l-Lipschitz continuity of ν follows by definition of the l-smoothness of F , as described
in Assumption 1. To establish µ-strong monotonicity, we proceed as follows:

Consider any z1 = (x1,y1) and z2 = (x2,y2) in Rd. Since F is µ-strongly convex in x and
µ-strongly concave in y, it follows that:

F (x2,y1)− F (x1,y1) ≥ ⟨∇xF (x1,y1),x2 − x1⟩+
µ

2
|x2 − x1|2 ,

F (x1,y2)− F (x2,y2) ≥ ⟨∇xF (x2,y2),x1 − x2⟩+
µ

2
|x2 − x1|2 ,

F (x2,y2)− F (x2,y1) ≥ ⟨∇yF (x2,y2),y2 − y1⟩+
µ

2
|y2 − y1|2 ,

F (x1,y1)− F (x1,y2) ≥ ⟨∇yF (x1,y1),y1 − y2⟩+
µ

2
|y2 − y1|2 .

Adding all four inequalities, and substituting the definition of ν, we get,

⟨ν(z2)− ν(z1), z2 − z1⟩ ≥ µ |z2 − z1|2 .

To prove the second part of this lemma, we define Φ(x) = maxy∈Rdy F (x,y). Furthermore,
we note that Φ is strongly convex and by Danskin’s Theorem, ∇Φ(x) = ∇xF (x,y∗(x)) where
y∗(x) ∈ Rdy is the unique solution of F (x,y∗(x)) = maxy∈Rdy F (x,y), with uniqueness being
guaranteed by the strong concavity of F in y. Since ν is l-Lipschitz continuous and µ-strongly
monotone, it is guaranteed to have a unique root z∗ = (x∗,y∗) by Lemma B.1, which implies that
∇xF (x∗,y∗) = ∇yF (x∗,y∗) = 0. Since F is strongly concave in y, this further implies that y∗ is
the unique maximizer of F (x∗,y). Moreover, by Danskin’s Theorem,∇Φ(x∗) = ∇xF (x∗,y∗) = 0
which implies that x∗ is the unique minimizer of Φ, since Φ is strongly convex. Thus, by definition
of a global minimax point, we conclude that z∗ is the unique global minimax point of F .

We conclude this section with the proof of a standard result in statistics on the variance of the
population mean estimator under simple random sampling without replacement [9, 46]. This property
constitutes a central component of our convergence proofs and allows us to sharply bound the noise
in the iterates of RR and SO. This lemma has also been used in Mishchenko et al. [34] to analyze
RR/SO for minimization.
Lemma B.3 (Properties of without-replacement sample means : Lemma 1 in Mishchenko et al.
[34]). Let τ be a uniformly sampled random permutation of [n], and let v1,v2, ...,vn be arbitrary
vectors that are independent of τ , with sample mean m = 1/n

∑n
i=1 vi and sample variance

σ2 = 1/n
∑n

i=1 |vi −m|2. For any i ∈ [n], let the without-replacement sample average be
defined as m̂(i)

τ = 1/i
∑i

j=1 vτ(j). Then, E[m̂(i)
τ] = m and E[|m̂(i)

τ −m|2] = n−i
n−1

σ2

i , where the
expectation is taken over the uniform random permutation τ .

Proof. Since v1, . . . ,vn is independent of the uniformly sampled permutation τ , it follows that for
any j ∈ [n],

E[vτ(j)] =

n∑
k=1

PUniform [τ(j) = k]vk =

n∑
k=1

(n− 1)!

n!
vk = 1/n

n∑
k=1

vk = m.

17

Hence, by linearity of expectations,

E[m̂(i)
τ] = 1/i

i∑
j=1

E[vτ(j)] = m.

Similarly, we can show that for any j ∈ [n],

E[
∣∣vτ(j) −m

∣∣2] = n∑
k=1

(n− 1)!

n!
|vk −m|2 = 1/n

n∑
k=1

|vk −m|2 = σ2.

We now consider any j1, j2 ∈ [n] such that j1 ̸= j2 and infer that,

E[
〈
vτ(j1) −m,vτ(j2) −m

〉
] =

∑
1≤k1 ̸=k2≤n

PUniform [τ(j1) = k1, τ(j2) = k2] ⟨vk1
−m,vk2

−m⟩

=
(n− 2)!

n!

n∑
k1=1

∑
1≤k2 ̸=k1≤n

⟨vk1 −m,vk2 −m⟩

=
1

n(n− 1)

n∑
k1=1

[(
n∑

k2=1

⟨vk1 −m,vk2 −m⟩

)
− |vk1 −m|2

]

=
1

n(n− 1)

n∑
k1=1

〈
vk1
−m,

n∑
k2=1

vk2
−m

〉
− 1

n(n− 1)

n∑
k1=1

|vk1
−m|2

= − σ2

n− 1
.

From the above identities, we conclude that,

E[|m̂(i)
τ −m|2] = E[|1/i

i∑
j=1

vτ(j) −m|2]

= 1/i2E[|
i∑

j=1

vτ(j) −m|2]

= 1/i2
i∑

j=1

i∑
k=1

E[
〈
vτ(j) −m,vτ(k) −m

〉
]

= 1/i2

 i∑
j=1

E[
∣∣vτ(j) −m

∣∣2] + ∑
1≤j ̸=k≤i

E[
〈
vτ(j) −m,vτ(k) −m

〉
]

= 1/i2[iσ2 − i(i− 1)

n− 1
σ2]

=
n− i

n− 1

σ2

i
.

C Analysis of GDA without Replacement

In this section, we present the proofs of convergence for simultaneous Gradient Descent Ascent
without replacement (i.e. GDA-RR/SO/AS) for solving the finite-sum strongly monotone root finding
problem. Our proofs of the same rely on two key techniques: 1. exploiting the Lipschitz continuity
of the components ωi to linearize the dynamics of GDA without replacement about z∗ (where z∗

denotes the unique root of ν), 2. using Lemma B.3 to control the noise in the iterates of GDA without
replacement.

For ease of exposition, we first illustrate the linearization technique by presenting a linearization-
based proof of the well known exponential convergence rate of full-batch GDA for solving the root

18

finding problem under Lipschitz continuity and strong monotonicity assumptions. This serves as a
prelude for our unified proof of convergence of GDA-RR and GDA-SO for solving the root finding
problem for finite-sum strongly monotone operators. We conclude this section by presenting a proof
of convergence of GDA-AS, which demonstrates how our techniques for analyzing RR and SO can
be easily adapted to the adversarial shuffling setup.

C.1 Analysis of Full-batch GDA by Linearization

Theorem C.1 (Convergence of full-batch GDA). Consider Problem (4) for the l-Lipschitz and
µ-strongly monotone operator ν : Rd → Rd and let z∗ denote the unique root of ν. For any step-size
α > 0, the iterates zk of full-batch GDA satisfy the following recurrence:

zk+1 − z∗ = (I− αMk)(zk − z∗),

where the spectral norm of I−αMk is bounded as |I− αMk| ≤ (1−2αµ+α2l2)1/2. Consequently,
setting α = µ/l2 gives us the following last iterate convergence guarantee:

|zK+1 − z∗|2 ≤ (1− 1/κ2)K |z0 − z∗|2 ,

where κ = l/µ. Furthermore, the exponential convergence rate of 1− 1/κ2 is optimal for GDA up
to constant factors.

Proof. The iterates of full-batch GDA with step-size α have the following update rule:

zk+1 = zk − αν(zk).

Interpreting the time evolution of zk as a discrete-time dynamical system, we analyze the convergence
of GDA by applying linearization, which is a standard technique in the analysis of discrete and
continuous-time dynamical systems. To this end, we proceed as follows.

Let g : [0, 1]→ Rd be defined as g(t) = ν(tzk+(1−t)z∗). We note that the Lipschitz continuity of ν
implies the Lipschitz continuity of g. As a result, the Fundamental Theorem of Calculus for Lebesgue
Integrals applies to g (since Lipschitz continuous functions defined on a compact interval are also
absolutely continuous). It follows that g(1) = g(0) +

∫ 1

0
g′(t)dt which results in the following

expansion:

ν(zk) = ν(z∗) +

∫ 1

0

∇ν(tzk + (1− t)z∗)(zk − z∗)dt

= Mk(zk − z∗),

where ν(z∗) = 0 and Mk =
∫ 1

0
∇ν(tzk + (1 − t)z∗)dt is well defined because ∇ν(z) is defined

Lebesgue-almost everywhere by Lemma B.1.

Substituting the above expansion into the update rule of GDA gives us the following:

zk+1 − z∗ = (I− αMk)(zk − z∗). (C.1)

We now proceed to obtain a convergence guarantee by upper bounding the spectral norm of I−αMk.
Note that by Lemma B.1, ∇ν(z) is well defined Lebesgue-almost everywhere, and wherever defined,
satisfies |∇ν(z)| ≤ l and vT∇ν(z)v ≥ µ |v|2 ∀ v ∈ Rd. Using standard properties of Lebesgue
integrals and inner products, we conclude that |Mk| ≤ l and vTMkv ≥ µ |v|2 ∀ v ∈ Rd. Hence,
for any v ∈ Rd:

|(I− αMk)v|2 = |v|2 − αvTMkv − αvTMT
k v + |Mkv|2

≤ (1− 2αµ+ α2l2) |v|2 .

Hence, |I− αMk| ≤ (1− 2αµ+ α2l2)1/2 for any α > 0. It follows that,

|zk+1 − z∗|2 ≤ (1− 2αµ+ α2l2) |zk − z∗|2 .

Setting α = µ/l2, we obtain the following convergence guarantee:

|zK+1 − z∗|2 ≤ (1− 1/κ2)K |z0 − z∗|2 .

19

We now establish the optimality of the 1− 1/κ2 exponential convergence rate by presenting a lower
bound construction on a two-dimensional quadratic problem.

Consider any positive constants l, µ such that l > µ and the quadratic f : R2 → R given by
f(x, y) = µ

2 (x
2 − y2) + (l − µ)xy. It is easy to see that f is l-smooth and µ-strongly convex

strongly concave. Thus, by Lemma B.2, we infer that ν(z) = ν(x, y) = [∇xf(x, y),−∇yf(x, y)] is
l-smooth and µ-strongly monotone. Furthermore, we also note that ν(z) = Mz where M is given
by:

M =

[
µ l − µ

µ− l µ

]
.

Thus, it is easy to see that z∗ = 0 is the unique root of ν, where uniqueness is guaranteed by Lemma
B.1. Moreover, for any step-size α > 0, the iterates of GDA on f are given by zk+1 = (I− αM)zk.
Thus, by taking norms on both sides, we conclude that:

|zk+1|2 = |(I− αM)zk|2 = [1− 2αµ+ α2[µ2 + (l − µ)2]] |zk|2

≥ (1− µ2

µ2 + (l − µ)2
) |zk|2 = (1− 1

1 + (κ− 1)2
) |zk|2 ,

where the inequality is obtained by minimizing the quadratic 1 − 2αµ + α2[µ2 + (l − µ)2] with
respect to α.

We note that by Young’s inequality, κ2 = [1 + (κ− 1)]2 ≤ 2[1 + (κ− 1)2] and thus,

1− 1

1 + (κ− 1)2
≥ 1− 2

κ2
,

which leads us to conclude that for any α > 0, the iterates zk of GDA on ν satisfy the following:

|zk+1 − z∗|2 ≥ (1− 2/κ2) |zk − z∗|2 .

This establishes that the convergence rate of 1− 1/κ2 is optimal for GDA up to constant factors. We
contrast this with the smooth and strongly convex minimization setting where gradient descent enjoys
a faster convergence rate of 1− 1/κ.

C.2 A Unified Analysis of GDA-RR and GDA-SO

Theorem C.2 (Convergence of GDA-RR/SO). Consider Problem (4) for the µ-strongly monotone
operator ν(z) = 1/n

∑n
i=1 ωi(z) where each ωi is l-Lipschitz, but not necessarily monotone. Let

z∗ denote the unique root of ν. Then, for any α ≤ µ
5nl2 and K ≥ 1, the iterates of GDA-RR and

GDA-SO satisfy the following:

E[
∣∣zK+1

0 − z∗
∣∣2] ≤ 2e−nαµK |z0 − z∗|2 + l2σ2

∗α
3n2K

µ
.

Setting α = min{µ/5nl2, 2 log(|ν(z0)|n1/2K/µ)/µnK} results in the following expected last-
iterate convergence guarantee for both GDA-RR and GDA-SO which holds for any K ≥ 1:

E[|zK+1
0 − z∗|2] ≤ 2e

−K/5κ2 |z0 − z∗|2 + 2µ2 + 8κ2σ2
∗ log

3(|ν(z0)|n1/2K/µ)

µ2nK2

= Õ(e
−K/5κ2

+ 1/nK2).

Proof. Without loss of generality, we express the iterate-level update rule of GDA-RR and GDA-SO
jointly as

zki = zki−1 − αωτk(i)(z
k
i−1), (C.2)

where k ∈ [K] and i ∈ [n]. We note that for GDA-RR, τk ∼ Uniform(Sn) for every k ∈ [K]
(i.e. τk is a permutation of [n] that is resampled uniformly in every epoch), whereas for GDA-SO,
τk = τ ∀k ∈ [K] where τ ∼ Uniform(Sn) (i.e. the permutation τ is uniformly sampled before the
first epoch, then reused for all subsequent epochs).

20

As discussed in the proof sketch presented in Section 3.2, our proof begins by adapting the lineariza-
tion technique illustrated in Theorem C.1 to GDA without replacement in order to derive a linearized
epoch-level update rule of the form zk+1

0 − z∗ = Hk(z
k
0 − z∗) + α2rk. We then use the Lipschitz

continuity and strong monotonicity properties of ν to upper bound |Hk|, and use Lemma B.3 to upper
bound E[|rk|2]. Equipped with these bounds, the proof is concluded by unrolling the epoch-level
update rule for K epochs and carefully choosing α as stated above.

Step 1: Linearized epoch-level update rule Our approach for this step is inspired by the following
insight developed by prior works that have analyzed sampling without replacement for minimization:
for small enough step-sizes, the epoch iterates zk0 of gradient descent without replacement closely
track the iterates of full-batch gradient descent. To this end, we treat GDA without replacement as
a noisy version of full-batch GDA by focusing on the time evolution of the epoch iterates zk0 . At
the same time, we wish to adapt the proof technique of Theorem C.1, which hinges on linearization
about z∗, to the analysis of GDA without replacement. This motivates us to perform the following
decomposition of the stochastic gradients, where we linearize ωτk(i)(z

k
i−1) about zk0 , and subsequently

linearize ωτk(i)(z
k
0) about z∗:

ωτk(i)(z
k
i−1) = ωτk(i)(z

∗) + [ωτk(i)(z
k
0)− ωτk(i)(z

∗)] + [ωτk(i)(z
k
i−1)− ωτk(i)(z

k
0)]

= ωτk(i)(z
∗) +

∫ 1

0

∇ωτk(i)(tz
k
0 + (1− t)z∗)(zk0 − z∗)dt

+

∫ 1

0

∇ωτk(i)(tz
k
i−1 + (1− t)zk0)(z

k
i−1 − zk0)dt.

We define the matrices Mτk(i) and Jτk(i) as follows:

Mτk(i) =

∫ 1

0

∇ωτk(i)(tz
k
0 + (1− t)z∗)dt,

Jτk(i) =

∫ 1

0

∇ωτk(i)(tz
k
i−1 + (1− t)zk0)dt.

Repeating the same argument as in Theorem C.1, we use Lemma B.1 and the l-Lipschitz continuity
of ωi(z) ∀i ∈ [n] to conclude that Mτk(i) and Jτk(i) are well defined and bounded with

∣∣Mτk(i)

∣∣ ≤ l

and
∣∣Jτk(i)

∣∣ ≤ l. It follows that

ωτk(i)(z
k
i−1) = ωτk(i)(z

∗) +Mτk(i)(z
k
0 − z∗) + Jτk(i)(z

k
i−1 − zk0). (C.3)

Substituting (C.3) into the update equation (C.2) for zk1 gives us the following:

zk1 − z∗ = (I− αMτk(1))(z
k
0 − z∗)− αJσk(1)(z

k
0 − zk0)− αωτk(1)(z

∗)

= (I− αMτk(1))(z
k
0 − z∗)− αωτk(1)(z

∗).

Repeating the same for zk2 yields,

zk2 − z∗ = zk1 − z∗ − αωτk(2)(z
∗)− αMτk(2)(z

k
0 − z∗)− αJτk(2)(z

k
1 − zk0)

= (I− αJτk(2))(z
k
1 − z∗)− α(Mτk(2) − Jτk(2))(z

k
0 − z∗)− αωτk(2)(z

∗)

= (I− αJτk(2))[(I− αMτk(1))(z
k
0 − z∗)− αωτk(1)(z

∗)]

− α(Mτk(2) − Jτk(2))(z
k
0 − z∗)− αωτk(2)(z

∗)

= [(I− αJτk(2))(I− αMτk(1))− α(Mτk(2) − Jτk(2))](z
k
0 − z∗)

− α[ωτk(2)(z
∗) + (I− αJτk(2))ωτk(1)(z

∗)]

= [I− αMτk(2) − α(I− αJτk(2))Mτk(1)](z
k
0 − z∗)

− α[ωτk(2)(z
∗) + (I− αJτk(2))ωτk(1)(z

∗)].

21

Applying the same process to subsequent iterates, the update rule for zki can then be obtained
recursively. We propose that, for any i ∈ [n],

zki − z∗ = [I− α

i∑
j=1

(∏̃i

t=j+1
(I− αJτk(t))

)
Mτk(j)](z

k
0 − z∗) (C.4)

− α

i∑
j=1

(∏̃i

t=j+1
(I− αJτk(t))

)
ωτk(j)(z

∗).

We clarify that the matrix products in (C.4) are in reverse order, and hence reduce to the empty
product, which is defined to be I, when j = i.

As verified above, (C.4) is satisfied for i = 1, 2. We now prove that it holds for any i ∈ [n] by
induction.

Assume (C.4) is true for some i ∈ [n]. Using (C.3) to derive the update of zki+1 yields,

zki+1 − z∗ = zki − z∗ − αωτk(i+1)(z
∗)− αMτk(i+1)(z

k
0 − z∗)− αJτk(i+1)(z

k
i − zk0)

= (I− αJτk(i+1))(z
k
i − z∗)− α(Mτk(i+1) − Jτk(i+1))(z

k
0 − z∗)− αωτk(i+1)(z

∗)

= (I− αJτk(i+1))[I− α

i∑
j=1

(∏̃i

t=j+1
(I− αJτk(t))

)
Mτk(j)](z

k
0 − z∗)

− α[ωτk(i+1)(z
∗) +

i∑
j=1

(I − αJτk(i+1))

(∏̃i

t=j+1
(I− αJτk(t))

)
ωτk(j)(z

∗)]

− α(Mτk(i+1) − Jτk(i+1))(z
k
0 − z∗)

= [I− αMτk(i+1) − α

i∑
j=1

(I− αJτk(i+1))

(∏̃i

t=j+1
(I− αJτk(t))

)
Mτk(j)](z

k
0 − z∗)

− α

i+1∑
j=1

(∏̃i+1

t=j+1
(I− αJτk(t))

)
ωτk(j)(z

∗).

It follows that,

zki+1 − z∗ = [I− α

i+1∑
j=1

(∏̃i+1

t=j+1
(I− αJτk(t))

)
Mτk(j)](z

k
0 − z∗)

− α

i+1∑
j=1

(∏̃i+1

t=j+1
(I− αJτk(t))

)
ωτk(j)(z

∗),

which is simply (C.4) for the iterate zki+1. Hence, by induction, (C.4) holds for any i ∈ [n]. As before,
the reverse matrix products for the summand j = i + 1 is empty (in both the sums) and hence, is
equal to I.

Since (C.4) holds for any i ∈ [n], it holds for zk+1
0 = zkn which gives us the following epoch-level

update rule

zk+1
0 − z∗ = [I− α

n∑
j=1

(∏̃n

t=j+1
(I− αJτk(t))

)
Mτk(j)](z

k
0 − z∗)

− α

n∑
j=1

(∏̃n

t=j+1
(I− αJτk(t))

)
ωτk(j)(z

∗). (C.5)

We simplify the second term in the right hand side of (C.5) using the summation by parts identity. To
this end, we define aj and bj as

aj =
∏̃n

t=j+1
(I− αJτk(t)),

bj = ωτk(j)(z
∗),

22

and also note that,
n∑

j=1

bj =

n∑
j=1

ωτk(j)(z
∗) = nν(z∗) = 0,

since z∗ is the unique root of ν. We now apply the summation by parts identity as follows:
n∑

j=1

ajbj = an

n∑
j=1

bj −
n−1∑
i=1

(ai+1 − ai)

i∑
j=1

bj

= −
n−1∑
i=1

[∏̃n

t=i+2
(I− αJτk(t))−

∏̃n

t=i+1
(I− αJτk(t))

] i∑
j=1

ωτk(j)(z
∗)

= −α
n−1∑
i=1

[∏̃n

t=i+2
(I− αJτk(t))

]
Jτk(i+1)

i∑
j=1

ωτk(j)(z
∗).

Hence, we conclude that
n∑

j=1

[∏̃n

t=j+1
(I− αJτk(t))

]
ωτk(j)(z

∗) = −α
n−1∑
i=1

[∏̃n

t=i+2
(I− αJτk(t))

]
Jτk(i+1)

i∑
j=1

ωτk(j)(z
∗),

and introduce Hk and rk as

Hk = I− α

n∑
j=1

(∏̃n

t=j+1
(I− αJτk(t))

)
Mτk(j),

rk =

n−1∑
i=1

[∏̃n

t=i+2
(I− αJτk(t))

]
Jτk(i+1)

i∑
j=1

ωτk(j)(z
∗).

By substituting the above expressions in (C.5), we obtain the desired epoch-level update rule for
GDA-RR and GDA-SO:

zk+1
0 − z∗ = Hk(z

k
0 − z∗) + α2rk. (C.6)

We observe that the linearized epoch-level update rule (C.6) closely resembles the linearized update
rule (C.1) of full-batch GDA as derived in Theorem C.1 with an additional noise term α2rk. In
fact, for n = 1, which corresponds to the full-batch regime, it is easy to see that rk = 0 and (C.6)
exactly recovers the linearized full-batch GDA update rule (C.1). As we shall see in Theorem C.3, the
epoch iterates of GDA-AS also follow the exact same update. The derivation of such an epoch-level
update rule which simultaneously handles GDA-RR, GDA-SO and GDA-AS is a cornerstone of our
unified analysis. Intuition behind this strategy dates back to the foundational works of Nedic and
Bertsekas [37] and Gürbüzbalaban et al. [21], where the authors interpret GD with RR as a stochastic
approximation of full-batch GDA, and then obtain asymptotic O(1/K2) rates using Chung’s Lemma.
Our linearization strategy (which we also use for analyzing PPM and AGDA) essentially formalizes
those insights for minimax optimization in a manner that enables the derivation of non-asymptotic
rates.

Similar to the procedure followed in Theorem C.1, we now upper bound |Hk| as follows:

Step 2: Upper bounding |Hk| We define the matrix M as,

M = 1/n

n∑
j=1

Mτk(j) = 1/n

n∑
j=1

∫ 1

0

∇ωτk(j)(tz
k
0 + (1− t)z∗)dt =

∫ 1

0

∇ν(tzk0 + (1− t)z∗)dt.

Following the same arguments as in Theorem C.1, we note that the l-smoothness and µ-strong
monotonicity of ν implies |M| ≤ l and vTMv ≥ µ |v|2 ∀v ∈ Rd.

We now simplify Hk by unrolling the sum, beginning with the last index j = n:

Hk = I− α

n∑
j=1

(∏̃n

t=j+1
(I− αJτk(t))

)
Mτk(j)

= I− αMτk(n) − α(I− αJτk(n))Mτk(n−1) − α(I− αJτk(n))(I− αJτk(n−1))Mτk(n−2)

− . . .− α

(∏̃n

t=2
(I− αJτk(t))

)
Mτk(1).

23

Expanding each product and grouping by powers of α, we obtain the following:

Hk = I− α

n∑
t1=1

Mτk(t1) + α2
∑

1≤t1<t2≤n

Jτk(t2)Mτk(t1) − α3
∑

1≤t1<t2<t3≤n

Jτk(t3)Jτk(t2)Mτk(t1)

+ . . .+ (−1)nαn
∑

1≤t1<...<tn≤n

Jτk(tn)Jτk(tn−1) . . .Jτk(t2)Mτk(t1).

We note that by definition of M,
∑n

t1=1 Mτk(t1) = nM. Regrouping the remaining terms, we
obtain:

Hk = I− nαM+

n∑
j=2

(−1)jαj
∑

1≤t1<t2<...<tj≤n

Jτk(tj)Jτk(tj−1) . . .Jτk(t2)Mτk(t1).

Hence, by the triangle inequality, it can be inferred that

|Hk| ≤ |I− nαM|+
n∑

j=2

αj
∑

1≤t1<t2<...<tj≤n

∣∣Jτk(tj)

∣∣ ∣∣Jτk(tj−1)

∣∣ . . . ∣∣Jτk(t2)

∣∣ ∣∣Mτk(t1)

∣∣ . (C.7)

We begin by bounding |I− nαM| in a procedure similar to that of Theorem C.1. Observe that for
any v ∈ Rd

|(I− nαM)v|2 = |v|2 − nαvTMv − nαvTMv + n2 |Mv|2

≤ (1− 2nαµ+ n2α2l2) |v|2 ,

where the last inequality follows from |Mv| ≤ |M| |v| ≤ l |v| and vTMTv = vTMv ≥ µ |v|2.
As the above holds true for any v ∈ Rd, it follows that

|I− nαM| ≤
√

1− 2nαµ+ n2α2l2 ≤
√
1− 9nαµ

5
≤ 1− 9nαµ

10
,

where we use α ≤ µ
5nl2 in the second and last inequalities.

It now remains to bound the right hand side of (C.7). Note that the constraint 1 ≤ t1 < t2 < . . . <
tj ≤ n implies that there exist only

(
n
j

)
possible choices for the ti’s. Furthermore, as stated in Step 1,

the l-smoothness of the components ωi(z) implies that
∣∣Mτk(i)

∣∣ , ∣∣Jτk(i)

∣∣ ≤ l,∀i ∈ [n]. Hence,

n∑
j=2

αj
∑

1≤t1<t2<...<tj≤n

∣∣Jτk(tj)

∣∣ ∣∣Jτk(tj−1)

∣∣ . . . ∣∣Jτk(t2)

∣∣ ∣∣Mτk(t1)

∣∣ ≤ n∑
j=2

αj

(
n

j

)
lj .

Combining the previous inequalities allows us to bound |Hk| as follows:

|Hk| ≤ 1− 9nαµ

10
+

n∑
j=2

(αl)j
(
n

j

)
≤ 1− 9nαµ

10
+

n∑
j=2

(αnl)j ≤ 1− 9nαµ

10
+

α2n2l2

1− αnl

≤ 1− 9nαµ

10
+

5α2n2l2

4
≤ 1− 9nαµ

10
+

nαµ

4
≤ 1− nαµ/2,

where we substitute α ≤ µ
5nl2 ≤ 1/5 wherever required.

We highlight that our analysis so far holds for any permutation τk ∈ Sn. Consequently, Steps 1 and 2
directly generalize to the adversarial shuffling regime without any modifications. We use this as a
starting point for our analysis of GDA-AS in Theorem C.3.

We now proceed to control the magnitude of the noise term rk by bounding its expected squared
norm E[|rk|2], where the expectation is taken over the single uniform permutation τ for GDA-SO
and over independent uniform permutations τ1, τ2, . . . , τK for GDA-RR.

24

Step 3: Upper bounding E[|rk|2] Recall that, as per Step 1,
∣∣Jτk(t)

∣∣ ≤ l. Hence, applying the
triangle inequality yields,

|rk| ≤
n−1∑
i=1

[∏̃n

t=i+2

∣∣I− αJτk(t)

∣∣] ∣∣Jτk(i+1)

∣∣ | i∑
j=1

ωτk(j)(z
∗)|

≤ l(1 + αl)n
n−1∑
i=1

|
i∑

j=1

ωτk(j)(z
∗)|

≤ l(1 +
µ

5nl
)n

n−1∑
i=1

|
i∑

j=1

ωτk(j)(z
∗)| ≤ le1/5

n−1∑
i=1

|
i∑

j=1

ωτk(j)(z
∗)|.

To bound |rk|2, we use the inequality (
∑n

i=1 xi)
2 ≤ n

∑n
i=1 x

2
i which follows from Young’s

inequality. This yields:

|rk|2 ≤ l2e2/5

n−1∑
i=1

|
i∑

j=1

ωτk(j)(z
∗)|

2

≤ l2e2/5

n−1∑
i=1

i|1/i
i∑

j=1

ωτk(j)(z
∗)|

2

≤ l2e2/5(n− 1)

n−1∑
i=1

i2|1/i
i∑

j=1

ωτk(j)(z
∗)|2.

We now convert the above inequality into an upper bound for E[|rk|2]. For the sake of clarity, we illus-
trate the case of GDA-RR and GDA-SO separately. However, we remark that the proof for both cases
is practically identical and relies on an application of Lemma B.3 to the term |1/i

∑i
j=1 ωτk(j)(z

∗)|2.

Step 3A: E[|rk|2] for GDA-RR We write E[|rk|2] = Eτ1,...,τK [|rk|2] to explicitly denote the
dependence of the expectation on the uniform random permutations τ1, . . . , τK . We then use Lemma
B.3 to bound E[|rk|2] as follows:

E[|rk|2] ≤ l2e2/5(n− 1)

n−1∑
i=1

i2Eτ1,...,τK [|1/i
i∑

j=1

ωτk(j)(z
∗)|2]

≤ l2e2/5(n− 1)

n−1∑
i=1

i2Eτk [|1/i
i∑

j=1

ωτk(j)(z
∗)|2]

≤ l2e2/5(n− 1)

n−1∑
i=1

i2
n− i

i(n− 1)
σ2
∗ = l2e2/5σ2

∗

n−1∑
i=1

i(n− i)

≤ l2n3σ2
∗/4,

where σ2
∗ denotes the gradient variance at the minimax point z∗, defined as σ2

∗ = 1/n
∑n

i=1 |ωi(z
∗)|2.

We highlight that the second inequality follows from the independence of the uniformly sam-
pled permutations τ1, . . . , τK and the third inequality follows from Lemma B.3 (recall that
1/n

∑n
j=1 ω(z

∗) = ν(z∗) = 0).

Step 3B: E[|rk|2] for GDA-SO For GDA-SO, τ1 = . . . = τK = τ where τ is a uniformly sampled
random permutation. Hence, this yields the following:

|rk|2 ≤ l2e2/5(n− 1)

n−1∑
i=1

i2|1/i
i∑

j=1

ωτ(j)(z
∗)|2.

25

Proceeding along the same lines as Step 3A, we obtain

E[|rk|2] ≤ l2e2/5(n− 1)

n−1∑
i=1

i2Eτ [|1/i
i∑

j=1

ωτ(j)(z
∗)|2]

≤ l2e2/5(n− 1)

n−1∑
i=1

i2
n− i

i(n− 1)
σ2
∗

≤ l2n3σ2
∗/4.

Hence, for both GDA-RR and GDA-SO, rk is bounded in expectation as E[|rk|2] ≤ l2n3σ2
∗/4.

Having bounded both |Hk| and E[|rk|2], we now proceed to present a complete unified proof of
convergence for GDA-RR and GDA-SO.

Step 4: Convergence analysis Unrolling (C.6) for K epochs and setting z10 = z0 gives us the
following:

zK+1
0 − z∗ =

[∏̃K

k=1
Hk

]
(z0 − z∗) + α2

K∑
k=1

[∏̃K

j=k+1
Hj

]
rk.

Using the triangle inequality and the bound |Hk| ≤ 1− nαµ/2 results in:∣∣zK+1
0 − z∗

∣∣ ≤ [∏̃K

k=1
|Hk|

]
|z0 − z∗|+ α2

K∑
k=1

[∏̃K

j=k+1
|Hj |

]
|rk|

≤ (1− nαµ/2)K |z0 − z∗|+ α2
K∑

k=1

(1− nαµ/2)K−k |rk| .

By applying Young’s inequality, we conclude the following:∣∣zK+1
0 − z∗

∣∣2 ≤ 2(1− nαµ/2)2K |z0 − z∗|2 + 2α4K

K∑
k=1

(1− nαµ/2)2(K−k)|rk|2

≤ 2e−nαµK |z0 − z∗|2 + 2α4K

K∑
k=1

(1− nαµ/2)2(K−k)|rk|2.

Taking expectations (with respect to the uniform random permutations τ1, . . . , τK for RR and τ for
SO respectively) on both sides of the above inequality and substituting the upper bound on E[|rk|2]
as derived in Step 3 gives us the following:

E[
∣∣zK+1

0 − z∗
∣∣2] ≤ 2e−nαµK |z0 − z∗|2 + 2α4K

K∑
k=1

(1− nαµ/2)2(K−k)E[|rk|2]

≤ 2e−nαµK |z0 − z∗|2 +
(
l2n3σ2

∗/2
)
α4K

K∑
k=1

(1− nαµ/2)2(K−k).

By simplifying the last term, we obtain the following guarantee that holds for GDA-RR and GDA-SO
whenever α ≤ µ

5nl2 ,

E[
∣∣zK+1

0 − z∗
∣∣2] ≤ 2e−nαµK |z0 − z∗|2 + l2σ2

∗α
3n2K

µ
. (C.8)

To complete the proof, we substitute α = min{µ/5nl2, 2 log(|ν(z0)|n1/2K/µ)/µnK} in (C.8).

Under this choice of step-size, using α ≤ 2 log(|ν(z0)|n1/2K/µ)
µnK , we bound the second term in the right

hand side of (C.8) as

l2σ2
∗α

3n2K

µ
≤ 8l2σ2

∗
µ4

log3
(
|ν(z0)|n1/2K/µ

)
nK2

.

26

By substituting the above expression into (C.8), we obtain the following:

E[
∣∣zK+1

0 − z∗
∣∣2] ≤ 2e−nαµK |z0 − z∗|2 + 8κ2σ2

∗
µ2

log3
(
|ν(z0)|n1/2K/µ

)
nK2

. (C.9)

We now consider the following cases:

Case 1: µ
5nl2 ≤

2 log(|ν(z0)|n1/2K/µ)
µnK By our choice of the step-size, α = µ

5nl2 , which implies that

2e−nαµK |z0 − z∗|2 = 2e−
K

5κ2 |z0 − z∗|2 .
By substituting into (C.9), we obtain the following rate for Case 1,

E[
∣∣zK+1

0 − z∗
∣∣2] ≤ 2e−

K
5κ2 |z0 − z∗|2 + 8κ2σ2

∗
µ2

log3
(
|ν(z0)|n1/2K/µ

)
nK2

. (C.10)

Case 2: 2 log(|ν(z0)|n1/2K/µ)
µnK ≤ µ

5nl2 By our choice of the step-size, α =
2 log(|ν(z0)|n1/2K/µ)

µnK . It
follows that:

2e−nαµK |z0 − z∗|2 = 2e−2 log(|ν(z0)|n1/2K/µ) ≤ µ |z0 − z∗|2

|ν(z0)|2
2

nK2
≤ 2

nK2
,

where the last inequality follows from the µ-strong monotonicity of ν.

Substituting the above inequality into (C.9), we obtain the following rate for Case 2,

E[
∣∣zK+1

0 − z∗
∣∣2] ≤ 2µ2 + 8κ2σ2

∗ log
3
(
|ν(z0)|n1/2K/µ

)
µ2nK2

. (C.11)

Taking the maximum of the right hand side of (C.10) and (C.11), we finally obtain the desired
last-iterate convergence rate which holds for both cases:

E[
∣∣zK+1

0 − z∗
∣∣2] ≤ 2e−

K
5κ2 |z0 − z∗|2 +

2µ2 + 8κ2σ2
∗ log

3
(
|ν(z0)|n1/2K/µ

)
µ2nK2

. (C.12)

Suppressing constant terms and logarithmic factors, we obtain the following:

E[
∣∣zK+1

0 − z∗
∣∣2] = Õ(e

−K/5κ2
+ 1/nK2). (C.13)

We highlight that the obtained last-iterate convergence guarantee holds for both GDA-RR and
GDA-SO, and is applicable for any number of epochs K ≥ 1.

Recovering the rates of full-batch GDA We note that when n = 1, i.e., in the non-stochastic
regime, GDA-RR/SO reduces to full-batch GDA and σ2

∗ = 0. Substituting this into (C.12), we note
that Theorem C.2 implies a last-iterate convergence guarantee of O(exp(−K/5κ2)), which matches
the tight convergence rate of full-batch GDA as established in Theorem C.1. Thus, our analysis of
GDA-RR/SO automatically recovers the rates of full-batch GDA and the exponential dependence of
−K/5κ2 is optimal up to constant factors. We highlight that the above argument holds even when
n > 1 as long as σ2

∗ = 0 (which occurs whenever z∗ is the common root of all the operators ωi).

Comparison with lower bounds and uniform sampling As discussed earlier in Section 3.2, it
is easy to see that the obtained convergence rate for GDA-RR/SO is nearly tight, i.e., differs from
the lower bound only by an exponentially decaying term exp(−K/5κ2). In fact, Theorem C.2
implies an Õ(1/nK2) convergence rate (suppressing constants such as κ, µ, σ∗ as well as logarithmic
factors) when exp(−K/5κ2) + 1/nK2 = O(1/nK2), which holds when K satisfies an epoch
requirement of the form K ≥ 10κ2 log(n1/2K). Thus, as per Theorem C.2, GDA-RR/SO improves
upon SGDA with replacement and matches the lower bound (modulo logarithmic factors) when
K ≥ 10κ2 log(n1/2K). Furthermore, since our analysis of GDA-RR/SO recovers the rates of full-
batch GDA, one can infer that the dependence of this epoch requirement on κ cannot be improved for
constant step-sizes (i.e., using constant step-sizes, one cannot obtain Õ(1/nK2) rates by imposing
an epoch requirement of the form K ≥ Cκa log(n1/2K) with a < 2), as it would contradict the
optimality of the −K/5κ2 exponential dependence. We remark that it might be possible to relax
or even remove this epoch requirement for matching the lower bound, by either assuming strong
monotonicity of the components ωi or by using time-varying step-sizes, as was done in Mishchenko
et al. [34] and Ahn et al. [1] respectively, in the minimization setting.

27

C.3 Analysis of GDA-AS

Theorem C.3 (Convergence of GDA-AS). Consider Problem (4) for the µ-strongly monotone
operator ν(z) = 1/n

∑n
i=1 ωi(z) where each ωi is l-Lipschitz, but not necessarily monotone. Let z∗

denote the unique root of ν. Then, for any α ≤ µ
5nl2 and K ≥ 1, the iterates of GDA-AS satisfy the

following:

max
τ1,...,τK∈Sn

∣∣zK+1
0 − z∗

∣∣2 ≤ 2e−nαµK |z0 − z∗|2 + 3l2σ2
∗α

3n3K

µ
.

Setting α = min{µ/5nl2, 2 log(|ν(z0)|K/µ)/µnK} results in the following expected last-iterate
convergence guarantee for GDA-AS, which holds for any K ≥ 1:

max
τ1,...,τK∈Sn

∣∣zK+1
0 − z∗

∣∣2 ≤ 2e
−K/5κ2 |z0 − z∗|2 + 2µ2 + 24κ2σ2

∗ log
3(|ν(z0)|K/µ)

µ2K2

= Õ(e
−K/5κ2

+ 1/K2).

Proof. The iterate-level update rule of GDA-AS can be expressed as

zki = zki−1 − αωτk(i)(z
k
i−1), (C.14)

where k ∈ [K], i ∈ [n] and τk ∈ Sn denotes an arbitrary permutation chosen by the adversary at
the start of epoch k. Recall that Steps 1 and 2 of Theorem C.2 hold for any permutation τk ∈ Sn,
and consequently, they are directly applicable to GDA-AS. As a result, we can conclude that the
epoch-level update rule of GDA-AS is the same as that of GDA-RR/SO, and is given by:

zk+1
0 − z∗ = Hk(z

k
0 − z∗) + α2rk. (C.15)

Note that Hk and rk are as defined in Theorem C.2, and are given by:

Hk = I− α

n∑
j=1

(∏̃n

t=j+1
(I− αJτk(t))

)
Mτk(j),

rk =

n−1∑
i=1

[∏̃n

t=i+2
(I− αJτk(t))

]
Jτk(i+1)

i∑
j=1

ωτk(j)(z
∗),

where, as before, Mτk(i) =
∫ 1

0
∇ωτk(i)(tz

k
0 + (1 − t)z∗)dt and Jτk(i) =

∫ 1

0
∇ωτk(i)(tz

k
i + (1 −

t)zk0)dt. Furthermore, by Step 2 of Theorem C.2, |Hk| ≤ 1− nαµ/2.

Our analysis now proceeds by controlling the influence of the noise term rk. Recall that this was
achieved in our analysis of GDA-RR/SO by using Lemma B.3 to upper bound E[|rk|2]. However,
the same strategy does not apply to GDA-AS since the permutations τ1, . . . , τK are chosen by the
adversary as per an arbitrary strategy that is unknown to us. We circumvent this by instead deriving
an upper bound for |rk|2 that holds uniformly for any permutation τk ∈ Sn.

We begin by repeating some initial steps from Step 3 of Theorem C.2. Applying
∣∣Jτk(t)

∣∣ ≤ l gives us
the following:

|rk| ≤
n−1∑
i=1

[∏̃n

t=i+2

∣∣I− αJτk(t)

∣∣] ∣∣Jτk(i+1)

∣∣ | i∑
j=1

ωτk(j)(z
∗)| ≤ l(1 + αl)n

n−1∑
i=1

|
i∑

j=1

ωτk(j)(z
∗)|

≤ l(1 +
µ

5nl
)n

n−1∑
i=1

|
i∑

j=1

ωτk(j)(z
∗)| ≤ le1/5

n−1∑
i=1

|
i∑

j=1

ωτk(j)(z
∗)|.

28

By Young’s inequality, we conclude,

|rk|2 ≤ l2e2/5

n−1∑
i=1

|
i∑

j=1

ωτk(j)(z
∗)|

2

≤ l2e2/5(n− 1)

n−1∑
i=1

|
i∑

j=1

ωτk(j)(z
∗)|2

≤ l2e2/5(n− 1)

n−1∑
i=1

i

i∑
j=1

|ωτk(j)(z
∗)|2

≤ l2e2/5(n− 1)

n−1∑
i=1

i

n∑
j=1

|ωτk(j)(z
∗)|2 = l2e2/5(n− 1)

n−1∑
i=1

i

n∑
j=1

|ωj(z
∗)|2

= l2e2/5(n− 1)(nσ2
∗)

n−1∑
i=1

i ≤ 3l2n4σ2
∗/4.

We note that the above sequence of inequalities holds for any permutation τk, and hence, the upper
bound |rk|2 ≤ 3l2n4σ2

∗/4 holds for any τk ∈ Sn, k ∈ [K].

Having bounded both |Hk| and |rk|, we now proceed to derive the last-iterate convergence guarantee.

Unrolling (C.15) for K epochs and setting z10 = z0 gives us the following:

zK+1
0 − z∗ =

[∏̃K

k=1
Hk

]
(z0 − z∗) + α2

K∑
k=1

[∏̃K

j=k+1
Hk

]
rk.

By the triangle inequality and the bound |Hk| ≤ 1− nαµ/2, we infer,

∣∣zK+1
0 − z∗

∣∣ ≤ [∏̃K

k=1
|Hk|

]
|z0 − z∗|+ α2

K∑
k=1

[∏̃K

j=k+1
|Hk|

]
|rk|

≤ (1− nαµ/2)K |z0 − z∗|+ α2
K∑

k=1

(1− nαµ/2)K−k |rk| .

By applying Young’s inequality, we can conclude that,

∣∣zK+1
0 − z∗

∣∣2 ≤ 2(1− nαµ/2)2K |z0 − z∗|2 + 2α4K
K∑

k=1

(1− nαµ/2)2(K−k)|rk|2

≤ 2e−nαµK |z0 − z∗|2 + 2α4K

K∑
k=1

(1− nαµ/2)2(K−k)|rk|2

≤ 2e−nαµK |z0 − z∗|2 + (1.5l2n4σ2
∗)α

4K

K∑
k=1

(1− nαµ/2)2(K−k)

≤ 2e−nαµK |z0 − z∗|2 + 3l2σ2
∗α

3n3K

µ
.

Since the above inequality holds for any sequence of permutations τ1, . . . , τK chosen by the adversary,
we obtain the following uniform guarantee for GDA-AS, whenever α ≤ µ

5nl2 ,

max
τ1,...,τK∈Sn

∣∣zK+1
0 − z∗

∣∣2 ≤ 2e−nαµK |z0 − z∗|2 + 3l2σ2
∗α

3n3K

µ
. (C.16)

To complete the proof, we substitute α = min{µ/5nl2, 2 log(|ν(z0)|K/µ)/µnK} in (C.16) and
proceed in a manner similar to Theorem C.2.

29

Under this choice of step-size, using α ≤ 2 log(|ν(z0)|K/µ)
µnK , we bound the second term in the right

hand side of (C.16) as

3l2σ2
∗α

3n3K

2µ
≤ 24l2σ2

∗
µ4

log3 (|ν(z0)|K/µ)

K2
.

Substituting the above inequality into (C.16), we obtain,

max
τ1,...,τK∈Sn

∣∣zK+1
0 − z∗

∣∣2 ≤ 2e−nαµK |z0 − z∗|2 + 24κ2σ2
∗

µ2

log3 (|ν(z0)|K/µ)

K2
. (C.17)

We now consider the following cases:

Case 1: µ
5nl2 ≤

2 log(|ν(z0)|K/µ)
µnK By our choice of the step-size, α = µ

5nl2 . It follows that:

2e−nαµK |z0 − z∗|2 = 2e−K/(5κ2) |z0 − z∗|2 .
Substituting into (C.17), we obtain the following rate for Case 1,

max
τ1,...,τK∈Sn

∣∣zK+1
0 − z∗

∣∣2 ≤ 2e
−K

5κ2 |z0 − z∗|2 + 24κ2σ2
∗

µ2

log3 (|ν(z0)|K/µ)

K2
. (C.18)

Case 2: 2 log(|ν(z0)|K/µ)
µnK ≤ µ

5nl2 By our choice of the step-size, α = 2 log(|ν(z0)|K/µ)
µnK . It follows

that:

2e−nαµK |z0 − z∗|2 = 2e−2 log(|ν(z0)|K/µ) ≤ µ |z0 − z∗|2

|ν(z0)|2
2

K2
≤ 2

K2
,

where the last inequality follows from the µ-strong monotonicity of ν.

Substituting the above inequality into (C.17), we obtain the following rate for Case 2,

max
τ1,...,τK∈Sn

∣∣zK+1
0 − z∗

∣∣2 ≤ 2µ2 + 24κ2σ2
∗ log

3(|ν(z0)|K/µ)

µ2K2
. (C.19)

By taking the maximum of the right hand side of (C.18) and (C.19), we finally obtain the desired
last-iterate convergence rate.

max
τ1,...,τK∈Sn

∣∣zK+1
0 − z∗

∣∣2 ≤ 2e
−K/5κ2 |z0 − z∗|2 + 2µ2 + 24κ2σ2

∗ log
3(|ν(z0)|K/µ)

µ2K2
. (C.20)

Suppressing constant terms and logarithmic factors, we get,

max
τ1,...,τK∈Sn

∣∣zK+1
0 − z∗

∣∣2 = Õ(e
−K/5κ2

+ 1/K2). (C.21)

Comparison with lower bounds By repeating the same arguments as those used for GDA-RR/SO,
it is easy to see that our analysis of GDA-AS recovers the tight rates of full-batch GDA in the
deterministic, i.e., n = 1 regime. Furthermore, Theorem C.2 implies an Õ(1/K2) convergence rate,
which matches the lower bound modulo logarithmic factors, when e−K/5κ2

+ 1/K2 = O(1/K2), i.e.,
when K satisfies an epoch requirement of the form K ≥ 10κ2 log(K). As before, since our analysis
of GDA-AS recovers the rates of full-batch GDA, the κ2 dependence of the epoch requirement cannot
be improved for constant step-sizes.

D Analysis of PPM without Replacement

We now present the convergence proofs of the proximal point method without replacement (i.e.
PPM-RR/SO/AS). The structure of these results largely mirror that of our analysis of GDA without
replacement, since the key techniques used in our analysis is an adaptation of the linearization
technique to PPM and the application of Lemma B.3 to control the influence of noise in PPM without
replacement. To this end, we begin by presenting a linearization-based proof of convergence of full
batch PPM, followed by a unified proof of convergence of PPM-RR and PPM-SO, and conclude with
the extension of our proof techniques to the adversarial shuffling regime by analyzing PPM-AS.

30

D.1 Analysis of Full-batch PPM by Linearization

Theorem D.1 (Convergence of full-batch PPM). Consider the l-Lipschitz and µ-strongly monotone
operator ν : Rd → Rd and let z∗ denote the unique root of ν. For any step-size 0 < α < 1/l, the
iterates zk of full-batch PPM satisfy the following recurrence:

zk+1 − z∗ = (I+ αMk+1)
−1(zk − z∗),

where I+ αMk+1 is invertible and its singular values are lower bounded as σmin(I+ αMk+1) ≥
1 + αµ. Consequently, setting α = 1/2l gives us the following last iterate convergence guarantee:

|zK+1 − z∗|2 ≤ (1 + 1/2κ)−2K |z0 − z∗|2 .

Proof. The iterates of full-batch PPM with step-size α satisfy

zk+1 = zk − αν(zk+1).

From the above equation, we conclude that zk+1 is a fixed point of the operator ζ(z) = zk − αν(z).
Since α < 1/l, ζ is a contraction mapping. Hence, by the Banach Fixed Point Theorem, we conclude
that zk+1 exists and is uniquely defined. This allows us to proceed in a manner similar to Theorem
C.1 and linearize ν(zk+1) about z∗. Thus, by the Lipschitz continuity of ν and the Fundamental
Theorem of Calculus for Lebesgue Integrals:

ν(zk+1) = ν(z∗) +

∫ 1

0

∇ν(tzk+1 + (1− t)z∗)(zk+1 − z∗)dt

= Mk+1(zk+1 − z∗),

where Mk+1 =
∫ 1

0
∇ν(tzk+1 + (1 − t)z∗)dt is well defined by Lemma B.1. Substituting this

expansion into the PPM update rule gives us the following:

zk − z∗ = (I+ αMk+1)(zk+1 − z∗). (D.1)

Using the same arguments as in Theorem C.1, we conclude that the µ-strong monotonicity of ν
implies vTMk+1v ≥ µ |v|2 ∀v ∈ Rd. Using this, we lower bound the singular values of I+αMk+1

as follows:

Note that for any v ∈ Rd,

|(I+ αMk+1)v|2 = |v|2 + αvTMk+1v + αvTMT
k+1v + α2 |Mk+1v|2

≥ (1 + 2αµ+ α2µ2) |v|2 ,

where the last inequality follows from the Cauchy-Schwarz inequality since |v| |Mk+1v| ≥
vTMk+1v ≥ µ |v|2.

Thus, the singular values of I + αMk+1 are lower bounded as σmin(I + αMk+1) ≥ 1 + αµ > 0.
Since I+Mk+1 is a square matrix, this implies that I+ αMk+1 is invertible and∣∣(I+ αMk+1)

−1
∣∣ = σmax((I+ αMk+1)

−1) = 1/σmin(I+ αMk+1) ≤ (1 + αµ)−1.

It follows that,

zk+1 − z∗ = (I+ αMk+1)
−1(zk − z∗)

=⇒ |zk+1 − z∗|2 ≤ (1 + αµ)−2 |zk − z∗|2 .

Thus, by setting α = 1/2l, we obtain the following convergence guarantee

|zK+1 − z∗|2 ≤ (1 + 1/2κ)−2K |z0 − z∗|2 .

31

D.2 A Unified Analysis of PPM-RR and PPM-SO

Theorem D.2 (Convergence of PPM-RR/SO). Consider Problem (4) for the µ-strongly monotone
operator ν(z) = 1/n

∑n
i=1 ωi(z) where each ωi is l-Lipschitz, but not necessarily monotone. Let

z∗ denote the unique root of ν. Then, for any α ≤ µ
5nl2 and K ≥ 1, the iterates of PPM-RR and

PPM-SO satisfy the following:

E[
∣∣zK+1

0 − z∗
∣∣2] ≤ 2e−nαµK |z0 − z∗|2 + l2σ2

∗α
3n2K

µ
.

Setting α = min{µ/5nl2, 2 log(|ν(z0)|n1/2K/µ)/µnK} results in the following expected last-
iterate convergence guarantee for both PPM-RR and PPM-SO, which holds for any K ≥ 1:

E[|zK+1
0 − z∗|2] ≤ 2e

−K/5κ2 |z0 − z∗|2 + 2µ2 + 8κ2σ2
∗ log

3(|ν(z0)|n1/2K/µ)

µ2nK2

= Õ(e
−K/5κ2

+ 1/nK2).

Proof. Without loss of generality, we express the iterate-level update rule of PPM-RR and PPM-SO
jointly as

zki = zki−1 − αωτk(i)(z
k
i), (D.2)

where k ∈ [K] and i ∈ [n]. Similar to Theorem D.1, the Banach Fixed Point Theorem guarantees
that zki is well defined and unique since α ≤ µ/5nl2 < 1/l.

We note that τk ∼ Uniform(Sn) for every k ∈ [K] for PPM-RR (i.e., τk is a permutation of
[n] that is resampled uniformly at every epoch) whereas for PPM-SO, τk = τ ∀k ∈ [K] where
τ ∼ Uniform(Sn) (i.e., the permutation τ is uniformly sampled before the first epoch, then reused
for all subsequent epochs). We also define the transposed permutation τ̃k as τ̃k(i) = τk(n+ 1− i)
for any i ∈ [n].

The remainder of our proof follows the structure of Theorem C.2. In particular, we apply the
linearization technique as illustrated in Theorem D.1 to PPM without replacement and derive a
linearized epoch-level update rule of the form zk0 − z∗ = Hk(z

k+1
0 − z∗) + α2rk. This is followed

by lower bounding σmin(Hk) using the Lipschitz continuity and strong monotonicity of µ and upper
bounding E[|rk|2] using Lemma B.3. The proof is completed by unrolling the update rule for K
epochs and carefully choosing the step-size.

Step 1: Linearized epoch-level update rule The approach for this step mirrors that of Theorem
C.2 and hinges on the insight that for small enough step-sizes, the dynamics of the iterates zk+1

0
of PPM without replacement can be treated as a noisy version of full-batch PPM. Complementing
this insight with the linearization-based analysis of full-batch PPM in Theorem D.1 motivates the
following decomposition:

ωτk(i)(z
k
i) = ωτk(i)(z

∗) + [ωτk(i)(z
k
n)− ωτk(i)(z

∗)] + [ωτk(i)(z
k
i)− ωτk(i)(z

k
n)]

= ωτk(i)(z
∗) +

∫ 1

0

∇ωτk(i)(tz
k
n + (1− t)z∗)(zkn − z∗)dt

+

∫ 1

0

∇ωτk(i)(tz
k
i + (1− t)zkn)(z

k
i − zkn)dt.

We further define Mτk(i) and Jτk(i) as follows:

Mτk(i) =

∫ 1

0

∇ωτk(i)(tz
k
n + (1− t)z∗)dt,

Jτk(i) =

∫ 1

0

∇ωτk(i)(tz
k
i + (1− t)zkn)dt.

By repeating the same arguments as in Theorem D.1, we note that the l-Lipschitz continuity of
ωi(z) ∀i ∈ [n] implies that Mτk(i) and Jτk(i) are well defined and bounded as

∣∣Mτk(i)

∣∣ ≤ l and∣∣Jτk(i)

∣∣ ≤ l. It follows that

ωτk(i)(z
k
i) = ωτk(i)(z

∗) +Mτk(i)(z
k
n − z∗) + Jτk(i)(z

k
i − zkn). (D.3)

32

Substituting (D.3) into the update equation (C.2) for zkn yields,

zkn−1 − z∗ = (I+ αMτk(n))(z
k
n − z∗) + αJσk(n)(z

k
n − zkn) + αωτk(n)(z

∗)

= (I+ αMτ̃k(1))(z
k
n − z∗) + αωτ̃k(1)(z

∗).

Repeating the same for zkn−1 results in the following:

zkn−2 − z∗ = zkn−1 − z∗ + αωτk(n−1)(z
∗) + αMτk(n−1)(z

k
n − z∗) + αJτk(n−1)(z

k
n−1 − zkn)

= zkn−1 − z∗ + αωτ̃k(2)(z
∗) + αMτ̃k(2)(z

k
n − z∗) + αJτ̃k(2)(z

k
n−1 − zkn)

= (I+ αJτ̃k(2))(z
k
n−1 − z∗) + α(Mτ̃k(2) − Jτ̃k(2))(z

k
n − z∗) + αωτ̃k(2)(z

∗)

= (I+ αJτ̃k(2))[(I+ αMτ̃k(1))(z
k
n − z∗) + αωτ̃k(1)(z

∗)]

+ α(Mτ̃k(2) − Jτ̃k(2))(z
k
n − z∗) + αωτ̃k(2)(z

∗)

= [(I+ αJτ̃k(2))(I+ αMτ̃k(1)) + α(Mτ̃k(2) − Jτ̃k(2))](z
k
n − z∗)

+ α[ωτ̃k(2)(z
∗) + (I+ αJτ̃k(2))ωτ̃k(1)(z

∗)]

= [I+ αMτ̃k(2) + α(I+ αJτ̃k(2))Mτ̃k(1)](z
k
n − z∗)

+ α[ωτ̃k(2)(z
∗) + (I+ αJτ̃k(2))ωτ̃k(1)(z

∗)].

By applying the same process for preceeding iterates and substituting zkn = zk+1
0 , we obtain the

following epoch-level update rule for PPM-RR and PPM-SO

zk0 − z∗ = [I+ α

n∑
j=1

(∏̃n

t=j+1
(I+ αJτ̃k(t))

)
Mτ̃k(j)](z

k+1
0 − z∗)

+ α

n∑
j=1

(∏̃n

t=j+1
(I+ αJτ̃k(t))

)
ωτ̃k(j)(z

∗). (D.4)

We clarify that the matrix products in (D.4) are in reverse order, and hence reduce to the empty
product, which is defined to be I, when j = i. Furthermore τ̃k denotes the transposed permutation
τ̃k(i) = τk(n+ 1− i).

We simplify the second term in the right hand side of (D.4) using the summation by parts identity. To
this end, we define aj and bj as

aj =
∏̃n

t=j+1
(I+ αJτ̃k(t)),

bj = ωτ̃k(j)(z
∗),

and observe that,
n∑

j=1

bj =

n∑
j=1

ωτ̃k(j)(z
∗) = nν(z∗) = 0,

since z∗ is the unique root of ν. We now apply the summation by parts identity to obtain the following:
n∑

j=1

ajbj = an

n∑
j=1

bj −
n−1∑
i=1

(ai+1 − ai)

i∑
j=1

bj

= −
n−1∑
i=1

[∏̃n

t=i+2
(I+ αJτ̃k(t))−

∏̃n

t=i+1
(I+ αJτ̃k(t))

] i∑
j=1

ωτ̃k(j)(z
∗)

= α

n−1∑
i=1

[∏̃n

t=i+2
(I+ αJτ̃k(t))

]
Jτ̃k(i+1)

i∑
j=1

ωτ̃k(j)(z
∗).

Hence, we conclude that:
n∑

j=1

[∏̃n

t=j+1
(I+ αJτ̃k(t))

]
ωτ̃k(j)(z

∗) = α

n−1∑
i=1

[∏̃n

t=i+2
(I+ αJτ̃k(t))

]
Jτ̃k(i+1)

i∑
j=1

ωτ̃k(j)(z
∗).

33

We define Hk and rk as

Hk = I+ α

n∑
j=1

(∏̃n

t=j+1
(I+ αJτ̃k(t))

)
Mτ̃k(j),

rk =

n−1∑
i=1

[∏̃n

t=i+2
(I+ αJτ̃k(t))

]
Jτ̃k(i+1)

i∑
j=1

ωτ̃k(j)(z
∗),

and substitute the above expressions in (D.4). This gives us the following noisy linearized update
rule for the epoch iterates zk0 of PPM-RR and PPM-SO:

zk0 − z∗ = Hk(z
k+1
0 − z∗) + α2rk. (D.5)

We observe that (D.5) closely resembles the linearized update rule (D.1) of full-batch PPM as derived
in Theorem D.1 with an additive noise term α2rk. In fact, for n = 1, which corresponds to the
full-batch regime, it is easy to see that rk = 0 and (D.5) reduces to (D.1). As we shall see in Theorem
D.3, the same update rule also applies to PPM-AS. Similar to our analysis of GDA, the derivation of
an epoch-level update rule that simultaneously handles PPM-RR, PPM-SO and PPM-AS is a key
component of our analysis.

Thus, we proceed in a manner similar to Theorem D.1 by lower bounding the minimum singular
value of Hk.

Step 2: Lower bounding σmin(Hk) We define the matrix M as,

M = 1/n

n∑
j=1

Mτ̃k(j) = 1/n

n∑
j=1

∫ 1

0

∇ωτ̃k(j)(tz
k
n + (1− t)z∗)dt =

∫ 1

0

∇ν(tzkn + (1− t)z∗)dt.

By following the same arguments as Theorem D.1, we note that the l-smoothness and µ-strong
monotonicity of ν implies that |M| ≤ l and vTMv ≥ µ |v|2 ∀v ∈ Rd.

By expanding the product terms in Hk, we obtain the following:

Hk = I+ α

n∑
j=1

(∏̃n

t=j+1
(I+ αJτ̃k(t))

)
Mτ̃k(j)

= I+ nαM+

n∑
j=2

αj
∑

1≤t1<t2<...<tj≤n

Jτ̃k(tj)Jτ̃k(tj−1) . . .Jτ̃k(t2)Mτ̃k(t1).

We now apply Weyl’s inequality for singular value perturbations, which gives us the following bound,

σmin(Hk) ≥ σmin(I+nαM)−
n∑

j=2

αj
∑

1≤t1<t2<...<tj≤n

∣∣Jτ̃k(tj)

∣∣ ∣∣Jτ̃k(tj−1)

∣∣ . . . ∣∣Jτ̃k(t2)

∣∣ ∣∣Mτ̃k(t1)

∣∣ .
(D.6)

Following the same steps as Theorem D.1, we conclude that vTMv ≥ µ |v|2 implies σmin(I +
nαM) ≥ 1 + nαµ. Furthermore, we observe that,

n∑
j=2

αj
∑

1≤t1<t2<...<tj≤n

∣∣Jτ̃k(tj)

∣∣ ∣∣Jτ̃k(tj−1)

∣∣ . . . ∣∣Jτ̃k(t2)

∣∣ ∣∣Mτ̃k(t1)

∣∣ ≤ n∑
j=2

αj

(
n

j

)
lj .

Substituting the above bound in (D.6) gives us the following:

σmin(Hk) ≥ 1 + nαµ−
n∑

j=2

(αl)j
(
n

j

)
≥ 1 + nαµ−

n∑
j=2

(αnl)j ≥ 1 + nαµ− α2n2l2

1− αnl

≥ 1 + nαµ− 5α2n2l2

4
≥ 1 + 3nαµ/4,

where we substitute α ≤ µ
5nl2 ≤ 1/5 wherever required. Furthermore, since σmin(Hk) ≥ 1 +

3nαµ/4 > 0, Hk is invertible and
∣∣H−1

k

∣∣ ≤ (1 + 3nαµ/4)−1 ≤ (1− nαµ/2), which holds since
nαµ ≤ 1/5.

34

As before, our analysis so far holds for any permutation τk ∈ Sn. Consequently, Steps 1 and 2
directly generalize to the adversarial shuffling regime without any modifications. We use this as a
starting point for our analysis of PPM-AS in Theorem D.3.

We now control the magnitude of the noise term rk by bounding E[|rk|2] similar to Theorem C.2.
We note that the expectation is taken over the single uniform permutation τ for PPM-SO and over
independent uniform permutations τ1, τ2, . . . , τK for PPM-RR.

Step 3: Upper bounding E[|rk|2] We follow the same procedure as in Step 3 of Theorem C.2 and
obtain the following bound by successively applying

∣∣Jτ̃k(i)

∣∣ ≤ l and Young’s inequality:

|rk|2 ≤ l2e2/5(n− 1)

n−1∑
i=1

i2|1/i
i∑

j=1

ωτ̃k(j)(z
∗)|2.

We now convert the above inequality into an upper bound for E[|rk|2] by applying Lemma B.3 to the
term |1/i

∑i
j=1 ωτ̃k(j)(z

∗)|2. The case of PPM-RR and PPM-SO are discussed separately.

Step 3A: E[|rk|2] for PPM-RR We write E[|rk|2] = Eτ1,...,τK [|rk|2] to explicitly denote the
dependence of the expectation on the uniformly sampled random permutations τ1, . . . , τK , and then
proceed as follows:

E[|rk|2] ≤ l2e2/5(n− 1)

n−1∑
i=1

i2Eτk [|1/i
i∑

j=1

ωτ̃k(j)(z
∗)|2].

Since τk is a uniformly sampled random permutation and Sn is a finite group with n! elements, it
follows that for any π ∈ Sn,

PUniform [τk = π] = PUniform [τ̃k = π] = 1/n! .

Hence, we infer that,

Eτk [|1/i
i∑

j=1

ωτ̃k(j)(z
∗)|2] = Eτ̃k [|1/i

i∑
j=1

ωτ̃k(j)(z
∗)|2] = n− i

i(n− 1)
σ2
∗,

where the last equality follows from Lemma B.3. Note that σ2
∗ denotes the gradient variance at the

minimax point z∗, defined as σ2
∗ = 1/n

∑n
i=1 |ωi(z

∗)|2. Substituting the above into the upper bound
for E[|rk|2] yields,

E[|rk|2] ≤ l2e2/5(n− 1)

n−1∑
i=1

i2Eτk [|1/i
i∑

j=1

ωτ̃k(j)(z
∗)|2]

≤ l2e2/5(n− 1)

n−1∑
i=1

i2
n− i

i(n− 1)
σ2
∗ = l2e2/5σ2

∗

n−1∑
i=1

i(n− i)

≤ l2n3σ2
∗/4.

Step 3B: E[|rk|2] for PPM-SO For PPM-SO, τ1 = . . . = τK = τ where τ is a uniformly sampled
random permutation. Consequently, τ̃1 = . . . = τ̃K = τ̃ where τ̃ is the transposed permutation of τ .
Hence, we conclude that,

|rk|2 ≤ l2e2/5(n− 1)

n−1∑
i=1

i2|1/i
i∑

j=1

ωτ̃(j)(z
∗)|2.

35

Proceeding along the same lines as Step 3A, we use the fact that τ is a uniformly sampled random
permutation to obtain the following:

E[|rk|2] ≤ l2e2/5(n− 1)

n−1∑
i=1

i2Eτ [|1/i
i∑

j=1

ωτ̃(j)(z
∗)|2]

= l2e2/5(n− 1)

n−1∑
i=1

i2Eτ̃ [|1/i
i∑

j=1

ωτ̃(j)(z
∗)|2]

≤ l2e2/5(n− 1)

n−1∑
i=1

i2
n− i

i(n− 1)
σ2
∗

≤ l2n3σ2
∗/4.

Hence, for both PPM-RR and PPM-SO, |rk| is bounded in expectation as E[|rk|2] ≤ l2n3σ2
∗/4.

Step 4: Convergence analysis Since Hk is invertible, we write (D.5) as
zk+1
0 − z∗ = H−1

k [zk0 − z∗ − α2rk].

Unrolling for K epochs and setting z10 = z0 yields,

zK+1
0 − z∗ =

[∏̃K

k=1
H−1

k

]
(z0 − z∗)− α2

K∑
k=1

[∏̃K

j=k
H−1

j

]
rk.

By the triangle inequality and the bound
∣∣H−1

k

∣∣ ≤ (1− nαµ/2), we obtain:∣∣zK+1
0 − z∗

∣∣ ≤ [∏̃K

k=1

∣∣H−1
k

∣∣] |z0 − z∗|+ α2
K∑

k=1

[∏̃K

j=k

∣∣H−1
j

∣∣] |rk|
≤ (1− nαµ/2)K |z0 − z∗|+ α2

K∑
k=1

(1− nαµ/2)K−k |rk| ,

and as a result of Young’s inequality,∣∣zK+1
0 − z∗

∣∣2 ≤ 2(1− nαµ/2)2K |z0 − z∗|2 + 2α4K

K∑
k=1

(1− nαµ/2)2(K−k)|rk|2.

By taking expectations (with respect to the uniform random permutations τ1, . . . , τK for RR and
τ for SO respectively) on both sides of the above inequality and substituting the upper bound for
E[|rk|2] for PPM-RR and PPM-SO as derived in Step 3, we obtain

E[
∣∣zK+1

0 − z∗
∣∣2] ≤ 2e−nαµK |z0 − z∗|2 + 2α4K

K∑
k=1

(1− nαµ/2)2(K−k)E[|rk|2]

≤ 2e−nαµK |z0 − z∗|2 + 0.5l2n3σ2
∗α

4K

K∑
k=1

(1− nαµ/2)2(K−k).

This yields the following guarantee that holds for PPM-RR and PPM-SO whenever α ≤ µ
5nl2 ,

E[
∣∣zK+1

0 − z∗
∣∣2] ≤ 2e−nαµK |z0 − z∗|2 + l2σ2

∗α
3n2K

µ
. (D.7)

We note that the above inequality is identical to the inequality (C.8) obtained in Theorem C.2. Hence,
we substitute α = min{µ/5nl2, 2 log(|ν(z0)|n1/2K/µ)/µnK} in (D.7) and follow the same steps
as in Theorem C.2 to obtain the following last-iterate convergence guarantee for both PPM-RR and
PPM-SO, which holds for any K ≥ 1:

E[
∣∣zK+1

0 − z∗
∣∣2] ≤ 2e−

K
5κ2 |z0 − z∗|2 +

2µ2 + 8κ2σ2
∗ log

3
(
|ν(z0)|n1/2K/µ

)
µ2nK2

. (D.8)

Suppressing constant terms and logarithmic factors, we obtain the following:

E[
∣∣zK+1

0 − z∗
∣∣2] = Õ(e

−K/5κ2
+ 1/nK2). (D.9)

36

D.3 Analysis of PPM-AS

Theorem D.3 (Convergence of PPM-AS). Consider Problem (4) for the µ-strongly monotone
operator ν(z) = 1/n

∑n
i=1 ωi(z) where each ωi is l-Lipschitz, but not necessarily monotone. Let z∗

denote the unique root of ν. Then, for any α ≤ µ
5nl2 and K ≥ 1, the iterates of PPM-AS satisfy the

following:

max
τ1,...,τK∈Sn

∣∣zK+1
0 − z∗

∣∣2 ≤ 2e−nαµK |z0 − z∗|2 + 3l2σ2
∗α

3n3K

µ
.

Setting α = min{µ/5nl2, 2 log(|ν(z0)|K/µ)/µnK} results in the following last-iterate conver-
gence guarantee for PPM-AS, which holds for any K ≥ 1:

max
τ1,...,τK∈Sn

∣∣zK+1
0 − z∗

∣∣2 ≤ 2e
−K/5κ2 |z0 − z∗|2 + 2µ2 + 24κ2σ2

∗ log
3(|ν(z0)|K/µ)

µ2K2

= Õ(e
−K/5κ2

+ 1/K2).

Proof. The iterate-level update rule of PPM-AS can be expressed as

zki = zki−1 − αωτk(i)(z
k
i), (D.10)

where k ∈ [K], i ∈ [n] and τk denotes an arbitrary permutation of [n] which is chosen by the
adversary at the start of epoch k. For any permutation τk chosen by the adversary, we denote the
transposed permutation τ̃k as τ̃k(i) = τk(n+ 1− i). Furthermore zki is well defined and unique due
to the Banach Fixed Point Theorem as α ≤ µ/5nl2 < 1/l.

We recall that Steps 1 and 2 of Theorem D.2 are applicable for any permutation τk ∈ Sn, and hence,
can be applied directly to PPM-AS. Consequently, the epoch-level update rule of PPM-AS is the
same as that of PPM-RR/SO and is given by:

zk0 − z∗ = Hk(z
k+1
0 − z∗) + α2rk, (D.11)

where Hk and rk are as defined in Theorem D.2, and are given by:

Hk = I+ α

n∑
j=1

(∏̃n

t=j+1
(I+ αJτ̃k(t))

)
Mτ̃k(j),

rk =

n−1∑
i=1

[∏̃n

t=i+2
(I+ αJτ̃k(t))

]
Jτ̃k(i+1)

i∑
j=1

ωτ̃k(j)(z
∗),

where, as before, Mτk(i) =
∫ 1

0
∇ωτk(i)(tz

k+1
0 + (1− t)z∗)dt and Jτk(i) =

∫ 1

0
∇ωτk(i)(tz

k
i + (1−

t)zk+1
0)dt. Furthermore, by Step 2 of Theorem D.2, Hk is invertible and

∣∣H−1
k

∣∣ ≤ 1− nαµ/2.

We now proceed to control the noise term rk by deriving an upper bound for |rk|2 that holds uniformly
over all permutations τ1, . . . , τK ∈ Sn. This is done by following the same steps as that of Theorem
C.3, which gives us the following bound by successive applications of

∣∣Jτ̃k(i)

∣∣ ≤ l and Young’s
inequality:

37

|rk|2 ≤ l2e2/5

n−1∑
i=1

|
i∑

j=1

ωτ̃k(j)(z
∗)|

2

≤ l2e2/5(n− 1)

n−1∑
i=1

|
i∑

j=1

ωτ̃k(j)(z
∗)|2

≤ l2e2/5(n− 1)

n−1∑
i=1

i

i∑
j=1

|ωτ̃k(j)(z
∗)|2

≤ l2e2/5(n− 1)

n−1∑
i=1

i

n∑
j=1

|ωτ̃k(j)(z
∗)|2 = l2e2/5(n− 1)

n−1∑
i=1

i

n∑
j=1

|ωj(z
∗)|2

= l2e2/5(n− 1)(nσ2
∗)

n−1∑
i=1

i ≤ 3l2n4σ2
∗/4.

We note that the above sequence of inequalities hold for any permutation τk, and hence, the upper
bound |rk|2 ≤ 3l2n4σ2

∗/4 holds for any τk ∈ Sn, k ∈ [K].

Since Hk is invertible, we write (D.11) as

zk+1
0 − z∗ = H−1

k [zk0 − z∗ − α2rk].

By unrolling for K epochs and setting z10 = z0, we obtain:

zK+1
0 − z∗ =

[∏̃K

k=1
H−1

k

]
(z0 − z∗)− α2

K∑
k=1

[∏̃K

j=k
H−1

j

]
rk.

By using the triangle inequality and the bound
∣∣H−1

k

∣∣ ≤ (1− nαµ/2), we get:

∣∣zK+1
0 − z∗

∣∣ ≤ [∏̃K

k=1

∣∣H−1
k

∣∣] |z0 − z∗|+ α2
K∑

k=1

[∏̃K

j=k

∣∣H−1
j

∣∣] |rk|
≤ (1− nαµ/2)K |z0 − z∗|+ α2

K∑
k=1

(1− nαµ/2)K−k |rk| .

Applying Young’s inequality yields the following:∣∣zK+1
0 − z∗

∣∣2 ≤ 2(1− nαµ/2)2K |z0 − z∗|2 + 2α4K

K∑
k=1

(1− nαµ/2)2(K−k)|rk|2

≤ 2e−nαµK |z0 − z∗|2 + 2α4K

K∑
k=1

(1− nαµ/2)2(K−k)|rk|2

≤ 2e−nαµK |z0 − z∗|2 + (1.5l2n4σ2
∗)α

4K

K∑
k=1

(1− nαµ/2)2(K−k)

≤ 2e−nαµK |z0 − z∗|2 + 3l2σ2
∗n

3α3K

µ
.

Since the above inequality holds for any sequence of permutations τ1, . . . , τK chosen by the adversary,
we obtain the following uniform guarantee for GDA-AS whenever α ≤ µ

5nl2 ,

max
τ1,...,τK∈Sn

∣∣zK+1
0 − z∗

∣∣2 ≤ 2e−nαµK |z0 − z∗|2 + 3l2σ2
∗α

3n3K

µ
. (D.12)

We note that the above inequality is exactly identical to the inequality (C.16) obtained in Theorem
C.3. Hence, we substitute α = min{µ/5nl2, 2 log(|ν(z0)|K/µ)/µnK} in (D.12) and follow the

38

same steps as in Theorem C.3 to obtain the following last-iterate convergence guarantee for PPM-AS,
which holds for any K ≥ 1:

max
τ1,...,τK∈Sn

∣∣zK+1
0 − z∗

∣∣2 ≤ 2e
−K/5κ2 |z0 − z∗|2 + 2µ2 + 24κ2σ2

∗ log
3(|ν(z0)|K/µ)

µ2K2
. (D.13)

Suppressing constant terms and logarithmic factors, we get,

max
τ1,...,τK∈Sn

∣∣zK+1
0 − z∗

∣∣2 = Õ(e
−K/5κ2

+ 1/K2). (D.14)

E Analysis of AGDA-RR and AGDA-AS

In this section, we present the convergence analysis of AGDA-RR and AGDA-AS for smooth finite-
sum objectives that satisfy a two-sided PŁ inequality. We begin by stating some useful properties of
two-sided PŁ functions which have been established in prior works and are crucial to our analysis.
We then present our convergence analysis of AGDA-RR and AGDA-AS, which follows the same
broad structure as our analysis of GDA-RR/AS.

E.1 Properties of Two-sided PŁ Functions

We begin by presenting three important properties of two-sided PŁ functions that are used throughout
our analysis of AGDA-RR/AS
Lemma E.1 (Equivalent optimality conditions for two-sided PŁ functions). Let F : Rdx ×Rdy → R
satisfy Assumption 3 and let (x∗,y∗) be any point in Rdx × Rdy . Then the following conditions are
equivalent:

• (x∗,y∗) is a global minimax point, i.e., x∗ ∈ argminx∈Rdx Φ(x) where Φ is the best re-
sponse function defined by Φ(x) = maxy∈Rdy F (x,y), and y∗ ∈ argmaxy∈Rdy F (x∗,y).

• (x∗,y∗) is a saddle point, i.e.,

F (x∗,y) ≤ F (x∗,y∗) ≤ F (x,y∗), ∀x ∈ Rdx ,y ∈ Rdy .

• (x∗,y∗) is a stationary point, i.e.,

∇xF (x∗,y∗) = ∇yF (x∗,y∗) = 0.

Proof. See Lemma 2.1 of Yang et al. [54].

Lemma E.2 (Properties of the best response). Let F : Rdx × Rdy → R be an l-smooth function
satisfying Assumption 3 (with constants µ1 and µ2) and let Φ : Rdx → R be the best response
function defined as Φ(x) = maxy∈Rdy F (x,y). Then Φ satisfies the following properties:

• Φ is differentiable and L-smooth where L = l + l2/µ2.

• ∇Φ(x) = ∇xF (x,y∗(x)) where y∗(x) is any arbitrary point in argmaxy∈Rdy F (x,y).

• Φ satisfies the (one-sided) PŁ inequality with constant µ1, i.e.,

|∇Φ(x)|2 ≥ 2µ1[Φ(x)− Φ∗],

where Φ∗ = minx∈Rdx Φ(x).

Proof. See Lemma A.2 and Lemma A.3 of Yang et al. [54].

Lemma E.3 (Quadratic growth properties of PŁ functions). Let f : Rdx → R be a PŁ function,
i.e., there exists a positive constant µ such that |∇f(x)|2 ≥ 2µ[f(x)− f∗], where f∗ = minx f(x).
Then, f satisfies the quadratic growth property with constant µ, i.e., for any x ∈ Rdx , f(x)− f∗ ≥
µ
2 |x

∗ − x|2 where x∗ is the projection of x on the set argminx f(x).

39

Proof. See Lemma A.1 of Yang et al. [54].

Finally, we motivate the necessity of the bounded gradient variance assumption by presenting the
construction of a two-sided PŁ function whose set of global minimax points is unbounded.
Lemma E.4 (2PŁ function with unbounded set of global minimax points). Consider the function
f : R2 × R2 → R given by f(x,y) = (x1 + x2)

2/2 − (y1 + y2)
2/2. Then, f is a two-sided PŁ

function with constants µ1 = µ2 = 2. Furthermore, the set of global minimax points of F is an
unbounded proper subset of R4.

Proof. We define the functions Φ : R2 → R and Ψ : R2 → R as follows:

Φ(x) = max
y∈R2

f(x,y) =
(x1 + x2)

2

2
,

Ψ(y) = min
x∈R2

f(x,y) = − (y1 + y2)
2

2
.

Furthermore, we note that:

∇xf(x,y) = [x1 + x2,x1 + x2],

∇yf(x,y) = −[y1 + y2,y1 + y2].

From the above inequalities, it follows that:

|∇xf(x,y)|2 = 4[f(x,y)−Ψ(y)] = 4[f(x,y)− min
x∈R2

f(x,y)],

|∇yf(x,y)|2 = 4[Φ(x)− f(x,y)] = 4[max
y∈R2

f(x,y)− f(x,y)].

Thus, f satisfies the two-sided PŁ inequality with constants µ1 = µ2 = 2. Consequently, Lemma E.1
implies that the set of minimax points are exactly the ones satisfying ∇xf(x,y) = ∇yf(x,y) = 0,
i.e., the set of global minimax points is {(x,y) ∈ R4 | x1 + x2 = 0,y1 + y2 = 0}, which is an
unbounded proper subset of R4.

E.2 Analysis of AGDA-RR

Theorem E.1 (Convergence of AGDA-RR). Let Assumptions 1, 3, and 4 be satisfied and let
η = 73l2/2µ2

2. Then, for any α ≤ 1/5ηnl, β = ηα, and K ≥ 1, the iterates of AGDA-RR satisfy the
following:

E[Vλ(z
K+1
0)] ≤ (1− µ1nα/2)

KVλ(z0) + 0.42nα2l2σ2(3 + η3)/µ1.

Setting α = min{1/5ηnl, 4 log(Vλ(z0)n
1/2K)/µ1nK} results in the following expected last iterate

convergence guarantee, which holds for any K ≥ 1:

E[Vλ(z
K+1
0)] ≤ e

−K/365κ3
Vλ(z0) +

µ1 + cκ8σ2 log2(Vλ(z0)n
1/2K)

µ1nK2

= Õ(e
−K/365κ3

+ 1/nK2),

where κ = max{l/µ1, l/µ2} and c > 0 is a numerical constant that is independent of l, µ1, µ2 and σ2.

Proof. Before presenting the convergence analysis of AGDA-RR, we introduce some additional
notation. For any k ∈ [K] and any random variable Y , we use Ek[Y] to denote the expectation of Y
conditioned on all previous epoch iterates (xj

0,y
j
0)

k
j=1, i.e., Ek[Y] = E[Y | x1

0,y
1
0, . . . ,x

k
0 ,y

k
0]. Simi-

larly, for any two random variables Y, Z, we use Ek[Y | Z] to denote the expectation of Y conditioned
on all previous epoch iterates (xj

0,y
j
0)

k
j=1 and Z, i.e. Ek[Y | Z] = E[Y | x1

0,y
1
0, . . . ,x

k
0 ,y

k
0 , Z].

Our analysis follows a structure similar to that of GDA-RR/SO and consists of three major steps: 1.
obtaining an epoch level update rule for AGDA-RR that resembles the update of deterministic AGDA
with noise, 2. bounding the noise in the update rule using Lemma B.3, 3. presenting a convergence
analysis with respect to the Lyapunov function Vλ.

40

Step 1: Epoch level update rule We begin with the observation that the x-iterates of AGDA-RR
are the same as that of gradient descent without replacement on F (x,yk

0) and thus, can be treated
as a noisy version of full-batch gradient descent. To this end, we linearize the stochastic gradients
∇xfτk(i)(x

k
i−1,y

k
0) about (xk

0 ,y
k
0) and obtain the following decomposition:

∇xfτk(i)(x
k
i−1,y

k
0) = ∇xfτk(i)(x

k
0 ,y

k
0) +

[∫ 1

0

∇2
xxfτk(i)(x

k
0 + t(xk

i−1 − xk
0),y

k
0)dt

]
(xk

i−1 − xk
0)

= ∇xfτk(i)(x
k
0 ,y

k
0) +Hτk(i)(x

k
i−1 − xk

0),

where Hτk(i) =
∫ 1

0
∇2

xxfτk(i)(x
k
0 + t(xk

i−1−xk
0),y

k
0)dt. As before, by Rademacher’s Theorem, the

l-smoothness of fτk(i) guarantees that Hτk(i) is well defined and satisfies
∣∣Hτk(i)

∣∣ ≤ l.

When substituting the above linearization into the x-iterate updates, we observe the following:

xk
1 = xk

0 − α∇xfτk(1)(x
k
0 ,y

k
0),

xk
2 = xk

1 − α∇xfτk(2)(x
k
1 ,y

k
0) = xk

1 − α∇xfτk(2)(x
k
0 ,y

k
0)− αHτk(2)(x

k
1 − xk

0)

= xk
0 − α∇xfτk(2)(x

k
0 ,y

k
0)− α∇xfτk(1)(x

k
0 ,y

k
0) + α2Hτk(2)∇xfτk(1)(x

k
0 ,y

k
0)

= xk
0 − α(I− αHτk(2))∇xfτk(1)(x

k
0 ,y

k
0)− α∇xfτk(2)(x

k
0 ,y

k
0).

Repeating the above steps for subsequent iterates xk
3 , . . . ,x

k
n, we obtain the following epoch-level

update rule for xk+1
0 = xk

n:

xk+1
0 = xk

0 − α

n∑
j=1

(∏̃n

t=j+1
(I− αHτk(t))

)
∇xfτk(j)(x

k
0 ,y

k
0). (E.1)

We further simplify (E.1) using the summation by parts identity. To this end, we define cj and ej as
follows:

cj =
∏̃n

t=j+1
(I− αHτk(t)),

ej = ∇xfτk(j)(x
k
0 ,y

k
0).

We note that cn = I, since
∏̃n

t=n+1(I − αHτk(t)) denotes the empty reverse product. Hence, we
conclude,

cn

n∑
j=1

ej =

n∑
j=1

∇xfτk(j)(x
k
0 ,y

k
0) = n∇xF (xk

0 ,y
k
0),

n−1∑
i=1

(ci+1 − ci)

i∑
j=1

ej =

n−1∑
i=1

[∏̃n

t=i+2
(I− αHτk(t))−

∏̃n

t=i+1
(I− αHτk(t))

] i∑
j=1

∇xfτk(j)(x
k
0 ,y

k
0)

= α

n−1∑
i=1

[∏̃n

t=i+2
(I− αHτk(t))

]
Hτk(i+1)

i∑
j=1

∇xfτk(j)(x
k
0 ,y

k
0).

We define rk as,

rk =

n−1∑
i=1

[∏̃n

t=i+2
(I− αHτk(t))

]
Hτk(i+1)

i∑
j=1

∇xfτk(j)(x
k
0 ,y

k
0). (E.2)

From the summation by parts identity
∑n

i=1 ciei = cn
∑n

j=1 ej −
∑n−1

i=1 (ci+1 − ci)
∑i

j=1 ej , we
obtain the following:

n∑
j=1

[∏̃n

t=j+1
[I− αHτk(t)]

]
∇xfτk(j)(x

k
0 ,y

k
0) = n∇xF (xk

0 ,y
k
0)− αrk.

By substituting the above equation into (E.1), we obtain the following update rule for the epoch
iterates xk

0 :
xk+1
0 = xk

0 − nα∇xF (xk
0 ,y

k
0) + α2rk. (E.3)

41

The epoch-level update rule for the y-iterate is derived in a similar fashion. We begin by linearizing
∇yfπk(i)(x

k+1
0 ,yk

i−1) as:

∇yfπk(i)(x
k+1
0 ,yk

i−1) = ∇yf(x
k+1
0 ,yk

0) + Jπk(i)(y
k
i−1 − yk

0),

where Jπk(i) =
∫ 1

0
∇2

yyfπk(i)(x
k+1
0 ,yk

0 + t(yk
i−1 − yk

0))dt satisfies
∣∣Jπk(i)

∣∣ ≤ l. As before, by
substituting into the y iterate updates and unrolling, we obtain,

yk+1
0 = yk

0 + β

n∑
j=1

[∏̃n

t=j+1
[I+ βJπk(t)]

]
∇yfπk(j)(x

k+1
0 ,yk

0). (E.4)

Once again, applying the summation by parts technique gives us the following update rule for the
epoch iterates yk

0 :
yk+1
0 = yk

0 + nβ∇yF (xk+1
0 ,yk

0) + β2sk, (E.5)
where sk is given by,

sk =

n−1∑
i=1

[∏̃n

t=i+2
(I+ βJπk(t))

]
Jπk(i+1)

i∑
j=1

∇yfπk(j)(x
k+1
0 ,yk

0). (E.6)

Step 2: Controlling the noise terms By applying the triangle inequality on (E.2) and substituting
|Hτk(i)| ≤ l and α ≤ 1/5nl wherever required, we bound |rk| as follows:

|rk| ≤
n−1∑
i=1

[∏̃n

t=i+2

∣∣I− αHτk(t)

∣∣] ∣∣Hτk(i+1)

∣∣ | i∑
j=1

∇xfτk(j)(x
k
0 ,y

k
0)|

≤ l(1 + αl)n
n−1∑
i=1

|
i∑

j=1

∇xfτk(j)(x
k
0 ,y

k
0)| ≤ le1/5

n−1∑
i=1

|
i∑

j=1

∇xfτk(j)(x
k
0 ,y

k
0)|

≤ le1/5
n−1∑
i=1

i|∇xF (xk
0 ,y

k
0)−∇xF (xk

0 ,y
k
0) + 1/i

i∑
j=1

∇xfτk(j)(x
k
0 ,y

k
0)|

≤ le1/5

n2
∣∣∇xF (xk

0 ,y
k
0)
∣∣ /2 + n−1∑

i=1

i|∇xF (xk
0 ,y

k
0)− 1/i

i∑
j=1

∇xfτk(j)(x
k
0 ,y

k
0)|

 .

By defining dk,i = |∇xF (xk
0 ,y

k
0) − 1/i

∑i
j=1∇xfτk(j)(x

k
0 ,y

k
0)| and substituting into the above

inequality, we obtain,

|rk| ≤ le1/5

[
n2
∣∣∇xF (xk

0 ,y
k
0)
∣∣ /2 + n−1∑

i=1

idk,i

]
. (E.7)

By applying Young’s inequality to (E.7), we conclude:

|rk|2 ≤ 2l2e2/5

[
n4
∣∣∇xF (xk

0 ,y
k
0)
∣∣2 /4 + (n− 1)

n−1∑
i=1

i2d2k,i

]
. (E.8)

By Lemma B.3 and the bounded gradient variance assumption, we bound E[d2k,i] as follows:

E[d2k,i] =
n− i

i(n− 1)

[
1/n

n∑
i=1

|∇xfi(x
k
0 ,y

k
0)−∇xF (xk

0 ,y
k
0)|2

]
≤ n− i

i(n− 1)
σ2, (E.9)

where the expectation is taken over the uniformly sampled random permutation τk. Furthermore,
applying Jensen’s inequality to (E.9) gives us the following bound:

E[dk,i] ≤
√
E[d2k,i] ≤ σ

√
n− i

i(n− 1)
. (E.10)

42

From (E.10), it follows that,

n−1∑
i=1

iE[dk,i] ≤ σ

n−1∑
i=1

√
i

√
n− i

n− 1
≤ σ

n−1∑
i=1

√
i ≤ 2σn3/2

3
.

By taking expectations of (E.7) and substituting the above, we get,

E[|rk|] ≤
2n2l

3

∣∣∇xF (xk
0 ,y

k
0)
∣∣+ σln3/2. (E.11)

Similarly, from (E.9), it follows that,

(n− 1)

n−1∑
i=1

i2E[d2k,i] ≤ σ2
n−1∑
i=1

i(n− i) ≤ σ2n3

6
.

By taking expectations of (E.8) and substituting the above, we obtain,

E[|rk|2] ≤
3n4l2

4

∣∣∇xF (xk
0 ,y

k
0)
∣∣2 + σ2l2n3

2
. (E.12)

We bound E[|sk|] and E[|sk|2] by following a similar strategy and obtain:

E[|sk|] ≤
2n2l

3

∣∣∇yF (xk+1
0 ,yk

0)
∣∣+ σln3/2, (E.13)

E[|sk|2] ≤
3n4l2

4

∣∣∇yF (xk+1
0 ,yk

0)
∣∣2 + σ2l2n3

2
. (E.14)

Step 3: Obtaining a convergence guarantee We begin by defining ak and bk as:

ak = Φ(xk
0)− Φ∗,

bk = Φ(xk
0)− F (xk

0 ,y
k
0).

By definition of Vλ, we conclude that Vλ(z
k
0) = ak + λbk. Furthermore, we note that by Lemma

E.2, Φ is L-smooth where L = l + l2/µ2. Since α ≤ 1/5ηnl, it follows that nαL ≤ 1. Using these
properties, we obtain the following:

Φ(xk+1
0)− Φ(xk

0) ≤
〈
∇Φ(xk

0),x
k+1
0 − xk

0

〉
+

L

2

∣∣xk+1
0 − xk

0

∣∣2
≤
〈
∇Φ(xk

0),−nα∇xF (xk
0 ,y

k
0) + α2rk

〉
+

L

2

∣∣−nα∇xF (xk
0 ,y

k
0) + α2rk

∣∣2
≤ −nα

〈
∇Φ(xk

0),∇xF (xk
0 ,y

k
0)−

α

n
rk

〉
+

L

2
n2α2

∣∣∣∇xF (xk
0 ,y

k
0)−

α

n
rk

∣∣∣2
≤ nα

2

∣∣∣∇xF (xk
0 ,y

k
0)−∇Φ(xk

0)−
α

n
rk

∣∣∣2 − nα

2

∣∣∇Φ(xk
0)
∣∣2

≤ nα
∣∣∇xF (xk

0 ,y
k
0)−∇Φ(xk

0)
∣∣2 − nα

2

∣∣∇Φ(xk
0)
∣∣2 + α3

n
|rk|2 .

By taking expectations conditioned on the epoch iterates (xj
0,y

j
0)

k
j=1 and substituting the bound

(E.12), we obtain the following:

Ek[Φ(x
k+1
0)]− Φ(xk

0) ≤ nα
∣∣∇xF (xk

0 ,y
k
0)−∇Φ(xk

0)
∣∣2 − nα

2

∣∣∇Φ(xk
0)
∣∣2

+
3n3α3l2

4

∣∣∇xF (xk
0 ,y

k
0)
∣∣2 + n2α3l2σ2

2
. (E.15)

43

We proceed by applying the l-smoothness of −F (x,y) in x, to obtain the following:

F (xk
0 ,y

k
0)− F (xk+1

0 ,yk
0) ≤ −

〈
∇xF (xk

0 ,y
k
0),x

k+1
0 − xk

0

〉
+

l

2

∣∣xk+1
0 − xk

0

∣∣2
≤
〈
∇xF (xk

0 ,y
k
0), nα∇xF (xk

0 ,y
k
0)− α2rk

〉
+

l

2

∣∣nα∇xF (xk
0 ,y

k
0)− α2rk

∣∣2
≤ (nα+

l

2
n2α2)

∣∣∇xF (xk
0 ,y

k
0)
∣∣2 + l

2

∣∣α2rk
∣∣2

− (α2 + lnα3)
〈
∇xF (xk

0 ,y
k
0), rk

〉
≤ (nα+

l

2
n2α2)

∣∣∇xF (xk
0 ,y

k
0)
∣∣2 + lα4

2
|rk|2

+
6α2

5

∣∣∇xF (xk
0 ,y

k
0)
∣∣ |rk| . (E.16)

From (E.11) and (E.12), we infer that:

lα4

2
E[|rk|2] ≤

3n4α4l3

8

∣∣∇xF (xk
0 ,y

k
0)
∣∣2 + σ2l3α4n3

4

≤ 3n4α4l3

8

∣∣∇xF (xk
0 ,y

k
0)
∣∣2 + σ2l2α3n2

20
,

6α2

5

∣∣∇xF (xk
0 ,y

k
0)
∣∣E[|rk|] ≤ 6α2n

3
2σl

5

∣∣∇xF (xk
0 ,y

k
0)
∣∣+ 4n2α2l

5

∣∣∇xF (xk
0 ,y

k
0)
∣∣2

= (
6α

3
2nlσ

5
)(α

1
2n

1
2

∣∣∇xF (xk
0 , y

k
0)
∣∣) + 4n2α2l

5

∣∣∇xF (xk
0 ,y

k
0)
∣∣2

≤ (
nα

2
+

4n2α2l

5
)
∣∣∇xF (xk

0 ,y
k
0)
∣∣2 + 18α3n2l2σ2

25
.

Taking expectations on both sides of (E.16) by conditioning on the epoch iterates (xj
0,y

j
0)

k
j=1 and

substituting the above inequalities, we obtain:

F (xk
0 ,y

k
0)− Ek[F (xk+1

0 ,yk
0)] ≤ (

3nα

2
+

13

10
ln2α2 +

3n4α4l3

8
)
∣∣∇xF (xk

0 ,y
k
0)
∣∣2 + 4α3n2l2σ2

5
.

(E.17)
We now apply the l-smoothness of −F (x,y) in y to obtain the following:

F (xk+1
0 ,yk

0)− F (xk+1
0 ,yk+1

0) ≤ −
〈
∇yF (xk+1

0 ,yk
0),y

k+1
0 − yk

0

〉
+

l

2

∣∣yk+1
0 − yk

0

∣∣2
≤ −

〈
∇yF (xk+1

0 ,yk
0), nβ∇yF (xk+1

0 ,yk
0) + β2sk

〉
+

l

2

∣∣nβ∇yF (xk+1
0 ,yk

0) + β2sk
∣∣2

≤ (−nβ + ln2β2)
∣∣∇yF (xk+1

0 ,yk
0)
∣∣2

+ β2
∣∣∇yF (xk+1

0 ,yk
0)
∣∣ |sk|+ lβ4 |sk|2 . (E.18)

From (E.13) and (E.14), we conclude,

lβ4E[|sk|2] ≤
3n4l3β4

4

∣∣∇yF (xk+1
0 ,yk

0)
∣∣2 + σ2l3n3β4

2

≤ 3n4l3β4

4

∣∣∇yF (xk+1
0 ,yk

0)
∣∣2 + σ2l2n2β3

10
,

β2
∣∣∇yF (xk+1

0 ,yk
0)
∣∣E[|sk|] ≤ σln3/2β2

∣∣∇yF (xk+1
0 ,yk

0)
∣∣+ 2n2β2l

3

∣∣∇yF (xk+1
0 ,yk

0)
∣∣2

≤ (
n

1
2 β

1
2

2

∣∣∇yF (xk+1
0 ,yk

0)
∣∣)(2nβ 3

2 lσ) +
2n2β2l

3

∣∣∇yF (xk+1
0 ,yk

0)
∣∣2

≤ (
nβ

8
+

2n2β2l

3
)
∣∣∇yF (xk+1

0 ,yk
0)
∣∣2 + 2n2β3l2σ2.

44

We proceed by taking expectations on both sides of (E.18) by conditioning on the epoch iterates
(xj

0,y
j
0)

k
j=1 and xk+1

0 and substituting the above bounds. Consequently, we obtain the following
inequality:

F (xk+1
0 ,yk

0)− Ek[F (xk+1
0 ,yk+1

0)|xk+1
0] ≤ (−7nβ

8
+

5n2β2l

3
+

3n4β4l3

4
)
∣∣∇yF (xk+1

0 ,yk
0)
∣∣2

+
21n2β3l2σ2

10

≤ −nβ

2

∣∣∇yF (xk+1
0 ,yk

0)
∣∣2 + 21n2β3l2σ2

10
.

The two-sided PŁ condition on F implies that,

−nβ

2

∣∣∇yF (xk+1
0 ,yk

0)
∣∣2 ≤ −nβµ2[Φ(x

k+1
0)− F (xk+1

0 ,yk
0)],

which gives us the following:

Ek[Φ(x
k+1
0)− F (xk+1

0 ,yk+1
0)|xk+1

0] ≤ (1− nβµ2)[Φ(x
k+1
0)− F (xk+1

0 ,yk
0)] +

21n2β3l2σ2

10
.

Taking expectations of the above with respect to xk+1
0 and applying the law of iterated expectation,

we obtain:

Ek[Φ(x
k+1
0)−F (xk+1

0 ,yk+1
0)] ≤ (1−nβµ2)Ek[Φ(x

k+1
0)−F (xk+1

0 ,yk
0)]+

21n2β3l2σ2

10
. (E.19)

From (E.15), we obtain the following:

Ek[ak+1] ≤ ak + nα
∣∣∇xF (xk

0 ,y
k
0)−∇Φ(xk

0)
∣∣2 − nα

2

∣∣∇Φ(xk
0)
∣∣2

+
3nα

100

∣∣∇xF (xk
0 ,y

k
0)
∣∣2 + n2α3l2σ2

2
. (E.20)

Furthermore, we note that,

Φ(xk+1
0)− F (xk+1

0 ,yk
0) = bk + F (xk

0 ,y
k
0)− F (xk+1

0 ,yk
0) + Φ(xk+1

0)− Φ(xk
0).

By substituting the above into (E.19), we obtain the following:

Ek[bk+1] ≤ (1− nβµ2)bk + (1− nβµ2)Ek[F (xk
0 ,y

k
0)− F (xk+1

0 ,yk
0)]

+ (1− nβµ2)Ek[Φ(x
k+1
0)− Φ(xk

0)] +
21n2β3l2σ2

10
.

By substituting (E.17) and (E.15) into the above, we obtain:

Ek[bk+1] ≤ (1− nβµ2)bk + (1− nβµ2)nα
∣∣∇xF (xk

0 ,y
k
0)−∇Φ(xk

0)
∣∣2

− (1− nβµ2)
nα

2

∣∣∇Φ(xk
0)
∣∣2 + (1− nβµ2)

9nα

5

∣∣∇xF (xk
0 ,y

k
0)
∣∣2

+ (1− nβµ2)
13n2α3l2σ2

10
+

21n2β3l2σ2

10
. (E.21)

From (E.20) and (E.21), we get the following by substituting Vλ(z
k+1
0) = ak+1 + λbk+1,

Ek[Vλ(z
k+1
0)] ≤ ak+(1−nβµ2)λbk+[nα+λnα(1−nβµ2)]

∣∣∇xF (xk
0 ,y

k
0)−∇Φ(xk

0)
∣∣2+C3

− [
nα

2
+

λnα

2
(1− nβµ2)]

∣∣∇Φ(xk
0)
∣∣2 + [

3nα

100
+ λ(1− nβµ2)

9nα

5
]
∣∣∇xF (xk

0 ,y
k
0)
∣∣2 , (E.22)

where C3 is defined as follows:

C3 = [
1

2
+

13λ

10
(1− nβµ2)]n

2α3l2σ2 +
21λn2β3l2σ2

10
.

45

By Young’s inequality, the following holds for any ε ∈ (0, 1]:∣∣∇xF (xk
0 ,y

k
0)
∣∣2 ≤ (1 + ε)

∣∣∇Φ(xk
0)
∣∣2 + (1 + 1/ε)

∣∣∇xF (xk
0 ,y

k
0)−∇Φ(xk

0)
∣∣2 .

Substituting this into (E.22), we obtain the following:

Ek[Vλ(z
k+1
0)] ≤ ak + (1− nβµ2)λbk + C3

− [
nα

2
− (1 + ε)

3nα

100
− λ(1− nβµ2)[(1 + ε)

9nα

5
− nα

2
]]
∣∣∇Φ(xk

0)
∣∣2

+ [nα+ (1 + 1/ε)
3nα

100
+ λ(1− nβµ2)[nα+ (1 + 1/ε)

9nα

5
]]
∣∣∇xF (xk

0 ,y
k
0)−∇Φ(xk

0)
∣∣2 .

(E.23)

From Lemma E.2, we know that Φ(x) satisfies the PŁ inequality with constant µ1. Thus, we conclude
that ∣∣∇Φ(xk

0)
∣∣2 ≥ 2µ1(Φ(x

k
0)− Φ∗) = 2µ1ak. (E.24)

Let y∗(xk
0) denote the projection of yk

0 on the set argmaxy F (xk
0 ,y). From Lemma E.2, we

conclude that∇Φ(xk
0) = ∇xF (xk

0 ,y
∗(xk

0)). Thus,∣∣∇xF (xk
0 ,y

k
0)−∇Φ(xk

0)
∣∣2 ≤ ∣∣∇xF (xk

0 ,y
k
0)−∇xF (xk

0 ,y
∗(xk

0))
∣∣2

≤ l2
∣∣yk

0 − y∗(xk
0)
∣∣2 (E.25)

Furthermore, we note that Assumption 3 implies that −F (xk
0 ,y) satisfies the PŁ inequality with

constant µ2. Thus, by Lemma E.3, we conclude that,

bk = Φ(xk
0)− F (xk

0 ,y
k
0) ≥

µ2

2

∣∣yk
0 − y∗(xk

0)
∣∣2 .

By substituting the above inequality in (E.25), we conclude that,∣∣∇xF (xk
0 ,y

k
0)−∇Φ(xk

0)
∣∣2 ≤ 2l2bk

µ2
.

We proceed by substituting the above bound in (E.23) to obtain the following upper bound on
Ek[Vλ(z

k+1
0)]:

Ek[Vλ(z
k+1
0)] ≤ {1− [µ1nα− (1+ε)

3µ1nα

50
−λ(1−nβµ2)[(1+ε)

18µ1nα

5
−µ1nα]]}ak+C3

+ [1− nβµ2 +
2l2nα

µ2λ
+ (1 + 1/ε)

3l2nα

50µ2λ
+ (1− nβµ2)[

2l2nα

µ2
+ (1 + 1/ε)

18l2nα

5µ2
]]λbk.

Hence, we obtain the following update equation for Vλ(z
k+1
0):

Ek[Vλ(z
k+1
0)] ≤ C1ak + C2λbk + C3, (E.26)

where C1, C2 and C3 are given by,

C1 = 1− [µ1nα− (1 + ε)
3µ1nα

50
− λ(1− nβµ2)[(1 + ε)

18µ1nα

5
− µ1nα]]

= 1− µ1nα[1−
3(1 + ε)

50
− λ(1− nβµ2)[

18(1 + ε)

5
− 1]],

C2 = 1− nβµ2 +
2l2nα

µ2λ
+ (1 + 1/ε)

3l2nα

50µ2λ
+ (1− nβµ2)[

2l2nα

µ2
+ (1 + 1/ε)

18l2nα

5µ2
]

= 1− 2l2nα

µ2
[
βµ2

2

2αl2
− 1

λ
− (1 + 1/ε)

3

100λ
− (1− nβµ2)[1 + (1 + 1/ε)

9

5
]],

C3 = [
1

2
+

13λ

10
(1− nβµ2)]n

2α3l2σ2 +
21λn2β3l2σ2

10
.

46

By setting λ = 1
10 , ε =

3
7 and η = 73l2

2µ2
2

and using l2 ≥ µ1µ2, we conclude:

C1 ≤ 1− µ1nα/2,

C2 ≤ 1− l2nα

2µ2
≤ 1− µ1nα/2,

C3 ≤ 0.21n2α3l2σ2(3 + η3)

From the above bounds, it follows that:

Ek[Vλ(z
k+1
0)] ≤ (1− µ1nα/2)Vλ(z

k
0) + 0.21n2α3l2σ2(3 + η3).

By taking expectations with respect to the epoch iterates (xj
0,y

j
0)

k
j=1 and applying the law of iterated

expectation, we obtain the following:

E[Vλ(z
k+1
0)] ≤ (1− µ1nα/2)E[Vλ(z

k
0)] + 0.21n2α3l2σ2(3 + η3).

By unrolling the above inequality for K steps, we obtain the following:

E[Vλ(z
K+1
0)] ≤ (1− µ1nα/2)

KVλ(z0) + 0.42nα2l2σ2(3 + η3)/µ1. (E.27)

By setting α = min{1/5ηnl, 4 log(Vλ(z0)n
1/2K)/µ1nK} and using η ≤ 37κ2, we observe that:

nα2l2σ2(3 + η3)/µ1 ≤
16l2σ2(3 + η3)

µ3
1

log2(Vλ(z0)n
1/2K)

nK2

≤ cκ8σ2 log2(Vλ(z0)n
1/2K)

µ1nK2
,

where c > 0 is a constant that is independent of κ, µ and σ2. By substituting the above into (E.27),
we get:

E[Vλ(z
K+1
0)] ≤ (1− µ1nα/2)

KVλ(z0) +
cκ8σ2 log2(Vλ(z0)n

1/2K)

µ1nK2
. (E.28)

To complete the proof, we consider the following cases:

Case 1: 1/5ηnl ≤ 4 log(Vλ(z0)n
1/2K)/µ1nK

In this case, α = 1/5ηnl and hence, we get:

(1− nαµ1/2)
KVλ(z0) ≤ e−nαµ1K/2Vλ(z0) ≤ e−

K
365κ3 Vλ(z0).

Substituting into (E.28), we get:

E[Vλ(z
K+1
0)] ≤ e−

K
365κ3 Vλ(z0) +

cκ8σ2 log2(Vλ(z0)n
1/2K)

µ1nK2
. (E.29)

Case 2: 1/5ηnl ≤ 4 log(Vλ(z0)n
1/2K)/(µ1nK)

In this case, α = 4 log(Vλ(z0)n
1/2K)/µ1nK and we conclude that,

(1− nαµ1/2)
KVλ(z0) ≤ e−nαµ1K/2Vλ(z0) ≤ e−2 log(Vλ(z0)

1/2n1/2K)Vλ(z0) ≤
1

nK2
.

By substituting into (E.28), we get:

E[Vλ(z
K+1
0)] ≤ µ1 + cκ8σ2 log2(Vλ(z0)n

1/2K)

µ1nK2
. (E.30)

By taking the maximum of the right hand side of (E.29) and (E.30), we obtain the following rate,
which holds for any K ≥ 1:

E[Vλ(z
K+1
0)] ≤ e−

K
365κ3 Vλ(z0) +

µ1 + cκ8σ2 log2(Vλ(z0)n
1/2K)

µ1nK2
.

Suppressing constant terms and logarithmic factors, we get,

E[Vλ(z
K+1
0)] = Õ(e−

K
365κ3 + 1/nK2).

47

Bounded iterate assumption We now demonstrate that our analysis of AGDA-RR easily
adapts to the bounded iterate setting. To this end, we assume that all the iterates of AGDA-
RR, i.e., the iterates (xk

i ,y
k
0) and (xk

n,y
k
i) where i ∈ [n] and k ∈ [K] are contained within

a compact set W . Furthermore, we note that the l-smoothness of the fi’s guarantees that the
function Gσ(x,y) = 1/n

∑n
i=1 |ωi(x,y)− ν(x,y)|2 is non-negative and continuous. Hence,

σ2 = max(x,y)∈W Gσ(x,y) is non-negative and finite. Since (xk
0 ,y

k
0) ∈ W and (xk+1

0 ,yk
0) ∈ W ,

we conclude that

1/n

n∑
i=1

∣∣ωi(x
k
0 ,y

k
0)− ν(xk

0 ,y
k
0)
∣∣2 ≤ σ2,

1/n

n∑
i=1

∣∣ωi(x
k+1
0 ,yk

0)− ν(xk+1
0 ,yk

0)
∣∣2 ≤ σ2.

Substituting the above inequalities into Step 2 of Theorem E.1 shows that our convergence analysis of
AGDA-RR straightforwardly adapts to the bounded iterate setting. The same argument also applies
to our analysis of AGDA-AS.

Convergence in terms of dist(z,Z∗)2 Let Z∗ denote the set of all saddle points of the objective F
and let dist(z,Z∗) denote the distance of a point z ∈ Rd from Z∗. As we demonstrate in Appendix
E.4, the Lyapunov function Vλ used in our analysis satisfies the following:

dist(z,Z∗)2 ≤ max

{
2

µ1
(
l2

2µ2
+ 1),

4

λµ2

}
Vλ(z).

Using the above relation, the convergence guarantee of Theorem E.1 can be translated to a guarantee
of the form E[dist(zK+1

0 ,Z∗)2] = Õ(e−K/365κ3
+ 1/nK2). Thus, the epoch iterates zK+1

0 of AGDA-
RR converge (in expectation) to some saddle point of F at a rate of Õ(e−K/365κ3

+ 1/nK2). A similar
argument also applies to AGDA-AS.

E.3 Analysis of AGDA-AS

Theorem E.2 (Convergence of AGDA-AS). Let Assumptions 1, 3, and 4 be satisfied and let η =
73l2/2µ2

2. Then, for any α ≤ 1/5ηnl, β = ηα, and K ≥ 1, the iterates of AGDA-AS satisfy the
following:

max
τ1,π1,...,τK ,πK∈Sn

Vλ(z
K+1
0) ≤ (1− µ1nα/2)

KVλ(z0) + 2n2α2l2σ2(2 + 3η3)/µ1.

Setting α = min{1/5ηnl, 4 log(Vλ(z0)K)/µ1nK} results in the following last iterate convergence
guarantee which holds for any K ≥ 1:

max
τ1,π1,...,τK ,πK∈Sn

Vλ(z
K+1
0) ≤ e

−K/365κ3
Vλ(z0) +

µ1 + ĉκ8σ2 log2(Vλ(z0)K)

µ1K2

= Õ(e
−K/365κ3

+ 1/K2),

where κ = max{l/µ1, l/µ2} and ĉ > 0 is a numerical constant that is independent of l, µ1, µ2 and σ2.

Proof. Step 1: Epoch level update rule We highlight that the derivation of the epoch level update
rule in Step 1 of Theorem E.1 applies to any permutations τk, πk ∈ Sn. Thus, repeating the same
arguments gives us the following epoch level update rule for AGDA-AS:

xk+1
0 = xk

0 − nα∇xF (xk
0 ,y

k
0) + α2rk, (E.31)

yk+1
0 = yk

0 + nβ∇yF (xk+1
0 ,yk

0) + β2sk, (E.32)
where rk and sk are defined as follows:

rk =

n−1∑
i=1

[∏̃n

t=i+2
(I− αHτk(t))

]
Hτk(i+1)

i∑
j=1

∇xfτk(j)(x
k
0 ,y

k
0), (E.33)

48

sk =

n−1∑
i=1

[∏̃n

t=i+2
(I+ βJπk(t))

]
Jπk(i+1)

i∑
j=1

∇yfπk(j)(x
k+1
0 ,yk

0). (E.34)

As before, Hτk(i) and Jπk(i) are defined as,

Hτk(i) =

∫ 1

0

∇2
xxfτk(i)(x

k
0 + t(xk

i−1 − xk
0),y

k
0)dt,

Jπk(i) =

∫ 1

0

∇2
yyfπk(i)(x

k+1
0 ,yk

0 + t(yk
i−1 − yk

0))dt.

Step 2: Uniform bound on the noise terms Once again, we repeat the same computations as in Step
2 of Theorem E.1 to obtain:

|rk| ≤ le1/5

n2
∣∣∇xF (xk

0 ,y
k
0)
∣∣ /2 + n−1∑

i=1

i|∇xF (xk
0 ,y

k
0)− 1/i

i∑
j=1

∇xfτk(j)(x
k
0 ,y

k
0)|

 .

Defining dk,i = |∇xF (xk
0 ,y

k
0)− 1/i

∑i
j=1∇xfτk(j)(x

k
0 ,y

k
0)| and using Young’s inequality gives

us the following:

|rk| ≤ le1/5

[
n2
∣∣∇xF (xk

0 ,y
k
0)
∣∣ /2 + n−1∑

i=1

idk,i

]
, (E.35)

|rk|2 ≤ 2l2e2/5

[
n4
∣∣∇xF (xk

0 ,y
k
0)
∣∣2 /4 + (n− 1)

n−1∑
i=1

i2d2k,i

]
. (E.36)

We proceed by using the bounded gradient variance assumption as follows:

(n− 1)

n−1∑
i=1

i2d2k,i = (n− 1)

n−1∑
i=1

|
i∑

j=1

∇xF (xk
0 ,y

k
0)−∇xfτk(j)(x

k
0 ,y

k
0)|2

≤ (n− 1)

n−1∑
i=1

i

i∑
j=1

|∇xF (xk
0 ,y

k
0)−∇xfτk(j)(x

k
0 ,y

k
0)|2

≤ (n− 1)

n−1∑
i=1

i

n∑
j=1

|∇xF (xk
0 ,y

k
0)−∇xfτk(j)(x

k
0 ,y

k
0)|2

≤ (n− 1)

n−1∑
i=1

i

n∑
j=1

|∇xF (xk
0 ,y

k
0)−∇xfτk(j)(x

k
0 ,y

k
0)|2

≤ (n− 1)(nσ2)

n−1∑
i=1

i ≤ n4σ2/2.

Substituting the above into (E.36) gives us the following:

|rk|2 ≤
3n4l2

4

∣∣∇xF (xk
0 ,y

k
0)
∣∣2 + 3σ2l2n4

2
. (E.37)

Furthermore, by Young’s inequality, we obtain,

n−1∑
i=1

idk,i ≤ [(n− 1)

n−1∑
i=1

i2d2k,i]
1/2 ≤ n2σ/

√
2.

By substituting the above into (E.35), we obtain the following:

|rk| ≤
2n2l

3

∣∣∇xF (xk
0 ,y

k
0)
∣∣+ σln2. (E.38)

49

Performing similar computations for sk gives us the following bounds:

|sk| ≤
2n2l

3

∣∣∇yF (xk+1
0 ,yk

0)
∣∣+ σln2, (E.39)

|sk|2 ≤
3n4l2

4

∣∣∇yF (xk+1
0 ,yk

0)
∣∣2 + 3σ2l2n4

2
. (E.40)

We highlight that the bounds (E.11), (E.12) (E.13) and (E.14) hold uniformly for any permutations
τk, πk ∈ Sn.

Step 3: Obtaining a convergence guarantee As before, we define ak = Φ(xk
0) − Φ∗ and bk =

Φ(xk
0)− F (xk

0 ,y
k
0) which implies that Vλ(z

k
0) = ak + λbk.

We follow the same procedure as Step 3 of Theorem E.1 and substitute the uniform bounds (E.11),
(E.12) (E.13) and (E.14) wherever appropriate to obtain the following inequalities:

Φ(xk+1
0)− Φ(xk

0) ≤ nα
∣∣∇xF (xk

0 ,y
k
0)−∇Φ(xk

0)
∣∣2 − nα

2

∣∣∇Φ(xk
0)
∣∣2

+
3n3α3l2

4

∣∣∇xF (xk
0 ,y

k
0)
∣∣2 + 3n3α3l2σ2

2
, (E.41)

F (xk
0 ,y

k
0)−F (xk+1

0 ,yk
0) ≤ (

3nα

2
+
13

10
ln2α2+

3n4α4l3

8
)
∣∣∇xF (xk

0 ,y
k
0)
∣∣2+9α3n3l2σ2

10
, (E.42)

Φ(xk+1
0)− F (xk+1

0 ,yk+1
0) ≤ (1− nβµ2)[Φ(x

k+1
0)− F (xk+1

0 ,yk
0)] +

23n2β3l2σ2

10
. (E.43)

Once again, following the same steps as Step 3 of Theorem E.1, we conclude that,

ak+1 ≤ ak + nα
∣∣∇xF (xk

0 ,y
k
0)−∇Φ(xk

0)
∣∣2 − nα

2

∣∣∇Φ(xk
0)
∣∣2

+
3nα

100

∣∣∇xF (xk
0 ,y

k
0)
∣∣2 + 3n3α3l2σ2

2
. (E.44)

bk+1 ≤ (1−nβµ2)bk+(1−nβµ2)nα
∣∣∇xF (xk

0 ,y
k
0)−∇Φ(xk

0)
∣∣2−(1−nβµ2)

nα

2

∣∣∇Φ(xk
0)
∣∣2

+ (1− nβµ2)
9nα

5

∣∣∇xF (xk
0 ,y

k
0)
∣∣2 + (1− nβµ2)

12n3α3l2σ2

5
+

23n3β3l2σ2

10
. (E.45)

By setting λ = 1
10 and η = 73l2

2µ2
2

and following the same steps as in Step 3 of Theorem E.1, we obtain

the following update equation for Vλ(z
k+1
0):

Vλ(z
k+1
0) ≤ (1− µ1nα/2)Vλ(z

k+1
0) + n3α3l2σ2(2 + 3η3).

By unrolling the above inequality for K steps we obtain the following:

Vλ(z
K+1
0) ≤ (1− µ1nα/2)

KVλ(z0) + 2n2α2l2σ2(2 + 3η3)/µ1.

Since the above holds for any sequence of permutations τ1, π1, . . . τK , πK ∈ Sn, we conclude that:

max
τ1,π1,...,τK ,πK∈Sn

Vλ(z
K+1
0) ≤ (1− µ1nα/2)

KVλ(z0) + 2n2α2l2σ2(2 + 3η3)/µ1. (E.46)

Setting α = min{1/5ηnl, 4 log(Vλ(z0)K)/µ1nK} and using η ≤ 37κ2, we observe that:

n2α2l2σ2(2 + 3η3)/µ1 ≤
16l2σ2(2 + 3η3)

µ3
1

log2(Vλ(z0)n
1/2K)

K2

≤ ĉκ8σ2 log2(Vλ(z0)K)

µ1K2
,

50

where ĉ > 0 is a numerical constant that is independent of κ, µ and σ2. By substituting the above
into (E.46), we get:

max
τ1,π1,...,τK ,πK∈Sn

Vλ(z
K+1
0) ≤ (1− µ1nα/2)

KVλ(z0) +
ĉκ8σ2 log2(Vλ(z0)K)

µ1K2
. (E.47)

Case 1: 1/5ηnl ≤ 4 log(Vλ(z0)n
1/2K)/µ1nK

In this case, α = 1/5ηnl and hence, we get:

(1− nαµ1/2)
KVλ(z0) ≤ e−nαµ1K/2Vλ(z0) ≤ e−

K
365κ3 Vλ(z0).

By substituting into (E.47), we get:

max
τ1,π1,...,τK ,πK∈Sn

Vλ(z
K+1
0) ≤ e−

K
365κ3 Vλ(z0) +

ĉκ8σ2 log2(Vλ(z0)K)

µ1K2
. (E.48)

Case 2: 1/5ηnl ≤ 4 log(Vλ(z0)n
1/2K)/(µ1nK)

In this case, α = 4 log(Vλ(z0)n
1/2K)/µ1nK and we conclude that,

(1− nαµ1/2)
KVλ(z0) ≤ e−nαµ1K/2Vλ(z0) ≤ e−2 log(Vλ(z0)

1/2n1/2K)Vλ(z0) ≤
1

nK2
.

By substituting into (E.47), we get:

max
τ1,π1,...,τK ,πK∈Sn

Vλ(z
K+1
0) ≤ µ1 + ĉκ8σ2 log2(Vλ(z0)K)

µ1K2
. (E.49)

Taking the maximum of the right hand side of (E.48) and (E.49), we obtain the following rate, which
holds for any K ≥ 1:

max
τ1,π1,...,τK ,πK∈Sn

Vλ(z
K+1
0) ≤ e−

K
365κ3 Vλ(z0) +

µ1 + ĉκ8σ2 log2(Vλ(z0)K)

µ1K2
.

Suppressing constant terms and logarithmic factors, we get,

E[Vλ(z
K+1
0)] = Õ(e−

K
365κ3 + 1/K2).

E.4 Convergence of AGDA-RR and AGDA-AS to a Saddle Point

In this section, we demonstrate that our convergence guarantees for AGDA-RR and AGDA-AS can
be expressed in terms of squared distance to the set of saddle points of F , denoted as Z∗. We do so
by upper bounding dist(z,Z∗)2 in terms of Vλ(z). We begin by establishing some basic properties
of Z∗ as follows.
Lemma E.5 (Set of Saddle Points of 2PŁ functions). Let F : Rdx × Rdy → R be an l-smooth
function satisfying Assumption 3 (with constants µ1 and µ2) and let Z∗ denote the set of saddle points
of F . Then Z∗ is a closed set and dist(z,Z∗) = minz∗∈Z∗ |z− z∗| is a well defined continuous
function of z. Furthermore, for any x ∈ Rdx , the set Y∗(x) = argmaxŷ∈Rdy F (x, ŷ) is a closed
set.

Proof. By the l-smoothness of F , ∇xF (x,y) and ∇yF (x,y) are Lipschitz continuous functions,
which implies that η(z) = [∇xF (z),∇yF (z)] is a continuous map. Furthermore, by Lemma E.1,
the set of saddle points of F are exactly the set of stationary points of F , which means,

Z∗ = {z ∈ Rd | ∇xF (z) = 0,∇yF (z) = 0} = η−1({0}).

Hence, Z∗ is a closed set as it is the inverse image of the closed set {0} under a continuous map.
Consequently, dist(z,Z∗) = minz∗∈Z∗ |z− z∗| is a well defined continuous function of z.

Consider any x ∈ Rdx . Since F is a 2PŁ function, −F (x, .) satisfies the (one-sided) PŁ inequality.
Thus, y ∈ Y∗(x) if and only if∇yF (x,y) = 0, i.e., Y∗(x) = {y ∈ Rdy | ∇yF (x,y) = 0}. By the
continuity of∇yF (x, .), we conclude that Y∗(x) is a closed set.

51

The following lemma, which is key to establishing the relation between Vλ(z) and dist(z,Z∗), is an
adaptation of Lemma A.3 of Nouiehed et al. [40] for 2PŁ functions.
Lemma E.6 (Lipschitzness of Y∗(x)). Let F : Rdx × Rdy → R be an l-smooth function satisfying
Assumption 3 (with constants µ1 and µ2). For any x ∈ Rdx , let Y∗(x) = argmaxy∈Rdy F (x,y).
Then, for any x1,x2 ∈ Rdx and y∗(x1) ∈ Y∗(x1), there exists a y∗(x2) ∈ Y∗(x2) such that,

|y∗(x1)− y∗(x2)| ≤
l

2µ2
|x1 − x2| .

Proof. Consider any x1,x2 ∈ Rdx and y∗(x1) ∈ Y∗(x1). Since F is 2PŁ with constants µ1 and µ2,
−F (x, .) satisfies the PŁ inequality for any x ∈ Rdx with constant µ2. Furthermore, by Lemma E.5,
Y∗(x) is a closed set for any x ∈ Rdx . Thus, by Lemma A.3 of Nouiehed et al. [40], there exists a
y∗(x2) ∈ Y∗(x2) satisfying |y∗(x1)− y∗(x2)| ≤ l

2µ2
|x1 − x2|.

Equipped with the above lemmas, we can finally upper bound dist(z,Z∗) in terms of Vλ(z).

Lemma E.7. Let F : Rdx×Rdy → R be an l-smooth function satisfying Assumption 3 (with constants
µ1 and µ2). Define Φ(x) = maxy∈Rdy F (x,y), Φ∗ = minx∈Rdx Φ(x), X ∗ = argminx∈Rdx Φ(x)

and Y∗(x) = argmaxy∈Rdy F (x,y). Moreover, for any λ > 0, define Vλ(x,y) = [(Φ(x)− Φ∗) +

λ(Φ(x)− F (x,y)]. Then the following holds for any z ∈ Rd:

dist(z,Z∗)2 ≤ max

{
2

µ1
(
l2

2µ2
2

+ 1),
4

λµ2

}
Vλ(z).

Proof. Since the set of saddle points of F is non-empty and Φ is a PŁ function (with constant µ1) as
per Lemma E.2, we can use the same arguments as Lemma E.5 to show that X ∗ is a closed set.

Consider any z = (x,y). Let x∗ be the projection of x on the closed set X ∗ and let y∗(x) be the
projection of y on the closed set (as per Lemma E.5) Y∗(x).

Applying Lemma E.3 to Φ(x), we obtain,

Φ(x)− Φ∗ ≥ µ1

2
|x− x∗|2 . (E.50)

Similarly, applying Lemma E.3 to −F (x,y), we obtain,

Φ(x)− F (x,y) ≥ µ2

2
|y − y∗(x)|2 . (E.51)

By Lemma E.6, there exists a y∗ ∈ Y∗(x∗) satisfying,

|y∗(x)− y∗| ≤ l

2µ2
|x− x∗| . (E.52)

Let z∗ = (x∗,y∗). We note that since x∗ ∈ X ∗ and y∗ ∈ Y∗(x∗), z∗ is a global minimax point of
F . Thus by Lemma E.1, z∗ is a saddle point of F , i.e., z∗ ∈ Z∗. We now proceed as follows:

|y − y∗| ≤ |y − y∗(x)|+ |y∗(x)− y∗|

≤ |y − y∗(x)|+ l

2µ2
|x− x∗| .

Applying Young’s Inequality, we obtain,

|y − y∗|2 ≤ 2 |y − y∗(x)|2 + l2

2µ2
2

|x− x∗|2 , (E.53)

which implies that.

|z− z∗|2 = |x− x∗|2 + |y − y∗|2

≤ 2 |y − y∗(x)|2 + (
l2

2µ2
2

+ 1) |x− x∗|2 .

52

Substituting (E.50) and (E.51) in the above inequality, we obtain,

|z− z∗|2 ≤ 4

µ2
[Φ(x)− F (x,y)] +

2

µ1
(
l2

2µ2
2

+ 1)[Φ(x)− Φ∗]

≤ max

{
2

µ1
(
l2

2µ2
2

+ 1),
4

λµ2

}
[(Φ(x)− Φ∗) + λ(Φ(x)− F (x,y))]

≤ max

{
2

µ1
(
l2

2µ2
2

+ 1),
4

λµ2

}
Vλ(z).

Since z∗ ∈ Z∗, we conclude that,

dist(z,Z∗)2 ≤ max

{
2

µ1
(
l2

2µ2
2

+ 1),
4

λµ2

}
Vλ(z). (E.54)

Using Lemma E.7 and E.1, we can conclude that AGDA-RR converges in terms of dist(z,Z∗)2

as E[dist(zK+1
0 ,Z∗)2] = Õ(e−K/365κ3

+ 1/nK2). Since Z∗ is a closed set, this implies that the
final epoch iterate zK+1

0 of AGDA-RR converges (in expectation) to some saddle point of F , with
the rate Õ(e−K/365κ3

+ 1/nK2). Similarly, using Using Lemma E.7 and E.2, we conclude that
the final epoch iterate zK+1

0 of AGDA-AS converges to some saddle point of F with the rate
dist(zK+1

0 ,Z∗)2 = Õ(e−K/365κ3
+ 1/K2).

F Literature Review

While the convergence properties of SGD (and SGDA) with uniform sampling have been well
studied for a long time, with matching upper and lower bounds of Θ(1/nK) for both strongly convex
minimization and strongly convex-strongly concave minimax optimization [44, 13] (n is the number
of components in the finite-sum objective and K is the number of epochs), advances in the theoretical
understanding of without-replacement sampling for SGD are a fairly recent phenomenon. This
is generally attributed to the unavailability of provably unbiased gradient estimates, leading to a
significantly more complicated analysis that often requires sophisticated mathematical tools.

Initial progress was made by the pioneering work of Recht and Re [45] who proposed the non-
commutative AM-GM conjecture, and proved that this conjecture implies the faster convergence of
without-replacement SGD. Unfortunately, the conjecture was recently disproved by Lai and Lim
[27]. Subsequent progress was made in Gürbüzbalaban et al. [21], where the authors establish an
asymptotic O(1/K2) convergence rate for GD with Random Reshuffling (or RR) on functions of the
form F (x) = 1/n

∑n
i=1 fi(x) where F is a strongly convex quadratic and the components fi satisfy

a Hessian Lipschitz assumption. For the same function class, Gürbüzbalaban et al. [22] established
asymptotic O(1/K2) rates for Gradient Descent with Shuffle Once (SO) and Incremental Gradient
(IG). The analysis in both these works relied on the following intuition, also proposed earlier in
Nedic and Bertsekas [37]: since sampling without replacement ensures that each component function
is used exactly once within an epoch, the overall progress made by RR (and IG) over a complete
epoch closely tracks that of full batch GD. To this end, the key technique in both these works was
to interpret the time evolution of the epoch iterates xk

0 as full batch GD with added noise, and to
subsequently obtain a convergence rate by determining the (asymptotic) rate of decay for the noise
using Chung’s Lemma. This approach still remains a highly useful strategy for understanding SGD
without replacement, and has served as a key insight for several future works such as Haochen
and Sra [23], Ahn et al. [1]. In fact, formally extending this insight to minimax optimization (and
more generally, to variational inequalities) in a manner that can simultaneously handle RR, SO and
adversarial shuffling, is a cornerstone of our analysis.

The first nonasymptotic guarantees for RR, which also characterize the dependence of the convergence
rate on n, were given by Haochen and Sra [23], who establish a convergence rate of Õ(1/n2K2+1/K3)
assuming K ≥ Cκ log(nK) for some C > 0, for the case when F is a strongly convex quadratic
and the components fi are convex quadratics. Under the assumption that F satisfies the Polyak-
Łojasiewicz inequality and the components fi are smooth and Hessian Lipschitz, Haochen and Sra
[23] also establish an Õ(1/n2K2 + 1/K3) rate assuming K ≥ Cκ2 log(nK). These rates imply the

53

provable superiority of RR when K ≥ Ω(
√
n). Subsequent advances were made by Nagaraj et al.

[36], who used sophisticated Wasserstein coupling arguments to establish a rate of O(1/nK2) for RR
which holds under the epoch requirement of K ≥ Cκ2 log(nK), assuming F is strongly convex and
fi are smooth and Lipschitz. This rate demonstrates the provable improvement of RR over uniform
sampling as soon as the epoch requirement is satisfied.

Development of lower bounds for SGD without replacement began with Safran and Shamir [48]
where the authors establish a lower bound of Ω(1/n2K2 + 1/nK3) for RR on strongly convex quadratic
F with fi being convex quadratics, assuming constant step-sizes. Under the same assumptions,
Safran and Shamir [48] also establish an Ω(1/nK2) lower bound for SO and an Ω(1/K2) lower bound
for IG. Further progress on lower bounds and their tightness was made in Rajput et al. [43] where
the authors establish a Õ(1/n2K2 + 1/nK3) convergence rate for RR on strongly convex quadratic
F with convex quadratic fi. Rajput et al. [43] also develop a lower bound of Ω(1/nK2) for strongly
convex F with smooth fi, thereby establishing the tightness of the upper bounds in Nagaraj et al.
[36] modulo logarithmic factors.

Recently, the theory of SGD without replacement has been significantly advanced by the parallel
works of Ahn et al. [1] and Mishchenko et al. [34]. For the case of Polyak-Łojasiewicz F with
smooth (but not necessarily convex) fi, Ahn et al. [1] show that RR converges at an optimal rate
(modulo logarithmic factors) of Õ(1/nK2) when K ≥ Cκ log(n1/2K). For the same problem class,
Mishchenko et al. [34] obtain an anytime-valid near-optimal rate of Õ(e−K/4κ + 1/nK2) under a
bounded gradient variance assumption. This rate matches the optimal rate modulo logarithmic
factors when K ≥ Cκ log(n1/2K). Ahn et al. [1] also analyze SO for this problem class and derive
Õ(1/nK2) rates assuming K ≥ Cκ2 log(n1/2K). The obtained rate matches the lower bound of
Safran and Shamir [48] modulo logarithmic factors. Concurrently, Mishchenko et al. [34] present
an analysis that covers both RR and SO for strongly convex F with smooth convex fi and obtain a
rate of Õ(e−K/4κ + 1/nK2). For IG, Nguyen et al. [39] obtain a rate of Õ(1/K2) assuming strongly
convex F , smooth fi and an epoch requirement of K ≥ 12κ2 log(K). Moving beyond the PŁ class,
the recent work of Li et al. [28] analyze RR for the case when fi are smooth and F satisfies a KŁ
inequality and, using variable step-sizes, establish an asymptotic convergence rate of O(1/K2) when
the KŁ exponent lies in [0, 1/2].

Recent works have also analyzed RR and SO in the federated minimization setting. Notably, Yun
et al. [56] developed an extension of the techniques used in Ahn et al. [1] to analyze RR variants of
minibatch and local SGD, while Mishchenko et al. [35] extended the approach of Mishchenko et al.
[34] to develop federated analogs of RR and SO. Among other developments, Tran et al. [53] propose
a variant of SGD with momentum that is amenable to theoretical analysis under without-replacement
sampling. These developments are also complemented by the recent negative result of Safran and
Shamir [49] which analyzes the condition number dependence of RR, and through an intricate lower
bound analysis on convex quadratics, show that RR and SO do not significantly outperform uniform
sampling unless K is larger than the condition number.

Despite the recent wave of developments on SGD without replacement, theoretical analysis of
sampling without replacement for minimax optimization has remained relatively unexplored. To
the best of our knowledge, Yu et al. [55] and Maheshwari et al. [33] are the only prior works in
this domain. Both these works focus only on Random Reshuffling and are restricted to finite-sum
minimax problems of the form F (x, y) = 1/n

∑n
i=1 fi(x, y) where each fi is smooth, Lipschitz,

convex-concave and has bounded domain. Under this setting, Yu et al. [55] proposes a stochastic
proximal point method with RR that exhibits a rate of Õ(1/

√
nK) whereas Maheshwari et al. [33]

proposes a zeroth-order optimistic gradient method with RR that exhibits a rate of Õ(nd
2
/K1/4),

where d is the dimension of the domain. The analysis in both these works are based on an application
of the Wasserstein coupling technique of Nagaraj et al. [36] (for the convex case) to smooth, Lipschitz
convex-concave minimax optimization.

G Experimental Details

As described in Section 5 of the main text, we perform our benchmarks on finite-sum strongly
convex-strongly concave quadratic minimax games. The objective F and the components fi are given

54

by:

F (x,y) = 1/n

n∑
i=1

fi(x,y) =
1

2
xTAx+ xTBy − 1

2
yTCy,

fi(x,y) =
1

2
xTAix+ xTBiy −

1

2
yTCiy − uT

i x− vT
i y,

where A and C are positive definite and ui and vi are chosen such that
∑n

i=1 ui =
∑n

i=1 vi = 0.
In all our experiments, we set n = 100 and dim x = dim y = 25. We randomly generate the
components fi such that 20 randomly selected components are strongly convex-strongly concave. To
this end, the components Ai are selected as follows. We begin by sampling a random orthogonal
matrix OA, and then generate two d-dimensional vectors mA and δA, such that each component
of mA is uniformly sampled from [µA, LA] whereas that of δA is uniformly sampled from [µδ, Lδ].
Subsequently, for each i ∈ [n], we set Ai = OAΛiO

T
A where Λi = diag(−δA) or 20 randomly

selected indexes and Λi = diag(5mA/4 + δA/4) for the other 80 components. A similar procedure
is followed for generating the matrices B and C. For the vectors ui, we generate a vector δu with
components that are uniformly sampled from [µδ, Lδ]. Then, for 20 randomly sampled indexes,
we set ui = −δu and for the rest, we set ui = δu/4. The vectors vi are sampled in a similar
fashion. We run each algorithm for K = 100 epochs using constant step-sizes of the form α = γ/n
where γ is chosen independently for each algorithm via grid search. In all our experiments, we set
µA = µC = 0.5, µB = 5.0 and µδ = 50.0. Furthermore, we set LA = LC = 2µA, LB = 2µB and
Lδ = 2µδ . We perform our experiments on a Jupyter notebook with a Python 3.7 kernel, executed on
a 2.8 GHz Intel Core i7 processor with 8 GB of memory. The total running time is 40 minutes.

55

	Introduction
	Contributions

	Notation and Preliminaries
	Analysis for Strongly Convex-Strongly Concave Objectives
	Setting
	Analysis of RR/SO
	Analysis in the Adversarial Shuffling Regime

	RR for Two-Sided PŁ Objectives
	Analysis of AGDA-RR and AGDA-AS

	Experiments
	Conclusion
	Notation
	Useful Lemmas
	Analysis of GDA without Replacement
	Analysis of Full-batch GDA by Linearization
	A Unified Analysis of GDA-RR and GDA-SO
	Analysis of GDA-AS

	Analysis of PPM without Replacement
	Analysis of Full-batch PPM by Linearization
	A Unified Analysis of PPM-RR and PPM-SO
	Analysis of PPM-AS

	Analysis of AGDA-RR and AGDA-AS
	Properties of Two-sided PŁ Functions
	Analysis of AGDA-RR
	Analysis of AGDA-AS
	Convergence of AGDA-RR and AGDA-AS to a Saddle Point

	Literature Review
	Experimental Details

