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Abstract

Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse
tasks but remain fundamentally static, unable to adapt their internal parameters to novel
tasks, evolving knowledge domains, or dynamic interaction contexts. As LLMs are increas-
ingly deployed in open-ended, interactive environments, this static nature has become a
critical bottleneck, necessitating agents that can adaptively reason, act, and evolve in real
time. This paradigm shift —from scaling static models to developing self-evolving agents
— has sparked growing interest in architectures and methods enabling continual learning
and adaptation from data, interactions, and experiences. This survey provides the first
systematic and comprehensive review of self-evolving agents, organizing the field around
three foundational dimensions — what to evolve, when to evolve, and how to evolve. We
examine evolutionary mechanisms across agent components (e.g., models, memory, tools, ar-
chitecture), categorize adaptation methods by stages (e.g., intra-test-time, inter-test-time),
and analyze the algorithmic and architectural designs that guide evolutionary adaptation
(e.g., scalar rewards, textual feedback, single-agent and multi-agent systems). Additionally,
we analyze evaluation metrics and benchmarks tailored for self-evolving agents, highlight
applications in domains such as coding, education, and healthcare, and identify critical
challenges and research directions in safety, scalability, and co-evolutionary dynamics. By
providing a structured framework for understanding and designing self-evolving agents, this
survey establishes a roadmap for advancing adaptive, robust, and versatile agentic systems
in both research and real-world deployments, ultimately shedding lights to pave the way
for the realization of Artificial Super Intelligence (ASI), where agents evolve autonomously,
performing at or beyond human-level intelligence across a wide array of tasks.
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Figure 1: A conceptual trajectory illustrating the progression from large language models (LLMs) to foun-
dation agents, advancing to self-evolving agents—our focus, and ultimately toward hypothetical Artificial
Super Intelligence (ASI). Along this path, intelligence and adaptivity increase, marking a shift toward more
autonomous and agentic Al systems.
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1 Introduction

"It is not the most intellectual of the species that survives; it is not the strongest that survives;
but the species that survives is the one that is able best to adapt and adjust to the changing
environment in which it finds itself." — Charles Darwirﬂ

Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks.
Yet, they remain fundamentally static (Luo et al., |2025a)), unable to adapt their internal parameters when
encountering novel tasks, evolving knowledge domains, or dynamic interaction contexts. As LLMs are
increasingly deployed in open-ended, interactive environments, this limitation becomes a critical bottleneck.
In such settings, conventional knowledge retrieval mechanisms prove inadequate, giving rise to agents capable
of dynamically adapting their perception, reasoning, and actions in real time. This emerging need for
dynamic, continual adaptation signals a conceptual shift in artificial intelligence: from scaling up static
models to developing self-evolving agents, such agents are capable to continuously learn from new data,
interactions, and experiences in real-time, leading to systems that are more robust, versatile, and capable
of tackling complex, dynamic real-world problems (Wang et al.l |2024a). This shift is currently driving us
toward a promising and transformative path to Artificial Super Intelligence (ASI), where the agents not only
can learn and evolve from experience with an unpredictable speed but also perform at or above human-level
intelligence across a wide array of tasks (Wang et al. 2025¢).

Unlike static LLMs, which remain constrained by their inability to adapt to novel and evolving contexts, self-
evolving agents are designed to overcome these limitations by continuously learning from real-world feedback.
This progression reshapes our understanding of agents. Self-evolving agents, as a core concept, will be the
precursors to ASI, acting as intermediaries that pave the way for the ultimate evolution of intelligence,
as shown in Figure [l Recent research initiatives have increasingly focused on developing adaptive agent
architectures capable of continually learning and adapting from experience, such as recent advancements
in agent frameworks (Yin et al., 2025), prompting strategies (?)fernando2023promptbreeder, and different
optimization ways to evolve. Notwithstanding these advances, existing surveys predominantly address agent
evolution as a subsidiary component within comprehensive agent taxonomies. Previous surveys primarily
provide systematic overviews of general agent development, while offering limited coverage of self-evolving
mechanisms across constrained scenarios in self-evolving agents (Luo et al., 2025a; |Liu et al.l [2025a)). For
example, [Luo et al.| (2025a)) discuss several ways to evolve, such as self-learning and multi-agent co-evolution,
while |Liu et al.[(2025a)) explicitly introduce the evolution in terms of different components of agents, such as
tools and prompts. Moreover, some studies focus specifically on the evolution of language models themselves
(Tao et al., |2024)), rather than on the broader concept of agents. Yet, there is no systematic survey devoted
to a dedicated, comprehensive investigation of self-evolving agents as a first-class research paradigm. This
gap has left fundamental questions underexplored: What aspects of an agent should evolve? When
should adaptation occur? And how should that evolution be implemented in practice?

To the best of our knowledge, this is the first systematic and comprehensive survey focusing on self-evolving
agents, offering a clear roadmap for both theoretical inquiry and practical deployment. We organize our
analysis around three foundational questions — what, when, and how to evolve — and provide a structured
framework for understanding each. Specifically, we systematically examine individual agent components,
including the model, memory, tools and corresponding workflow, investigating their distinct evolutionary
mechanisms (what to evolve of agent in Section 3); then we divide existing evolving methods according to
different temporal stages with different learning paradigms such as supervised fine-tuning, reinforcement
learning and inference-time evolving (when to evolve in Section 4). We finally summarize different signals to
guide the evolution of agents, such as textual feedback or scalar rewards, and also different architectures of
agents to evolve, such as single-agent and multi-agent evolution (how to evolve in Section 5). Furthermore,
we review certain evaluation metrics and benchmarks to track existing advancements of self-evolving agents,
emphasizing the importance of co-evolution between evaluation and agents (Section 6). We also examine

1This quote is widely attributed to Charles Darwin, but it does not appear verbatim in his writings. The phrasing is
believed to originate from Professor Leon C. Megginson, who paraphrased Darwin’s ideas. Despite its frequent misattribution,
the quote effectively captures the essence of Darwinian evolution and has since been popularized in both scientific and managerial
literature.
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emerging applications in domains such as coding, education, and healthcare, where continual adaptation
and evolution are essential (Section 7). Finally, we identify persistent challenges and outline promising
research directions to guide the development of self-evolving agents (Section 8). Through this systematic
decomposition of self-evolutionary processes across orthogonal dimensions, we provide a structured and
practical framework enabling researchers to systematically analyze, compare, and design more robust and
adaptive agentic systems. To sum up, our key contributions are as follows:

e We establish a unified theoretical framework for characterizing self-evolutionary processes in agent
systems, anchored around three fundamental dimensions: what evolves, how it evolves, and when it
evolves, providing clear design guidance for future self-evolving agentic systems.

o We further investigate the evaluation benchmark or environment tailored for self-evolving agents,
highlighting emerging metrics and challenges related to adaptability, robustness, and real-world
complexity.

o We showcase several key real-world applications across various domains, including autonomous soft-
ware engineering, personalized education, healthcare, and intelligent virtual assistance, illustrating
the practical potential of self-evolving agents.

o We identify critical open challenges and promising future research directions, emphasizing aspects
like safety, personalization, multi-agent co-evolution, and scalability.

In doing so, our survey provides researchers and practitioners with a more structured taxonomy for under-
standing, comparing, and advancing research of self-evolving agents from different perspectives. As LLM-
based agents are increasingly integrated into mission-critical applications, understanding their evolutionary
dynamics becomes essential, extending beyond academic research to encompass industrial applications, reg-
ulatory considerations, and broader societal implications.

2 Definitions and Foundations

Before delving into a comprehensive survey, we first present a formal definition of self-evolving agents and
introduce a taxonomy of the key aspects in self-evolving agents. We also discuss the relationships between
self-evolving agents and other renowned learning paradigms, such as curriculum learning, lifelong learning,
model editing, and unlearning, highlighting the adaptive, dynamic, and autonomous nature of self-evolving
agents.

2.1 Definitions

Environment We first define the environment (including the user and the execution environment, e.g.,
Linux shell) of an agent system as a partially observable Markov Decision Process (POMDP), represented
as a tuple £ = (G,S, A, T,R,Q,0,), where:

e G is a set of potential goals. Each g € G is a task objective that the agent needs to achieve, e.g., a
user query.

o S is a set of states. Each s € S represents the internal state of the environment.

e Ais a set of actions. Fach action a € A can be a combination of textual reasoning, retrieval of
external knowledge, and tool calls.

o T is the state transition probability function which takes a state-action pair (s,a) and outputs the
probability distribution T'(s'|s,a) of the next state.

e R:S8x AxG — R is the feedback/reward function, conditioned on the specific goal g € G. The
feedback r = R(s, a, g) typically takes the form of a scalar score or textual feedback.
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Figure 2: Taxonomy of self-evolving agents, in which agents are analyzed along the what, when, how, and
where dimensions, with selected representative methods and systems annotated at each leaf node.
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Figure 3: A comprehensive overview of self-evolving agents across key dimensions: What to evolve:
covering four major categories—Model, Context, Tool, and Architecture; When to evolve: differentiat-
ing intra-test-time and inter-test-time self-evolution, via in-context learning (ICL), supervised fine-tuning
(SFT), or reinforcement learning (RL); How to evolve: centered on three main paradigms—reward-based,
imitation and demonstration, and population-based methods. These are complemented by cross-cutting
dimensions. Where to evolve: ranging from general-purpose domains to specific domains; Evaluation:
focusing on goals (e.g., adaptivity, safety, generalization) and evaluation paradigms (static, short-horizon, or
long-horizon).

e ) is a set of observations accessible to the agent.

o O is the observation probability function which takes a state-action pair (s,a) and outputs the
probability distribution O(0’|s, a) of the next observation for the agent.

e + is the discount factor.

Agent system We define a (multi-)agent system as II = (T, {¢;}, {C;}, {W;}). The architecture I deter-
mines the control flow of the agent system or collaborative structures between multiple agents. It is typically
represented as a sequence of nodes (N7, Na, ...) organized by graph or code structures. Each node N; consists
of the following components:

o ;: the underlying LLM/MLLM.
e (;: the context information, e.g., prompt P; and memory M;.

o W;: the set of available tools/APIs.

At each node, the agent policy is a function 7g, (-|o) that takes an observation and outputs the probability
distribution of the next action, where 6; = (¢;, C;). The actual action space here is the union of the natural
language space and the tool space W;.

For a given task T = (E,g), represented by an environment E and a corresponding goal g € G, the agent
system follows the topology I' to generate a trajectory 7 = (0g, ag, 01, a1, ...), and receives a feedback r either
from the external environment or from internal signals (e.g., self-confidence or feedback from an evaluator).



Under review as submission to TMLR

) STaR ) CREATOR . ' ) AFlow ‘G wass | G orse’
1
2022 Self-Instruct . J} ProTeGi LiBraiToolGen ! - ~ !
- . O Learn-by-interact
e / 0 oAt " B rStar-Math :
N WebRL  H '
(V" Math-Shepherd \ ~» GPTSwarm 1 () sirius .
. < Arxiv Copilot | = |
(©) AdaPlanner \ @ AgentOptimizer © RisE : ScoreFlow :
2024\ & EvoAgent 05-Genesis . ) Mobille-Agent-E |
{4 TextGuard Py
&
~ N\ - © pbiginL
“% 10E 2
) sTIC

O PromptAgent Expel

AN
o AN
@ PromptBreeder J QuantAgent

AgentGen ¥ ADAS aue
—_

A Richelieu @ Agent Workflow Memory

| (@) ReMA  S\LADDER /) REGEN  (&)GUI-R1 :_/_ __________________________

’ | . Earthlink  BSARIA  #EvoAgentX

%) Godel Agent
@ g

J Reward Is Enough

0 AlphaEvolve

) AutoWebGLM

Figure 4: An evolutionary landscape of several representative self-evolving agent frameworks from 2022 to
2025. The figure chronologically organizes major research milestones in the development of self-evolving
agents with capabilities such as autonomous planning, tool use, and continual self-improvement.

Self-evolving strategy A self-evolving strategy is a transformation f that maps the current agent system
to a new state, conditioned on the generated trajectory T and the external/internal feedback r:

f(H77—7 T‘) =1 = (F/7 {wi}a {CZ/}, {Wz,}) (1)

Objective of self-evolving agents Let U be a utility function that measures the performance of an
agent system II on a given task 7 by assigning a scalar score U(II,7) € R. The utility may be derived
from the task-specific feedback r, such as a reward signal or textual evaluation, possibly combined with
other performance indicators (e.g., completion time, accuracy, or robustness). Given a sequence of tasks
(To, T1, -, Tn) and an initial agent system Ilj, a self-evolving strategy f recurrently generates an evolving
sequence of agent systems (IIq, s, ...,IL,) via

W1 = f(L,75,75), (2)
where 7; and r; are the trajectory and feedback on task 7.

The overarching objective in designing a self-evolving agent is to construct a strategy f such that the
cumulative utility over tasks is maximized:

m;mxz U1y, T;) (3)
j=0

2.2 Relationships with Other Works

Table [1| summarizes the key distinctions between self-evolving agents and other paradigms (including cur-
riculum learning, lifelong learning, model editing, and unlearning). Unlike these existing paradigms that
primarily focus on updating model parameters, self-evolving agents expand the scope of updating targets
to include non-parametric components, such as context (prompts and memory) and toolset. This expanded
space provides greater flexibility, enabling self-evolving agents to operate effectively in sequential task set-
tings and adapt at test time. More crucially, self-evolving agents uniquely demonstrate the ability of active
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exploration (e.g., searching for open-source tools online(Qiu et al., ), structural modification of their
own topology (e.g., iteratively modifying the workflow(Zhang et all [2024c) or code(Zhang et al., 2025f)),
and self-reflection and self-evaluation capabilities (e.g., providing verbal feedback using an internal evaluator
LLM(Shinn et al., 2023)), which are absent in previous paradigms.

We provide a brief introduction to each paradigm below, highlighting the differences among these paradigms,
as well as the differences with self-evolving agents.

Curriculum Learning Curriculum learning is a training strategy for Al models in which data are pre-
sented in order of increasing difficulty (Bengio et all 2009} [Wang et all [2021)). This strategy resembles
human curricula where concepts are introduced progressively from simple to complex. Curriculum learn-
ing has been widely adopted across diverse domains, including computer vision (Guo et al., 2018; Jiang
et al., 2014} [Liu et al., 2023a)), natural language processing (Platanios et al., 2019; |Tay et al., 2019)), speech
recognition (Braun et al 2017} [Lotfian & Busso| [2019), etc. Recently, several curriculum learning-based
methods have been proposed to fine-tune LLMs during the post-training phase (Wang et al., [2025]; |Zhang
let al.| 2025k; [Parashar et all 2025; Zhang et all 2025a; |Li et al., |2025b). The framework for curriculum
learning generally comprises two key components: a difficulty measurer that quantifies the difficulty level of
each training data point, and a training scheduler that reorganizes the order of data points received by the
model according to the difficulty level. Unlike curriculum learning, which operates on a static dataset, self-
evolving agents aim to handle sequential tasks in dynamic environments. Additionally, curriculum learning
updates only model parameters, whereas self-evolving agents are able to adjust non-parametric components
like memory and tools.

Lifelong Learning Lifelong learning refers to the ability of AI models to continuously and adaptively
learn when exposed to new tasks and environments, while retaining previously acquired knowledge and
abilities. This learning paradigm, also known as continual learning or incremental learning, is crucial for Al
models to operate in dynamic and complex environments (Wang et al., 2024c; |Zheng et al., [2025¢; [Parisi|
let al., 2019; |Shi et al., [2024; [Yang et al., [2025¢; [Zhou et all 2024a)). The primary goal of lifelong learning
for AI models is to achieve a balance between preserving existing knowledge (stability) and acquiring new
knowledge (plasticity) when exposed to new data or tasks (McCloskey & Cohenl |1989; |Zheng et al., 2025¢}
[Ratcliff] [1990}; [Rolnick et all [2019). Though it shares the sequential task setting with self-evolving agents,
lifelong learning differs in two ways: (1) like curriculum learning, lifelong learning typically updates only
model parameters, lacking the ability to modify non-parametric components; (2) lifelong learning primarily
acquires knowledge passively through external feedback or manual guidance, whereas self-evolving agents
actively explore their environment and may incorporate internal reflection or self-evaluation mechanisms.

Model Editing and Unlearning Model editing and unlearning aim to efficiently and precisely modify
specific knowledge in Al models while preserving irrelevant knowledge and avoiding full retraining
let al., |2024f; 2025g; Zhang et al 2024d; Wang et al) 2025g; [Nguyen et al., 2022; Geng et al. 2025a)). A
canonical application of model editing is to perform efficient and precise localized factual updates (e.g.,
modifying the answer to “2021 Olympics host city” from "Tokyo" to "Paris"). Early methods focused on
triples of atomic knowledge and later expanded into various trustworthy-related tasks (Fang et al.l [2025a}
[Huang et al., [2025)). Recent studies also propose lifelong model editing(Chen et al., [2024c) that sequentially
performs model editing. For model unlearning, early efforts mainly focus on the removal of privacy-related
information (Chen et all 2021). With the rapid development of LLMs, model unlearning is also used to
enhance LLMs’ safety (Zhang et al.| [2024j} |Li et al.| [2024c} [Zou et al., [2024; [Lu et al., [2025). Compared to
lifelong learning, model editing shares an aligned objective: both aim to acquire new knowledge or capabilities
while mitigating catastrophic forgetting. However, lifelong learning typically relies on extensive gradient-
based fine-tuning across all model parameters, whereas model editing often modifies only a small subset of
parameters in a targeted manner. Compared to self-evolving agents, model editing (1) cannot modify non-
parametric components such as memory or tools, and (2) relies on a pre-defined pipeline from the algorithm
designer, whereas self-evolving agents can spontaneously employ more diverse and flexible strategies based
on the observation of the environment or internal feedback signals.
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Table 1: Comparison between self-evolving agents and other renowned paradigms, including curriculum
learning, lifelong learning, model editing and unlearning.

Paradiem Evolving Evolving Dynamic  Test-time Active Structural Self-reflect
adie Context Toolset Tasks Adaptation Exploration Change & Eval
Curriculum Learning X X X X X X X
Lifelong Learning X X X X X X
Model Editing X X X X X

Self-evolving Agents

3 What to Evolve?

The transition from pre-programmed, static systems to genuinely autonomous intelligent agents hinges on
one critical capability: self-evolution. This capability for continuous improvement is not monolithic; instead,
it manifests across various facets of an agent’s being. Therefore, the first key aspect of a self-evolving agent
is identifying the evolving components — which components in the agent system IT = (T, {¢;}, {C;}, {W;})
can be explicitly changed over time?

Following the formulation in Section[2.I] we can decompose the agent system into four fundamental, evolvable
pillars. Our investigation starts at the agent’s cognitive core, namely the Models {¢;}, and examines how
the fundamental parameters that govern its reasoning and behavior are continuously updated through its
own experiences(Zhou et al., 2025¢; [Wang et al., 2025m)). We then consider the Context {C;} that shapes
its actions, exploring the evolution of both the instructions(Xiang et al., |2025; Khattab et all 2023) it
follows and the long-term memory(Chhikara et al., |2025; [Wang et al.,|2024j) it draws upon to stay informed
and adapt. From this internal foundation, we shift to the agent’s external capabilities, analyzing how it
evolves its set of Tools {W;} by autonomously creating(Qiu et al., [2025), mastering(Qu et al.l [2025), and
managing new skills(Wang et al.| [20251) to overcome its innate limitations. Finally, we scale our perspective
to the Agentic System itself, investigating how the agentic system’s architecture(Hu et al., [2024c; [Zhang
et al.l 2024c) and collaborative structures(Wan et al., 2025) are dynamically optimized to enhance overall
performance and efficiency. We present a subset of these evolving dimensions in Table [2|

3.1 Models

Models constitute the central substrate of intelligent agents, directly determining their reasoning, planning,
and decision-making behaviors. The ability of these models to evolve by continually adapting their internal
parameters and expanding their functional capabilities is essential for the development of autonomous,
general-purpose agents. Unlike static systems that rely heavily on human-annotated datasets and fixed
training regimes, self-evolving models can improve through interaction, self-supervised data generation, and
dynamic learning loops, thereby achieving greater efficiency, adaptability, and scalability. In detail, we
outline the principal axes along which model evolution unfolds. These include learning from self-generated
supervision to refine model weights, evolving through interaction with constructed or external environments.
Together, these strategies represent a shift from passive learning paradigms toward active, continual, and
self-directed improvement.

Policy A self-evolving agent can refine its parameters to perform better on targeted tasks. Traditional
methods of data collection for training agents on tool-use benchmarks are costly and often yield limited
coverage, while purely synthetic data-generation pipelines typically suffer from inadequate quality. Con-
sequently, recent studies emphasize enabling agents to autonomously generate data to improve their own
model weights. One representative approach is the Self-Challenging Agent (SCA)(Zhou et al.| 2025c), where
a language model alternates roles between a challenger generating executable Code-as-Task problems and
an executor solving them. The model then fine-tunes its parameters using trajectories derived from suc-
cessful solutions, resulting in significant performance gains on complex, multi-step tasks. Similarly, the
Self-Rewarding Self-Improving framework(Simonds et al., 2025) implements an internal self-judging mecha-
nism, allowing the model to autonomously generate problems, solve them, and assess its performance, thus
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Table 2: Representative self-evolving agent methods positioned along four evolutionary pillars; a filled bullet
() marks dimensions where the approach actively evolves.
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producing self-contained fine-tuning data without external annotations. This method demonstrated notable
improvements, particularly in complex reasoning tasks. Beyond task creation, another promising research
direction involves leveraging interaction feedback directly for parameter updates. For instance, SELF
2023)), SCoRe(Kumar et al} [2024)), and PAG (Jiang et al.,[2025b) interpret execution traces or natural-
language critiques as reward signals within an online Supervised Fine-Tuning (SFT) combined with Rein-
forcement Learning (RL) framework, enabling continuous policy improvement. TextGrad(Yellamraju et al.
further extends this concept by treating unstructured textual feedback as a differentiable training sig-
nal capable of directly influencing both prompt design and model parameters. Additionally, AutoRule
converts language-model reasoning traces and preference feedback into explicit rule-based
training rewards, enhancing the quality of model outputs through structured reward signals. Collectively,
these advancements chart a clear trajectory—from agents autonomously crafting their training tasks to di-
rectly refining their parameters based on execution feedback, highlighting the capacity of models to evolve
continuously by learning from the data they produce.

Experience Agents can evolve not only by adjusting their internal parameters but also by actively in-
teracting with or even constructing their environments, capturing experiences, and transforming them into
learning signals that drive iterative improvement. This environmental loop provides agents with the com-
plexity and diversity required for scalable self-adaptation. The Self-Challenging Agent (SCA)(Zhou et al.
exemplifies this dynamic at the task level, where the agent autonomously generates novel Code-as-
Task problems, executes them, and then filters successful trajectories for retraining itself. AgentGen
extends this concept to full-environment generation, synthesizing diverse simulation worlds
(in PDDL or Gym-style formats) derived from an initial corpus. It implements a bidirectional evolution
loop that progressively adjusts task difficulty, enabling the agent to continuously grow within a dynamically
structured curriculum. Reflexion(Shinn et al.| 2023) complements this by introducing self-reflective mech-
anisms, where agents iteratively record natural-language critiques of their previous actions, guiding future
behavior to avoid recurring mistakes. Additionally, AdaPlanner(Sun et al., 2023)) introduces closed-loop
adaptive planning, allowing agents to refine their strategies on-the-fly based on environmental feedback,
effectively reshaping action sequences in response to immediate outcomes. Similarly, Self—Reﬁne
employs an iterative refinement loop in which the agent repeatedly critiques and revises its
initial outputs, significantly improving task accuracy without explicit retraining. SICA (Self-Improving
Coding Agent)(Robeyns et all [2025b) further pushes the boundary by enabling agents to autonomously
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edit their underlying code and tools, iteratively enhancing their core reasoning abilities through direct self-
modification. From a reinforcement learning perspective, frameworks such as RAGEN(Wang et al., [2025ml)
and DYSTIL(Wang et al.l [2025b) conceptualize multi-step tool-use tasks as Markov Decision Processes, op-
timizing agent policies through rich environmental rewards and strategy induction loops. RAGEN leverages
dense feedback from the environment to iteratively fine-tune action policies, while DYSTIL utilizes high-level
strategy advice generated by language models to progressively internalize complex decision-making skills into
reinforcement learning agents. Collectively, these approaches highlight a compelling paradigm where self-
evolving agents not only leverage self-generated data but actively reshape their environments and internal
mechanisms to fuel ongoing learning. Such dynamic interaction loops point toward autonomous, open-ended
improvement cycles deeply grounded in experiential adaptation.

3.2 Context

An essential component of an LLM agent to be evolved is the context, which shapes how an agent behaves.
To start with, we want to interpret two terms, "prompt optimization" and "memory evolution", which have
been used in different literature. In most cases, these two terms can be used interchangeably because they
both refer to what is included in the context window. Prompt optimization asks "how can we phrase or
structure the instructions so the LLM behaves better?", and attends to details such as the wording, ordering.
On the other hand, memory evolution asks "how should we store, forget, and retrieve context so that the
agent can stay informed and perform better?", which focuses on what past information to surface or archive.

3.2.1 Memory Evolution

LLM-based agents are increasingly designed with long-term memory mechanisms that grow and adapt as the
agent continues to solve tasks and interacts with its environment(Shan et al.l 2025 (Qian et al.| |2023al). An
evolving memory enables the agent to accumulate knowledge, recall past events, and adjust its behavior based
on experience. Many works stress that effective memory management is crucial for agent performance(Zhong
et al| [2024; Zhang et al., 2025¢; |Yan et al. |2024). SAGE(Liang et al.l [2024]) uses the Ebbinghaus forgetting
curve to decide what to remember or forget. A-mem(Xu et al.l |[2025a)) updates the agent memory structure
to create interconnected knowledge networks through dynamic indexing and linking, following the basic
principles of the Zettelkasten method. MemO(Chhikara et al.| 2025)) introduces a two-phase pipeline where
the agent first extracts salient facts from recent dialogue and then decides how to update the long-term
memory: the agent can ADD new facts, MERGE/UPDATE redundant ones, or DELETE contradictions.
Such a mechanism ensures the agent’s long-term memory is coherent and up-to-date. MemlInsight(Salama
et al.l [2025)) augments raw memories with semantic structure, which summarizes and tags past interactions
for retrieval later. REMEMBER(Zhang et al., 2024a)) combines an LLM with a memory of experiences and
uses reinforcement learning signals to decide how to update that memory after each episode.

A critical aspect of memory evolution is enabling agents to learn heuristics or skills from past experiences.
Rather than only retrieving exact past instances, advanced agents distill experiences into more general
guidance(Zhao et all |2024a; |Fu et al.l [2024). Expel(Zhao et al.l [2024a)) processes past trajectories to
generate insights and rules to guide further interactions. This experiential knowledge accumulation leads
to measurable gains, as the agent steadily performs better with more experience. Other systems focus on
storing higher-level building blocks of problem-solving. For instance, Agent Workflow Memory(Wang et al.,
2024j|) records common sub-task sequences (workflows) so that an agent solving a complex task can retrieve
and reuse a proven sequence of actions rather than plan from scratch. In the Richelieu diplomacy agent,
the system improves its negotiation strategies by augmenting its memory through self-play games, storing
the insights from simulated interactions to refine future decisions(Guan et al.l 2024)). By generalizing from
specific episodes to reusable knowledge, these approaches illustrate how memory evolution turns an agent’s
one-time experiences into long-term competencies, which leads to agents evolving.

3.2.2 Prompt Optimization

While memory evolution focused on what knowledge an agent retains, Prompt Optimization (PO) enables
LLM agents to self-evolve by refining the instructions it feeds to the backbone model, which directly alters the
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model’s behavior without modifying model weights(Ramnath et al.l [2025). Early research treats instruction
design as a search problem. APE(Zhou et al., 2022) generates candidate prompts, scores them on validation
examples, and selects the best. ORPO(Yang et al., |2023)) extends this idea by letting the model iteratively
rewrite its own prompt, guided by feedback on prior outputs. ADO(Lin et al., [2025)) introduces DSP that
imposes semantic constraints on iteratively proposed prompts to facilitate finding the optimal prompt. Pro-
TeGi(Pryzant et all |2023) generates natural language "corrections" that are applied as edits to the prompt,
forming a textual analogue of gradient descent. PromptAgent(Wang et al., |2023d) casts prompt discovery
as Monte-Carlo Tree Search, exploring instruction space strategically, while evolutionary approaches like
PromptBreeder(Fernando et al., [2023) maintain a population to discover increasingly effective instructions.
REVOLVE(Zhang et all [2024e) further stabilizes long optimization runs by tracking the trajectory of model
responses and applying smoothed updates. Pushing this autonomy to its limit, SPO(Xiang et al.| [2025)
creates a fully self-contained loop where the model generates its training data and uses pairwise preference
comparison on its outputs to refine the prompt, eliminating the need for any external labeled data or human
feedback. Collectively, these techniques demonstrate that an agent can autonomously improve its prompting
policy, turning prompt text into a learnable component that co-evolves with the agent’s experience.

In complex systems, an agent often orchestrates a sequence of LLM calls or collaborates with other agents,
making prompt design a multi-node problem. Frameworks such as DSPy represent an entire workflow as a
graph whose sub-prompts are jointly tuned for a global objective(Khattab et al.l 2023]). Trace(Wang et al.,
2023c), TextGrad(Yellamraju et al 2024), and LLM-AutoDiff(Yin & Wang}, [2025) generalize this idea by
treating each prompt as a parameter in a differentiable program and propagating natural-language “gra-
dients” to refine every step. In collaborative scenarios, Multi-Agent System Search (MASS)(Zhou et al.,
2025a)) first optimizes individual role prompts and then refines inter-agent communication patterns, while
MAS-ZERO(Ke et all, [2025) dynamically proposes and revises role prompts to assemble an effective team
for each new problem. Evolutionary systems such as EvoAgent(Yuan et al.| [2024b) and AgentSquare(Shang
et al., [2025) treat each agent along with prompts as the modules and use mutation and selection to dis-
cover specialized teams that outperform hand-crafted designs. These approaches extend PO from a single
instruction to the language that defines whole workflows or societies of agents.

3.3 Tools

An agent’s capabilities are fundamentally defined by the tools it can wield. The trajectory of agent devel-
opment is marked by a crucial evolution: from being mere tool users to becoming autonomous tool makers.
This transition from relying on predefined, static toolsets to enabling agents to autonomously expand and
refine their own skills is a critical leap towards cognitive self-sufficiency. This paradigm, where agents dy-
namically adapt their capabilities, allows them to solve a long tail of complex problems not envisioned by
their initial designers. This evolution unfolds across three interconnected fronts: tool discovery, mastery,
and management, as detailed in the subsections below.

Autonomous Discovery and Creation The primary impetus for autonomous tool creation is to over-
come the inherent limitations of a fixed toolset, granting agents the flexibility to innovate on demand.
Methodologies for this now span a spectrum from opportunistic discovery to formalized synthesis. At one
end, agents like Voyager build an ever-expanding library of skills through emergent trial-and-error, driven
by an intrinsic motivation to explore complex, open-ended environments like Minecraft(Wang et al., 2023a).
This exploratory approach is powerful for generating a wide array of skills but may lack precision. In con-
trast, systems like Alita and ATLASS take a more reactive approach, often employing retrieval-augmented
generation (RAG) to search open-source code repositories or write new functions from scratch the moment a
capability gap is identified(Qiu et al.l [2025; [Haque et al., |2025). At the other end of the spectrum lie highly
structured frameworks that treat tool creation as a deliberate engineering process. CREATOR, for example,
disentangles abstract tool creation (e.g., reasoning about the general structure of a reusable function for
averaging temperatures over N days) from concrete tool usage (e.g., deciding how to apply that function
to a specific city and time range), which enhances modularity and reusability(Qian et al. [2023b)). Even
more formally, SkillWeaver analyzes successful human or agent task trajectories to propose, synthesize, and
hone new skills into robust, reusable APIs, ensuring a higher degree of initial quality(Zheng et al.l 2025a)).
Furthermore, frameworks like CRAFT demonstrate that creating specialized toolsets for specific domains
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is essential to complement general-purpose models, enabling expert-level performance without sacrificing
adaptability(Yuan et al., [2024a)). RL-GPT(Liu et al., 2024) integrates generated code implementations into
the RL pipeline, leveraging these as tools to tackle complex tasks while addressing simpler ones directly using
a Code-as-Policy approach. This integration dynamically adapts and evolves in response to environmental
feedback, enabling continuous improvement. However, this burgeoning autonomy introduces significant chal-
lenges, particularly around safety and security. The unconstrained generation of code risks creating tools with
exploitable vulnerabilities or unintended harmful behaviors, making automated verification and sandboxing
critical areas for future research.

Mastery Through Iterative Refinement The proliferation of self-created tools necessitates a robust
mechanism for their mastery; a newly generated tool is often a brittle script, not a reliable function. This is
where iterative refinement becomes essential. Frameworks like LearnAct and From Exploration to Mastery
establish a critical self-correction loop where the agent learns from its own experience(Zhao et al.l [2024b;
Qu et all 2025). This involves tackling the difficult "credit assignment" problem: determining precisely
which line of code or which parameter was responsible for a failure. To do this, the agent analyzes a rich
variety of feedback signals—including compiler errors, unexpected API return values, environmental state
changes, or even implicit signals from a user’s subsequent actions. The goal is not only to debug the tool’s
underlying code but also to refine its documentation (e.g., its docstring and argument descriptions), which
is crucial for improving the agent’s ability to understand and correctly use the tool in the future. This
refinement process also opens the door for valuable human-agent collaboration. While full autonomy is the
ultimate goal, many systems can be designed with a "human in the loop," where a human expert can provide
corrections, offer high-level suggestions, or validate a newly created tool. This collaborative approach can
significantly accelerate the mastery process and ensure that the agent’s skills align with human intentions
and safety standards. Ultimately, this self-honing process is what elevates a nascent skill into a dependable
capability, ensuring the agent’s growing skill library increases not just in quantity, but more importantly, in
quality and robustness.

Scalable Management and Selection As an agent’s mastered skill library grows into the hundreds or
thousands, it faces a "curse of abundance." The challenge shifts from creating tools to efficiently managing and
selecting from them. A large library creates a massive search space, making traditional retrieval methods
slow and inaccurate. To overcome this, ToolGen represents a fundamental paradigm shift by encoding
tools as unique tokens within the language model’s vocabulary. This elegantly reframes tool retrieval as
a generation problem, leveraging the transformer’s immense pattern-recognition capabilities to predict the
most appropriate tool as a natural continuation of its thought process(Wang et al., 20251). Beyond selecting
a single tool, advanced agents must also excel at tool composition—learning to chain multiple tools in novel
sequences to solve multi-step problems. This is a higher-order management task. Architectural approaches
like AgentSquare engage in a form of meta-learning, automatically searching the modular design space of
an agent—including its planning, memory, and tool-use components—to find an optimal configuration for
complex task execution(Shang et all 2025). As a logical endpoint to this evolutionary trend, visionary
concepts like the Darwin Godel Machine propose a framework for open-ended evolution, where the agent
can fundamentally rewrite its own core code. In this vision, the distinction between the agent and its tools
blurs, leading to a recursive cascade of self-improvement that transcends tool enhancement alone(Zhang
et al) 2025f]). In essence, this entire evolutionary path aims to establish a closed and virtuous cycle: a truly
autonomous agent that can perceive gaps in its capabilities, create novel solutions, master them through
practice, and seamlessly integrate them into a coherently managed and ever-expanding repertoire.

3.4 Architecture

The defining feature of next-generation agentic systems is their intrinsic capacity for self-improvement. This
marks a fundamental shift from systems with fixed capabilities to those that can autonomously enhance
their performance(Liu et al., 2025b)). By treating their own internal logic and collaborative structures
as optimizable components, these systems can adapt their behavior and design in response to feedback,
achieving a level of efficiency and effectiveness that static designs cannot match. This section details how
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this self-optimization is realized, first by examining improvements within single-agent systems and then by
exploring the co-evolution of complex multi-agent systems.

3.4.1 Single-Agent System Optimization

LLM-Invoking Node Optimization Optimizing a single LLM call is straightforward in isolation, but
within an agentic system, it becomes a difficult credit assignment problem, as the effect of any single change
is obscured by subsequent steps. Research addresses this by making node-level components optimizable,
following two main strategies. The first focuses on refining nodes within a fixed agentic topology. A prime
example is TextGrad (Yellamraju et al., 2024)), which, inspired by backpropagation, uses "textual gradients"
to propagate feedback from the final output backward through the workflow, guiding systematic, local
refinements at each node without altering the system’s overall structure. The second, parallel strategy
integrates this component-level optimization directly into the search for the system’s architecture itself.
Under this approach, node characteristics become tunable parameters in a larger search space. For instance,
frameworks can embed prompt engineering directly into the search loop, allowing the system to discover not
just the optimal workflow but also the most effective instruction for each agent simultaneously (Zhou et al.
2025a)). Similarly, EvoFlow (Zhang et all [2025¢) uses evolutionary algorithms to construct heterogeneous
workflows by selecting the most suitable LLM for each task from a diverse pool. This holistic strategy enables
the discovery of systems that are co-optimized for both their structure and individual agent capabilities,
effectively balancing metrics like overall performance and cost (Ye et al., [2025a)).

Autonomous-Agent Optimization Building upon the optimization of individual LLM-invoking nodes,
a more profound level of self-improvement targets the autonomous agent as a holistic entity. This evolution
proceeds along two main fronts: optimizing the agent’s high-level architectural design and enabling the agent
to directly modify its own source code. The first approach focuses on discovering the optimal agent structure.
AgentSquare (Shang et al., [2025) exemplifies this by defining a modular design space of components like
planners and memory modules, then using an evolutionary algorithm to find the most effective combination
for a given task. The second front involves agents that dynamically rewrite their own operational code. This
is seen in radical systems like the Darwin Godel Machine (Zhang et al., 2025f), which recursively modifies
its own Python codebase, and AlphaEvolve (Novikov et al., |2025), which uses evolutionary coding to im-
prove specific algorithms. Similarly, Godel Agent (Yin et al., 2025) provides a self-referential framework
for agents to analyze and alter their logic. Together, these two directions (optimizing the agent’s architec-
tural “blueprint” and its functional code) demonstrate a key trend toward turning the agent’s fundamental
structure and logic into learnable components.

3.4.2 Multi-Agent System Optimization

How agents are organized and communicate within a system (its topology) fundamentally determines its ca-
pacity for solving complex problems. The field has evolved from using fixed, human-designed communication
structures to creating dynamic systems that automatically adapt their organization to a given task, allowing
them to discover and exploit the most effective collaboration patterns. This evolution is explored along two
major fronts: the optimization of static, explicit workflows and the co-evolution of dynamic, internal policies.

Agentic Workflow Optimization The optimization of agentic workflows focuses on finding the most
effective, often static, structure of communication and task delegation for a given problem. Early research
established important foundations, with studies like AutoFlow (Li et al.||2024d]) demonstrating the automated
creation of linear workflows from natural language, and GPTSwarm (Zhuge et al.,[2024) proposing a unifying
graph-based framework. Concurrently, other foundational work explored how agents could evolve by using
symbolic learning to distill their interaction experiences into an explicit, interpretable set of logical rules to
guide future decisions (Zhou et al., |2024b). This abstraction of systems into tunable components—whether
nodes, edges, or symbolic rules—was crucial. However, these early systems often lacked a formal method for
efficiently navigating the vast space of possible configurations and interactions.

The major breakthrough came when ADAS (Hu et all [2024c) and AFlow (Zhang et al.; [2024c|) formally
defined this challenge as a search and optimization problem. ADAS set a theoretical vision by framing
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system design as a search through a Turing-complete space of code-based configurations. Building on this,
AFlow made it practical by introducing reusable operators that represent common agentic patterns and by
employing Monte Carlo Tree Search (MCTS) to efficiently navigate the enormous design space. Together,
these works established a core methodology for treating agent system design as a tractable optimization
problem, proving that automatically discovered workflows could outperform human-designed ones.

Following this formalization, research rapidly diversified toward creating customized agent systems for each
specific query. Two primary strategies emerged: search-based and learning-based generation. Search-based
methods, such as MaAS (Zhang et al., 2025d]), create a "supernet" of potential architectures and then
sample a specialized system from it. In parallel, learning-based methods train models to generate effective
topologies directly. ScoreFlow (Wang et al., 2025])), for instance, trains a generator using a novel preference
optimization method, while FlowReasoner (Gao et all [2025) uses reinforcement learning to train a meta-
agent that constructs a bespoke workflow on the fly. This line of query-specific generation continues to be
an active area of research (Ye et all 2025b} Ke et al.l 2025)). Furthermore, it is important to note that this
process is not limited to the topology alone; many of these frameworks also perform node-level optimization
in tandem, such as co-optimizing prompts or selecting heterogeneous models as an integral part of the
architectural generation process (Zhang et al., |2024c; |Zhou et al. 2025a; [Zhang et al., [2025c).

A key challenge for all search and learning methods is the computational cost of evaluating each potential
workflow (Shang et al., 2025). To address this, researchers have developed lightweight prediction models.
Agentic Predictor (Trirat et al.,|2025) is a prime example, training a model to accurately estimate a workflow’s
performance based on its structural and semantic features without a full execution. By providing a fast and
inexpensive evaluation proxy, these predictors significantly accelerate the optimization process, making the
exploration of vast design spaces feasible (Zhang et al.l [20250)).

Multi-Autonomous-Agent Optimization Distinct from optimizing a system’s explicit workflow struc-
ture, this line of research focuses on how multiple autonomous agents can co-evolve their internal behavioral
policies through interaction. This approach enables emergent capabilities like coordination, task delegation,
and beneficial competition. For instance, ReMA (Wan et all 2025) uses multi-agent reinforcement learning
(MARL) to collaboratively train a high-level meta-thinker and a low-level executor, significantly improv-
ing performance on reasoning benchmarks. Building on this, GiGPO (Feng et al.| 2025b|) enhances MARL
training by aggregating trajectories to provide more precise credit assignment, boosting success rates on
long-horizon tasks. To support this direction, platforms like MARTI (Liao et al.l [2025) provide open-source
infrastructure for orchestrating and scaling the training of these language-model collectives. Collectively,
these studies underscore multi-agent reinforcement learning as a promising route for cultivating group-level
competencies unattainable by individual agents alone.

4 When to Evolve

The temporal dimension of self-evolution in LLM-based agents mainly concerns the relationship between
learning processes and task execution. Therefore, the second key aspect of a self-evolving agent is identifying
the evolving timing, i.e., at which stage the self-evolving strategy f is invoked and applied to the agent system.
To this end, we propose a taxonomy that distinguishes between two temporal modes of self-evolution: Intra-
test-time self-evolution and inter-test-time self-evolution.

Intra-test-time self-evolution refers to adaptive processes that occur during task execution, where agents
recognize their limitations on a specific problem and initiate targeted learning mechanisms to enhance their
capabilities in real-time (Xi et all 2024} Bi et al., |2024). This mode of evolution is characterized by its
immediate coupling with the task at hand: the agent improves its problem-solving abilities for a specific
problem encountered, creating a dynamic interplay between performance and adaptation.

Inter-test-time self-evolution refers to learning processes that occur between task completions, leveraging
accumulated experiences to improve future performance. This category encompasses diverse methodological
approaches: offline learning paradigms that extract knowledge from pre-collected datasets through iterative
refinement (Zelikman et al., 2022} [2024), and online learning paradigms that continuously adapt based on
streaming interaction data (Qi et all 2024} |Qiu et al., |2025; |Qian et al., [2024b; [Wang et al., 2025k)).
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Figure 5: An overview of when to evolve. The top pathway illustrates intra-test-time self-evolution, where
adaptation (e.g., variant generation, verification, and policy update) occurs within task execution. The bot-
tom pathway depicts inter-test-time self-evolution, where learning happens retrospectively through rollout,
trajectory analysis, and policy updates.

The implementation of self-evolution across these temporal phases leverages three fundamental learning
paradigms in LLMs: in-context learning (ICL) (Dong et al. [2022} |[Min et al., [2021; |Wies et al., 2023), which
adapts behavior through contextual examples without modifying parameters; supervised fine-tuning (SFT),
which updates model weights through gradient-based optimization on labeled data (Devlin et al., 2018} Shen),
2024; [Dong et all |2023); and reinforcement learning (RL), which shapes behavior through reward-driven
policy optimization (Kaelbling et all [1996; [Sun et al., |2024a; |Zhang et al.l 2025j). While these learning
paradigms remain conceptually consistent across temporal contexts, their instantiation differs in terms of
data availability and learning objectives:

Intra-test-time is characterized by its online nature: learning data emerges dynamically during task execution,
with optimization directly targeting performance enhancement on the immediate problem instance. This
real-time coupling necessitates rapid adaptation mechanisms that can process learning data and feedback
signals and modify behavior within the temporal constraints of active task-solving. On the other hand,
inter-test-time is characterized by its retrospective nature: learning algorithms operate on historical data,
whether from curated datasets or accumulated behavioral trajectories, with optimization objectives oriented
toward improving expected performance across the task distribution rather than maximizing success on any
specific problem instance. This temporal decoupling enables more sophisticated learning procedures that can
identify cross-task patterns, consolidate diverse experiences, and develop generalizable capabilities without
the immediacy constraints of active task execution.

4.1 Intra-Test-Time Self-Evolution

In intra-test-time self-evolution, agents engage in self-improvement processes that are intrinsically coupled
with solving the immediate task at hand. The distinguishing characteristic of this temporal phase is its
synchronous nature: feedback signals are generated and processed during task execution, with optimization
objectives specifically targeted at improving performance on the current problem instance rather than gen-
eralizing to future tasks. Here, we introduce how the three learning paradigms are realized in this temporal
phase.

In-Context Learning Intra-test-time ICL methods leverage the model’s context window as a dynamic
memory system for immediate adaptation without parameter modification. These approaches typically em-
ploy self-reflective mechanisms where agents analyze their own performance, generate verbal critiques or
insights, and maintain these reflections in episodic memory buffers to guide subsequent decisions within the
same task context (Shinn et all 2023} [Madaan et al., 2023a)). Some methods extend beyond simple reflection
to include dynamic planning revision, where agents can modify their entire approach based on environmental
feedback, switching between action execution and plan modification as needed. For instance, AdaPlanner
(Sun et al., 2023]) decomposes tasks into manageable sub-goals and predicts environmental feedback for each.
During execution, its refiner component distinguishes between in-plan feedback (observations aligning with
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predictions) and out-of-plan feedback (deviating observations). For in-plan feedback, the refiner dynamically
queries the LLM through a specialized ask_LLM() action to parse observations and extract pertinent infor-
mation. For out-of-plan feedback, the refiner proactively revises the entire plan and resumes solving from an
intermediate point, rather than restarting from scratch. This adaptive closed-loop framework eliminates the
need for prior knowledge about feedback structures and enables more efficient decision-making. Similarly,
TrustAgent (Hua et al., [2024) employs rule-based plan revision during execution, modifying its approach
based on language feedback to evolve toward safer planning strategies. These ICL methods demonstrate how
test-time adaptation can achieve sophisticated behavioral modification without permanent model changes,
maintaining flexibility while preserving the model’s general capabilities.

Supervised Fine-Tuning. Intra-test-time SFT represents a paradigm shift where models perform imme-
diate self-modification through learned meta-adaptation strategies. Self-adaptive language modeling (Zweiger,
et al.l |2025)) exemplifies this approach by generating “self-edits”, which are meta-level instructions that can
restructure information representations, specify optimization hyperparameters, or invoke tools for data aug-
mentation and gradient computation. These self-edits trigger immediate supervised fine-tuning, resulting
in persistent weight updates that adapt the model to the current task. The key innovation lies in the
meta-learning phase, where reinforcement learning trains models to produce effective self-edits by using the
downstream performance of the updated model as the reward signal, essentially teaching models how to
teach themselves.

Reinforcement Learning. Intra-test-time RL enables models to develop new capabilities on-demand
when encountering problems beyond their current competence. LADDER (Simonds & Yoshiyamal, 2025))
demonstrates this through its test-time reinforcement learning (TTRL) mechanism: upon identifying a
particularly challenging problem, the system generates a focused set of related problem variants and conducts
intensive, targeted reinforcement learning specifically for that problem class. This approach transforms
insurmountable challenges into learning opportunities, allowing models to expand their problem-solving
repertoire during deployment rather than failing or providing suboptimal solutions. The method represents
a form of just-in-time skill acquisition, where computational resources are invested precisely when and where
they are needed most.

4.2 Inter-Test-Time Self-Evolution

Inter-test-time self-evolution represents the predominant learning process in autonomous agents, wherein
adaptation occurs following task execution rather than during it. In this temporal mode, agents complete a
given task, extract feedback signals, including explicit rewards (Gao et al., [2024)), gradients (Amaril [1993;
Bottou, 2010), and performance metrics (Ge et al., |2023), and subsequently leverage this information to
enhance their capabilities for future problem-solving. This retrospective learning process decouples task
performance from capability improvement, allowing agents to consolidate experiences, identify patterns of
success and failure, and systematically refine their behavioral policies without the computational constraints
imposed by real-time task demands.

In-Context Learning. Inter-test-time in-context learning has emerged as a widely adopted approach for
agent self-improvement. This paradigm leverages execution results and feedback from previous tasks as con-
textual information for future problem-solving. Wang et al. (Wang et al. [2024j) demonstrate this principle
by inducing workflows from agent action histories and incorporating them into the context for subsequent
tasks. The field of in-context reinforcement learning (ICRL) (Moeini et all 2025, Laskin et al., [2022; [Lee
et al., [2023) extends this concept by maintaining histories of observations and actions within the agent’s
context window. These methods exploit the hypothesis that pre-trained neural networks can implement
implicit reinforcement learning algorithms within their forward pass, processing contextual information to
adapt behavior without parameter updates (Kirsch et al., 2023). A defining characteristic of ICRL is in-
context improvement: the phenomenon whereby agent performance progressively enhances as task-relevant
information accumulates in the context, enabling sophisticated adaptation through attention mechanisms
rather than gradient-based learning.
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Supervised Fine-Tuning. Inter-test-time SFT (Chen et all 2025b)) methods establish a paradigm of
iterative self-improvement through synthetic data generation and self-evaluation. SELF (Lu et al., 2023)
pioneered meta-cognitive training, where models first acquire self-feedback and self-refinement capabilities,
then iteratively generate responses to unlabeled instructions and enhance them through self-critique. STaR
(Zelikman et al., 2022) and Quiet-STaR (Zelikman et al.| |2024)) focus on reasoning improvement through
rationalization—models attempt problems, then generate explanations for correct answers they initially failed
to solve, creating augmented training data that combines successful attempts with post-hoc reasoning. SiriuS
(Zhao et al., [2025b)) extends this to sequential problem-solving, maintaining repositories of correct solutions
while augmenting failures through multi-stage refinement involving feedback incorporation, regeneration, and
rephrasing. These methods share a core insight: models can bootstrap their own improvement by learning to
evaluate and enhance their outputs, creating high-quality training signals from initially imperfect attempts
without extensive human supervision.

Reinforcement Learning. Inter-test-time RL leverages unconstrained computational resources to op-
timize agents through extensive environmental interaction and sophisticated curriculum design. RAGEN
(Wang et al., |2025m|) and DYSTIL (Wang et al., 2025b]) employ online reinforcement learning for multi-turn
interactive tasks, continuously refining policies through on-policy learning in simulated dialogues. Learning
Like Humans (Zhang et al., |2025a)) introduces cognitive-inspired training with adaptive difficulty progression,
combining on-policy exploration with off-policy efficiency and expert demonstrations to accelerate learning.
Domain-specific applications demonstrate the versatility of inter-test-time RL: WebRL (Qi et al.| [2024)) de-
velops web navigation agents through self-evolving curricula that automatically adjust task complexity based
on performance, while DigiRL (Bai et al., 2024) enables device-control agents to master in-the-wild inter-
actions through autonomous reinforcement learning. These approaches exploit the pre-deployment phase
to engage in extensive trial-and-error learning, developing robust policies through thousands of interactions
that would be impractical during real-time deployment.

5 How to Evolve

The pursuit of self-evolution lies at the heart of building advanced, autonomous, and increasingly general
artificial intelligence. For large language models (LLMs) and their agentic extensions, the question of how to
continually, autonomously, and efficiently evolve their capabilities has become a central challenge. Therefore,
the third key aspect of a self-evolving agent is to instantiate an effective evolving strategy f, i.e., how to
transform an agent system II = (T, {¢; }, {C;}, {W;}) to its new state II' = (I, {¢}}, {C/}, {W!}). Unlike
traditional approaches that rely on static datasets or one-time supervised fine-tuning, self-evolution empha-
sizes an ongoing process where models learn from real-world interactions, actively seek feedback, self-reflect,
generate or curate new data, and adapt their strategies in response to dynamic environments. This contin-
uous evolution is not merely a matter of scaling up data or computation; it requires the agent to acquire
a spectrum of meta-capabilities, including self-correction, autonomous data generation, knowledge transfer,
and multi-agent collaboration. As a result, the landscape of self-evolution has become increasingly rich and
multi-faceted, with each methodological branch exploring different axes of feedback, learning paradigms,
data sources, and evolutionary scales.

This chapter aims to systematically map and analyze the major families of self-evolution methods, providing a
unified framework for understanding their principles, mechanisms, and interactions. We begin with reward-
based evolution, which centers on the design of reward signals—ranging from natural language feedback
and internal confidence metrics to external or implicit signals—to guide iterative self-improvement. Next, we
examine imitation and demonstration learning, where agents improve by learning from high-quality ex-
emplars, either self-generated or provided by other agents or external sources. This paradigm is particularly
powerful when demonstrations are abundant or can be autonomously synthesized, and it has driven signif-
icant progress in both reasoning and multimodal domains. Finally, we introduce population-based and
evolutionary methods, which draw inspiration from biological evolution and collective intelligence. These
approaches maintain populations of agent variants or collaborating agents, leveraging mechanisms such as
selection, mutation, crossover, and competition to explore the solution space in parallel, foster diversity, and
enable the emergence of novel strategies or architectural innovations.
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Table 3: Overview of Reward-based, Imitation/Demonstration, and Population-based Learning Methods for
Self-Evolving Agents. This table categorizes key approaches based on the following criteria: (1) Feedback
Type: the type of feedback used, including language-based rationales and numerical rewards. (2) Feedback
Source: the origin of the feedback, either internal (model-generated) or external (provided externally). (3)
Learning Method: the learning paradigm applied, such as in-context learning (ICL), supervised fine-tuning
(SFT), reinforcement learning (RL), and evolutionary algorithms; (4) Updated Components: which parts
of the model are updated, either full parameters or a subset of the model. (5) Update Timing: the stage
during the agent’s evolution when updates are applied, such as pre-training, pre-test, or test-time.

Method

Feedback Type

Feedback Source

Learning Method
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Update Timing

Reward-based Evolution Methods
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EGSR(Zhang et al.
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language
language
language
language
language
numerical
numerical
language
language
numerical
numerical
numerical
language
numerical
language
language
language + numerical
numerical
language + numerical
numerical
numerical
numerical
numerical
numerical
numerical
numerical
numerical
numerical
numerical
language
language
numerical
numerical
numerical
numerical
language
language
language
language
language
language
numerical
numerical
language
language

internal
external + internal
external
external + internal
internal
external
external
external
internal
internal
internal
internal
external
external
external
external
external + internal
external
external + internal
external
external
external
internal
external + internal
external
external
external
external
external
internal
internal
external
external
external
external
external
external
external
external
external
external
external
external
external
external

ICL
ICL
ICL
SFT
ICL
RL
RL
ICL
RL
RL
RL
RL
ICL
ICL
ICL
ICL
SFT+RL
RL
RL
RL
RL
RL
RL
RL
RL
SFT+RL
RL
RL
RL
SFT
SFT
SFT
SFT
SFT+RL
SFT+RL
ICL
ICL
SFT+RL
RL
SFT+RL
SFT
SFT
SFT
RL
RL

context
context
context
full params
context
full params
full params
context
full params
full params
full params
full params
context
codebase(tools, workflows, prompts)
context
context
full params
full params
full params
full params
full params
full params
full params
full params
full params
full params
full params
full params
full params
full params
full params
full params
partial params
full params
full params
context
context
full params
partial params
full params
full params
full params
full params
full params
full params

test-time
test-time
test-time
pre-test time + test-time
test-time
pre-test time
pre-test time
pre-test time / test-time
pre-test time
pre-test time
pre-test time
pre-test time
test-time
test-time
test-time
test-time
pre-test time + test-time
pre-test time
pre-test time
pre-test time
pre-test time
test-time
pre-test time
test-time
pre-test time
pre-test time
pre-test time
pre-test time
pre-test time
pre-test time
pre-test time
pre-test time
pre-test time
pre-test time
pre-test time
test-time
test-time
pre-test time
pre-test time
pre-test time
pre-test time
pre-test time
pre-test time
pre-test time + test-time
pre-test time

Imitation and Demonstration Learning Methods

language + numerical internal SFT full params pre-test time
numerical external + internal SFT + RL partial params pre-test time
numerical internal SFT full params pre-test time
language internal RL + SFT partial params pre-test time
language external SFT full params pre-training
language + numerical internal SFT full params pre-test time
language internal SFT not specified pre-test time
language + numerical  internal + external SFT full params pre-test time
numerical internal / / test-time
pulation-based and Evol y Methods
DGM(Zhang numerical external ICL codebase (tools, workflows, prompts) test-time
EvoMAC(Hu et al.| language external ICL team composition, workflow, prompts test-time
SPIN( 1 language internal RL full params pre-test time
GENOM! lwlﬂm numerical external Evolution Alg. partial params pre-test time
SPC 2025¢] numerical internal SFT+RL critic params pre-test time + test-time
Puppeteer numerical external RL planner policy pre-test time / between tasks
MedAgentSlm language external ICL context (knowledge base) test-time
STL |E{|2E language + numerical internal SFT value model pre-test time
MDTeam en et al.||202 language external ICL context (knowledge base) test-time

5.1 Reward-based Self-Evolution

The capacity for self-improvement is a cornerstone of advanced intelligence. In the context of Large Language
Models (LLMs), this manifests as a dynamic process of reward-driven evolution, where models iteratively
learn from their own outputs and interactions to refine their capabilities. The design of the reward signal,
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Figure 6: Overview of reward-based self-evolution strategies, categorized into textual, implicit, internal, and
external rewards, each associated with distinct feedback sources and mechanisms.

which serves as the guiding feedback, is crucial; it determines the nature, efficiency, and effectiveness of
the learning process. In this section, we systematically review the main methodologies for reward design,
categorized by the nature of the feedback: textual feedback, internal confidence, external rewards, and
implicit rewards.

Textual Feedback Textual Feedback leverages the native modality of LLMs—natural language—to pro-
vide detailed, interpretable instructions for refinement. Unlike scalar rewards, textual feedback encapsulates
nuanced critiques and actionable suggestions. Recent frameworks such as Reflexion (Shinn et al., [2023)),
AdaPlanner (Sun et al.l 2023]), AgentS2 (Agashe et al., |2025), SELF (Lu et al., |2023), Self-Refine (Madaan
et al., 2023a), SCoRe (Kumar et all [2024), PAG (Jiang et al., [2025b), and TextGrad (Yellamraju et al.,
2024) exemplify this direction. For instance, Reflexion proposes “verbal reinforcement learning,” where
agents reflect in natural language on their past trials, storing these reflections as episodic memory to guide
future decisions. AdaPlanner enables closed-loop adaptive planning by allowing LLM agents to revise their
plans based on both in-plan and out-of-plan feedback, while also mitigating hallucination via code-style
prompts and leveraging skill discovery. Self-Refine and SELF further explore iterative self-feedback and self-
correction, demonstrating that even state-of-the-art models can be improved via multi-turn, language-based
self-critique, without additional supervised data or external reinforcement. Such frameworks highlight the
power of language as a reward channel, enabling nuanced, flexible, and sample-efficient self-improvement.

Internal Rewards Internal Confidence-based rewards move away from external signals and instead exploit
internal metrics such as the model’s probability estimates or certainty. This paradigm leverages the model’s
intrinsic understanding to guide improvement without relying on external supervision. Methods such as
Confidence-Informed Self-Consistency (CISC) (Taubenfeld et al., |2025)), Self-Ensemble (Xu et al., 2025b),
Self-Rewarding Self-Improving (Simonds et al., 2025), scalable best-of-N selection via self-certainty (Kang
et al. |2025)), and Self-Rewarding Language Models (Yuan et all [2025a)) allow models to self-evaluate and
calibrate their responses based on internal confidence metrics. For example, CISC weights reasoning paths
by confidence scores to improve both accuracy and computational efficiency, effectively filtering high-quality
solutions from multiple candidates. Self-Ensemble mitigates confidence distortion by dividing choices into
smaller, more manageable groups and aggregating predictions to reduce overconfidence bias. Self-Rewarding
Language Models demonstrate that models can act as their own reward function, generating training data
through self-instruction and self-evaluation cycles. These approaches can reduce reliance on human labels and
external evaluators, enabling scalable and autonomous self-improvement loops that can operate continuously
without human intervention.

External Rewards External Rewards are derived from sources outside the model, such as the environ-
ment, majority voting, or explicit rules. Majority voting (Shafayat et al.l |2025; [Wei et al., 2025b; [Zhang
et al.l |2025¢g)) uses consensus among multiple model outputs as a proxy for correctness, providing a self-
generated but grounded reward signal. Environment feedback, including tool-based signals, is central to
agentic LLM research (e.g., SWE-Dev (Du et all [2025), SICA (Robeyns et al.| 2025al), Feedback Friction
(Jiang et al., 2025a)), USEagent (Applis et al., 2025), DYSTIL (Wang et al., |2025b))), where agents learn
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through direct interaction with real-world environments and tools. Rule-based rewards (Wang et al., |2025f;
Wang & Xiong| 2025; [Zhang et al.l 2025a; |Simonds & Yoshiyamal, 2025 [Wang et al.l 2025m} [Liu et al.|
2025d)) use explicit constraints or logical rules as verifiable signals, particularly effective in the domains of
mathematical reasoning, game play, and structured problem solving. These methods offer objective, reliable
supervision but may require significant engineering or be limited in expressiveness.

Implicit Rewards Implicit Reward frameworks hypothesize that LLMs can learn from feedback signals
even when not explicitly labeled as rewards. For instance, “Reward Is Enough” (Song et al., 2025|) demon-
strates that LLMs can perform in-context reinforcement learning using simple scalar signals embedded in the
context window, improving their responses over rounds without explicit RL fine-tuning or supervision. This
reveals an inherent capacity for models to interpret and learn from implicit feedback cues present in their
input context. Recent work has expanded this concept by showing that LLMs inherently encode reward-
like signals through their standard training objectives. Endogenous reward (Li et al.l 2025e) reveal that
standard next-token prediction implicitly learns a generalist reward function, which can be extracted from
model logits without additional training. Moreover, ImPlicit Self-ImprovemenT (PIT) framework (Wang
et al., 2024i) implicitly learns the improvement goal from human preference data without extra human ef-
forts by maximizing the quality gap of the response conditioned on a reference response. Unlike rule-based
or environment-derived external rewards, implicit reward methods offer unique advantages by discovering
and utilizing reward signals that are inherently present in language modeling.

5.2 Imitation and Demonstration Learning

Imitation and demonstration learning is a paradigm in which self-evolving agents improve their capabilities
by learning from high-quality exemplars, which may be generated by the agents themselves, other agents,
or external sources. Unlike reward-based methods that rely on explicit reward signals, imitation-based
approaches focus on reproducing and refining successful behavioral patterns through iterative self-training
and bootstrapping mechanisms. This approach is particularly effective when high-quality demonstrations
are available or can be autonomously generated, allowing agents to bootstrap their capabilities with minimal
external supervision.

5.2.1 Self-Generated Demonstration Learning

Self-generated demonstration learning involves agents creating their own training data through iterative
refinement processes, where the models learn to improve by generating and selecting high-quality examples
from their own outputs.

Bootstrapping Reasoning Capabilities. [Zelikman et al.| (2022)) introduces the foundational framework
for self-generated demonstration learning, enabling language models to bootstrap their reasoning capabilities
through iterative self-training. This process involves generating reasoning chains for problems, fine-tuning on
correct solutions, and repeating this cycle to progressively improve performance without the need for ground-
truth reasoning paths. Building on this framework, recent advancements have refined the bootstrapping
process through more sophisticated training strategies. For instance, [Hosseini et al. (2024)) proposes a
verifier-guided self-training approach, where separate verifier models assess the quality of generated reasoning
chains before they are incorporated into the training data, enhancing the reliability of self-improvement.
Additionally, [Koh et al.| (2025) introduces adaptive data sampling strategies that dynamically adjust the
composition of training data based on model performance across various reasoning tasks, thereby mitigating
overfitting to specific problem types.

Multimodal Self-Training. Extending self-training to multimodal domains presents unique challenges in
generating high-quality demonstrations that span both visual and textual modalities. Deng et al.| (2024)
demonstrates how vision-language models can improve iteratively by training on their own generated image
descriptions and visual reasoning chains. The approach leverages the model’s existing visual understanding to
generate detailed image descriptions, which are subsequently used to fine-tune the model’s visual perception
in a bootstrapping manner. [Zhao et al.| (2024c) builds on this concept by empowering multimodal large
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language models to serve as powerful data generators, producing diverse training examples across different
modalities and tasks through advanced prompt engineering and quality filtering mechanisms.

5.2.2 Cross-Agent Demonstration Learning

Cross-agent demonstration learning involves agents learning from demonstrations provided by other agents,
either within the same system or from external sources, enabling knowledge transfer and collaborative im-
provement.

Multi-Agent Bootstrapped Reasoning. [Zhao et al. (2025b) presents a framework for multi-agent sys-
tems to learn from each other’s successful demonstrations through bootstrapped reasoning. The system
maintains an experience library containing successful interaction trajectories generated by different agents,
facilitating efficient knowledge sharing and collaborative improvement. Each agent can leverage the collec-
tive experience of the entire system, thereby accelerating the learning process and enabling the discovery
of diverse solution strategies. This framework illustrates how agents can specialize in different aspects of
complex tasks while benefiting from the accumulated knowledge of the entire system.

Domain-Specific Demonstration Learning. Domain-specific applications of demonstration learning
have proven especially effective in specialized fields where expert knowledge can be effectively transferred
through demonstrations. In recommendation systems, techniques such as self-optimized fine-tuning (Tang
et al., 2025)) enable LLM-based recommender systems to learn from their own successful recommendation
patterns, creating a feedback loop that enhances personalization over time. The system generates high-
quality recommendation demonstrations from successful user interactions and uses these to fine-tune the
underlying language model, ultimately leading to more accurate and personalized recommendations.

5.2.3 Hybrid Demonstration Learning

Hybrid demonstration learning combines both self-generated and external demonstrations to create more
robust and diverse training regimens that leverage the strengths of each approach.

Recursive Self-Improvement. (Qu et al.|(2024b) demonstrates how agents can be trained to systematically
improve their behavior through structured self-reflection and demonstration generation. This approach
enables language model agents to introspect on their reasoning processes, identify areas for improvement,
and generate corrective demonstrations to address these weaknesses. This recursive process establishes a
continuous improvement loop, where agents become increasingly skilled at self-diagnosis and self-correction,
leading to more robust and adaptable behavior.

Confidence-Guided Demonstration Selection. Recent developments have focused on more sophisti-
cated mechanisms for selecting high-quality demonstrations from both self-generated and external sources.
Confidence-based approaches (Li et al., [2024b) utilize the model’s uncertainty estimates to determine which
demonstrations are most likely to contribute positively to learning, filtering out potentially detrimental or
low-quality examples. This method addresses a critical challenge in demonstration learning: poor-quality
demonstrations can degrade performance. By ensuring that only high-confidence, high-quality examples are
used for training, this approach helps to maintain the integrity of the learning process.

The effectiveness of imitation and demonstration learning approaches is highly dependent on the quality
and diversity of the available demonstrations. While these methods can yield impressive results when high-
quality exemplars are present, they face challenges in domains where good demonstrations are scarce or
where the optimal behavior is not well-represented in the available data. Future research directions include
developing more sophisticated demonstration selection and generation strategies, improving the robustness
of learning from imperfect demonstrations, and creating better mechanisms for combining demonstrations
from multiple sources.

5.3 Population-based and Evolutionary Methods

Population-based and evolutionary methods represent a fundamentally different paradigm for agent evolution
compared to the reward-based and imitation-based approaches discussed in previous sections. While reward-
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based methods typically optimize individual agents through iterative reward signals and imitation learning
relies on learning from demonstrations, population-based methods draw inspiration from biological evolution
and collective intelligence. These approaches maintain multiple agent variants simultaneously, allowing for
parallel exploration of the solution space and the emergence of diverse capabilities through mechanisms such
as selection, mutation, crossover, and competitive interaction (Zhang et al. 2025n). This enables broader
search coverage and the discovery of novel solutions that might be missed by gradient-based optimization.
This approach is particularly valuable when the solution space is complex, multimodal, or when the optimal
strategy requires fundamental architectural changes rather than parameter fine-tuning.

5.3.1 Single Agent Evolution

Single-agent evolutionary approaches focus on evolving individual agents through population-based mecha-
nisms, where multiple variants of an agent compete and evolve over time. These methods can be broadly
categorized into two main paradigms: learning from evolution and self-play from multiple rollouts.

Learning from Evolution. This paradigm draws directly from biological evolution, maintaining pop-
ulations of agent variants and applying evolutionary operators to discover improved capabilities. The
Darwin Godel Machine (DGM) (Zhang et al.| [2025f) exemplifies this approach through open-ended evo-
lution of self-improving agents that maintain an archive of all historical versions, enabling branching from
any past "species" rather than linear optimization. The system achieves self-referential improvement by
allowing agents to directly modify their own Python codebase, with evolution driven by empirical perfor-
mance on coding benchmarks and parent selection balancing performance scores with novelty rewards for
diverse exploration. Complementing this code-level evolution, the Nature-Inspired Population-Based Evo-
lution (GENOME) framework (Zhang et al.l 2025n) directly applies genetic algorithms to language model
parameter evolution, maintaining populations and using crossover, mutation, and selection operators on
model weights. GENOME+ extends this with particle swarm optimization concepts, adding inheritance
mechanisms and ensemble methods that demonstrate gradient-free evolutionary optimization can effectively
improve model capabilities through parameter space exploration.

Self-Play from Multiple Rollouts. This paradigm focuses on agents improving through iterative self-
competition and rollout-based learning, where agents generate multiple trajectories and learn from their own
exploration. Self-Play Fine-Tuning (SPIN) (Chen et al., 2024f) establishes the foundation by having current
models compete against previous versions, creating evolutionary pressure where only improving strategies
survive without external annotations. SPC (Chen et al., |2025¢) advances this through sophisticated adver-
sarial co-evolution, where a "sneaky generator" learns to create deceptive errors while a "step critic" evolves
to detect increasingly subtle mistakes, using automated validation to sustain improvement without human
step-level annotations. STL (Mendes & Ritter, |2025|) demonstrates self-teaching evolution through iterative
lookahead search, where value models generate training data from their own exploratory rollouts, combin-
ing numerical value learning with natural language reasoning chains to bootstrap continuous improvement.
These approaches share the principle of using agents’ own generated experiences as learning signals, creating
self-sustaining improvement cycles that evolve without external supervision.

5.3.2 Multi-Agent Evolution

Multi-agent evolutionary methods extend population-based approaches to evolving entire teams or networks
of agents, focusing on optimizing collective behavior, coordination strategies, and collaborative architectures.
These approaches can be categorized into two main paradigms based on their evolution mechanisms: System
Architecture Evolution and Knowledge-Based Evolution.

System Architecture Evolution. This paradigm focuses on evolving the structural and coordination
aspects of multi-agent systems, including team composition, orchestration strategies, and workflow opti-
mization. EvoMAC (Hu et al. [2024d)) introduces a framework that mimics neural network training for
multi-agent systems, implementing "textual backpropagation" where compilation errors and test failures
serve as loss signals to drive iterative modifications of agent team composition and individual prompts. A
specialized "updating team" analyzes textual feedback to identify problematic agents and generate modifica-
tion instructions, effectively implementing gradient-based optimization in the space of agent configurations

22



Under review as submission to TMLR

Agent Evolution

Offline Learning Online Learning
Learning Paradigm 5 ] .
{% Data ﬁv,:mering Ho' Model Agent Fo Environment
5 Generation Fine-tuning
~ | -
Policy Consistency On-policy Evolution Off-policy Evolution
—_— v -
' o e Replay
|¢ m® — Env — Traj Human Demos —>‘ Buffer
Other agents ——
=,

Process-based Reward Hybrid Reward Outcome-based Reward
Reward Granularity

Step 1 Step 2 Step 3 Outcome

Figure 7: Illustration of cross-cutting evolutionary dimensions in agent self-evolution, structured along
three key axes: learning paradigm (offline/online), policy consistency (on/off-policy), and reward granu-
larity (process-based, outcome-based, and hybrid). These dimensions jointly characterize how autonomous
agents generate data, interact with environments, adapt policies, and receive feedback, providing a struc-
tured lens for analyzing reward-based, imitation-based, and population-based evolution strategies.

rather than model parameters. Building on this structural evolution concept, Puppeteer (Dang et al.l [2025)
takes a different approach by focusing on coordination strategy evolution rather than team composition
changes. The system employs a centralized orchestrator that evolves its decision policy through reinforce-
ment learning, dynamically selecting which agents to activate at each step while balancing task performance
with computational cost. This "puppeteer-puppet" paradigm demonstrates how architectural evolution can
occur at the coordination level, discovering efficient collaboration patterns and emergent behaviors such as
tighter coordination among core agents and sophisticated cyclic interaction patterns.

Knowledge-Based Evolution. This paradigm emphasizes evolving the collective knowledge and expe-
rience of multi-agent teams through memory accumulation and case-based learning, primarily operating
through in-context learning or in-context-like adaptation rather than parameter updates. MDTeamGPT
(Chen et al., 2025¢) establishes the foundation for this approach through a dual knowledge base system, im-
plementing CorrectKB for storing successful cases and ChainKB for capturing failure reflections, enabling the
system to learn from both successes and mistakes through structured case retrieval and reasoning enhance-
ment. Extending this medical consultation framework, MedAgentSim (Almansoori et all 2025b) demon-
strates how such knowledge-based evolution can be applied to real-world diagnostic scenarios, accumulating
experience from patient interactions and using retrieval-augmented generation to improve consultation qual-
ity over time. PiFlow (Pu et al.,|2025) applies this paradigm to scientific discovery, maintaining a trajectory
of principle-outcome pairs and using them to steer hypothesis generation through information-theoretical
optimization.

5.4 Cross-cutting Evolutionary Dimensions

Agent self-evolution is a multifaceted process characterized by a number of cross-cutting dimensions that
shape how agents learn, adapt, and improve over time. Beyond any single learning algorithm or supervision
signal, these dimensions define the core principles underlying the design and analysis of autonomous agents.
In this section, we systematically compare the major families of self-evolution methods—reward-based,
imitation/demonstration-based, and population-based—along several key axes, such as learning paradigm
(online vs. offline), policy consistency (on-policy vs. off-policy), and reward granularity (process-based,
outcome-based, or hybrid). We further highlight additional dimensions, including feedback types, data
sources, sample efficiency, stability, and scalability, as summarized in Table[d] This comprehensive compari-
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Table 4: Comparison of self-evolution method families along key dimensions.

Dimension

Reward-based

Imitation/Demonstrat

Population-based

Feedback Type

Data Source

Reward Granularity

Online/Offline

On/Off-policy

Sample Efficiency
Stability

Scalability

Scalar reward, natural
language, confidence, ex-
ternal signals
Self-generated, environ-
ment, external rules
Outcome/process/hybrid
(flexible)

Both (reward learning,
RL, DPO, SFT)

Both (DPO, Reflexion,
GRPO)

Moderate (depends on
reward sparsity)
Sensitive to reward de-
sign

Good with automation

Demonstration trajecto-
ries, exemplars, ratio-
nales

Self-generated or other
agents, humans
Usually
come/process
demo steps)
Typically offline, some-
times online demo min-
ing

Primarily off-policy, but
online variants can be
on-policy

High (if demo quality is
high)

Sensitive to demo qual-
ity /diversity

Limited by demo collec-
tion

out-
(via

Fitness scores, task suc-
cess, competitive signals

Population generations,
multi-agent systems

Often outcome-level,
sometimes process via
competition

Online  evolution or

batch population up-
dates

Off-policy (population);
self-play is on-policy

Usually low (needs many

trials)

Sensitive to population
size/diversity

High  but resource-
intensive

son provides a unified perspective for understanding the strengths, limitations, and design trade-offs inherent
in different approaches to agent evolution.

5.4.1 Online and Offline Learning

Another fundamental dimension in the design of self-evolving agents is the learning paradigm, which can be
broadly categorized as either offline or online. This distinction depends on whether the agent’s evolutionary
updates are performed on a static, pre-collected dataset of experiences (offline) or through continuous, direct
interaction with a live environment (online).

Offline Learning In the offline learning paradigm, the learning phase is decoupled from live task execution.
The offline process typically involves cycles of offline data generation, filtering, and model fine-tuning, focus-
ing on building a powerful and generalist foundational model before deployment. A primary strategy in this
domain is LLM bootstrapping, where a model enhances its own capabilities using its self-generated content.
For example, Self-Instruct(Wang et al.2022)) shows how a language model can bootstrap its own instruction-
following ability by generating new instructions, paired with its own responses, creating a synthetic dataset
for fine-tuning. Building on this, WizardLM(Xu et al.| [2024a)) demonstrates how to progressively evolve the
complexity of these self-generated instructions, pushing the model’s capabilities on more challenging tasks.
In the context of GUI and Web agents, offline learning often involves leveraging pre-collected high-quality
trajectories for supervised fine-tuning (SFT). OS-Genesis(Sun et al.|2024b) introduced a reverse task synthe-
sis method for automatic trajectory creation. Similarly, UI-Genie(Xiao et al.,|2025|) employs a unified reward
model for trajectory evaluation and a self-improving loop to generate high-quality trajectories iteratively.
Both approaches focus on curating a rich SFT dataset to enhance the agent’s capabilities to solve complex
tasks. Beyond SFT, offline methods also incorporate reinforcement learning performed on a static dataset of
agent-environment interactions. For example, GUI-R1(Luo et all 2025b) and InfiGUI-R1(Liu et al., 2025¢)
utilize rule-based rewards and apply Rl-style(Guo et al., [2025) training on offline GUI datasets.

Online Learning In contrast, online learning enables an agent to learn and adapt continuously while it
interacts with a live or simulated environment. Feedback from each action is used to update the agent’s policy,
plan, or knowledge base in real-time. This allows for greater adaptability to dynamic or unseen situations.
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Some agents evolve online not by updating their model weights, but by refining their plans and skill libraries
on the fly. For example, Voyager(Wang et al., [2023al) presents an LLM-powered agent that learns to play
Minecraft by continuously exploring, generating its own curriculum of tasks, and building a persistent skill
library from direct experience. AdaPlanner(Sun et al., |2023) focuses on adapting its plan within a task;
it generates an initial plan, receives feedback from the environment, and refines the plan online. Similarly,
SwiftSage(Lin et al.l |2023) operates with a fast-and-slow thinking process, where it can reflect on failures of
its fast, intuitive mode and switch to a more deliberate, tool-using slow mode, adapting its strategy online
based on task difficulty. Reinforcement Learning serves as a fundamental mechanism for online learning,
enabling agents to learn from environmental reward signals. DigiRL(Bai et al., |2024) demonstrates how to
train device-control agents in the wild using autonomous RL, while DistRL(Wang et al. |2024g)) proposes
an asynchronous distributed framework to make such on-device training feasible. MobileGUI-RL(Shi et al.|
2025b)) addresses the specific challenges of training GUI agents in online mobile environments by introducing
a synthetic task generation pipeline combined with group relative policy optimization (GRPO) through
trajectory-aware rewards.

5.4.2 On-policy and Off-policy Learning

While the previous section examined the timing of data collection and learning (online vs offline), this section
focuses on the policy consistency aspect of agent evolution - specifically, whether agents learn from experi-
ences generated by the same policy they are trying to improve (on-policy) or from experiences generated by
different policies (off-policy). This distinction is crucial for understanding how agents utilize their experien-
tial data and manage the trade-offs between learning stability and sample efficiency during the evolutionary
process.

On-policy Learning. On-policy approaches require agents to learn exclusively from experiences generated
by their current policy, ensuring policy consistency but often at the cost of sample efficiency. Reflexion
(Shinn et al., [2023) exemplifies this approach through its iterative self-reflection mechanism. The agent
generates responses using its current policy, receives feedback on failures, and immediately incorporates this
feedback to update its reasoning process for the next iteration. GRPO (Shao et al. |2024b) and DAPO
(Yu et al., 2025 continue this path and show the effectiveness of multiple rollouts. The agent always
learns from its current behavior, maintaining strict policy consistency. In agent settings, on-policy methods
provide excellent learning stability and avoid distribution mismatch issues that plague off-policy methods.
However, they suffer from low sample efficiency, as each policy update requires fresh data collection, making
them computationally expensive for complex multi-step reasoning or tool use scenarios where generating
high-quality trajectories is costly.

Off-policy Learning. Off-policy approaches allow agents to learn from experiences generated by different
policies, including previous versions, other agents, or human demonstrations, significantly improving sample
efficiency at the cost of potential distribution mismatch. [Yuan et al. demonstrates a sophisticated off-
policy approach where model M;,; learns from preference data generated by the previous version M;.
The system handles distribution shift through DPO’s built-in KL divergence constraint with the reference
policy, preventing the new policy from deviating too far from the data-generating policy. [Yuan et al.
(2023) showcases another powerful off-policy paradigm by learning from diverse response sources—including
other models, humans, and different sampling strategies—through ranking-based supervision. The method
elegantly sidesteps distribution shift by treating alignment as a ranking problem rather than requiring policy
consistency. |[Zhao et al.| (2025b) illustrates off-policy learning in multi-agent settings, where agents learn from
an "experience library" containing successful interaction trajectories generated by previous policy versions,
enabling efficient reuse of expensive multi-agent coordination data. In agent settings, off-policy methods
excel in sample efficiency, allowing agents to leverage historical data, expert demonstrations, and cross-agent
learning. They are particularly valuable for multi-step reasoning where successful trajectories are rare and
expensive to generate, and for tool use scenarios where agents can learn from diverse execution examples
without repeated environmental interaction. However, they face challenges with distribution shift, reward
hacking (where agents exploit inconsistencies between training and deployment policies), and the need for
careful regularization to maintain training stability.
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5.4.3 Reward Granularity

Another critical choice in the reward design is its granularity, which determines at what level of detail the
agent receives its learning signal. Reward granularity ranges from coarse-grained outcome-based rewards,
which evaluate the overall task completion, to fine-grained process-based rewards that assess each step of
the agent’s trajectory. Current self-evolution frameworks adopt these varying levels of granularity to tailor
feedback mechanisms according to task complexity and the desired learning outcomes.

Outcome-based Reward Outcome-based Reward is a feedback mechanism that evaluates an agent based
on the successful completion of predefined tasks. This reward is determined solely by the final state of
the agent’s trajectory, regardless of the intermediate steps. A central challenge, particularly in dynamic
environments like web or GUI navigation, is to effectively learn from both successful trajectories and the
much more frequent failure trajectories. To address this, Direct Preference Optimization (DPO)(Rafailov
et all |2023) is designed to directly maximize the likelihood of preferred responses while minimizing the KL-
divergence with the reference policy. Similarly, RRHF (Yuan et al., [2023) employs a ranking loss approach
that aligns model probabilities of multiple responses with human preferences by ranking response probabilities
without requiring auxiliary value models. Moreover, several works have developed specialized frameworks
for agent self-evolution that are built upon outcome-based rewards. A straightforward approach is rejection
sampling finetuning, as used in AutoWebGLM (Lai et al.,|2024). This method employs a pre-designed reward
model to evaluate trajectory outcomes, identify the successful trajectories, and update the model with this
high-quality data. DigiRL(Bai et al. |2024) models the GUI navigation task as a Markov Decision Process
(MDP) and obtains a final, sparse reward at the end of an episode using a VLM-based evaluator. WebRL(Qi
et al.l 2024)) develops a robust outcome-supervised reward model (ORM) to address the feedback sparsity
inherent in dynamic web environments. The ORM evaluates task success within a self-evolving curriculum
framework, enabling agents to learn from unsuccessful attempts and progressively improve.

Process-based Reward In contrast to outcome-based rewards, which provide a single, delayed signal, the
process-based reward paradigm offers more precise and granular feedback by evaluating each step in an
agent’s trajectory. Process-supervised reward models (PRMs) have been demonstrated to be significantly
more reliable than outcome-supervised reward models (ORMs), particularly in domains requiring complex
reasoning like solving math problems(Lightman et al.l|2023|). However, obtaining such fine-grained step-level
feedback traditionally requires extensive human annotations, which are both time-consuming and expensive
to scale. To address this annotation bottleneck, Math-Shepherd(Wang et al.l |2023b) proposes an automatic
process annotation framework that utilizes Monte Carlo Tree Search (MCTS) to gather step-wise supervision
by assessing each step’s potential to derive the correct final answer. Similarly, AlphaMath(Chen et al.|
2024al) trains a value model to evaluate the step correctness in solution paths and updates both the policy
and value model through exploration and exploitation within an MCTS framework. By leveraging process-
based rewards, agents can improve their capabilities in a progressive, step-by-step manner. rStar-Math(Guan,
et all [2025) and AgentPRM (Choudhury, |2025)) both propose methods to iteratively evolve the policy and
the process reward model, generating progressively higher-quality reasoning paths without manual labels.
Agent Q(Putta et al., |2024)) integrates a step-wise verification mechanism into its MCTS process to collect
high-quality trajectories, which are then used to iteratively refine the policy via DPO training.

Hybrid Reward The hybrid methods aim to provide more comprehensive learning signals by incorporat-
ing both the clarity of final task success (outcome-based) and the granular guidance of intermediate steps
(process-based). These methods overcome the sparsity of outcome-only signals while grounding the agent’s
step-by-step reasoning in the ultimate task goal. For example, GiIGPO(Feng et al.| |2025a)) addresses the
instability of training long-horizon agents by introducing a dual-level reward mechanism. It provides an
episode-level reward based on the final success of entire trajectories, while simultaneously assigning a local-
ized, step-level reward for intermediate actions. This dual signal provides both a high-level directional goal
and low-level corrective guidance. Similarly, SPA-RL(Wang et al., 2025¢) proposes a reward decomposition
method that bridges the gap between sparse outcome signals and dense process feedback. It attributes in-
cremental progress to each step within multi-step trajectories based on the final task completion, effectively
distributing the outcome-based reward across the process steps. This approach creates dense intermediate
progress rewards that enhance reinforcement learning effectiveness while maintaining alignment with the
ultimate task objectives.
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5.5 Other Dimensions of Self-Evolution Methods

In addition to the core axes of learning paradigm, policy consistency, and reward granularity, Table
highlights several other important dimensions that differentiate self-evolution methods:

Feedback Type. The nature of feedback varies widely: reward-based methods leverage scalar rewards,
natural language signals, or model confidence; imitation methods focus on demonstration trajectories and
rationales; population-based methods use fitness scores or competitive signals. The feedback type funda-
mentally determines what information the agent uses to improve.

Data Source. Reward-based methods typically generate data through agent-environment interaction
or engineered rules, while imitation learning often relies on human or expert-generated demonstrations.
Population-based approaches draw from the collective experience of multiple agents or generations, enabling
diverse exploration but requiring significant coordination.

Sample Efficiency. Imitation learning is generally the most sample-efficient, provided high-quality demon-
strations are available, as agents can directly mimic expert behavior. Reward-based methods are moderately
efficient, with efficiency highly sensitive to reward sparsity. Population-based evolution tends to be sample-
inefficient, as it often requires evaluating a large number of agent variants through many trials.

Stability. Reward-based learning is sensitive to the quality and design of reward functions, risking re-
ward hacking or unintended behaviors. Imitation learning depends heavily on the quality and diversity
of demonstrations. Population-based methods are sensitive to population size and diversity, with small or
homogeneous populations at risk of premature convergence.

Scalability. Scalability is determined by the feasibility of data or feedback collection and the ability to
parallelize learning. Reward-based methods scale well when feedback is automated (e.g., via simulators).
Imitation learning is often bottlenecked by the cost of collecting demonstrations. Population-based ap-
proaches can scale to large compute but are highly resource-intensive.

Together, these dimensions offer a more nuanced, multidimensional view of self-evolution strategies, guiding
practitioners in selecting and designing agent learning pipelines that are best matched to the challenges of
their specific domains.

6 Where to Evolve?

Self-evolving agents have facilitated advancements across a diverse array of domains and applications.
Broadly, most of these applications can be systematically categorized into two groups: (1) general domain
evolution, where agent systems evolve to expand their capabilities across a wide variety of tasks, mostly
within the digital realm, and (2) specialized domain evolution, which evolves specifically to enhance their
proficiency within particular task domains. In essence, evolution in general-purpose assistants focuses on
transferring learned experience to a broader set of tasks, while evolution in specialized agents emphasizes
deepening expertise within a specific domain.

6.1 General Domain Evolution

The first category, general domain evolution, refers to self-evolving agents designed for general-purpose ap-
plications, particularly as versatile digital assistants. These agents progressively enhance their capabilities to
address a broad spectrum of user queries, especially in dynamic and diverse digital environments. Technically
speaking, these general assistant agent enhance their abilities primarily via three mechanisms: memory op-
timization, curriculum-driven training, and model-agent co-evolution. These mechanisms collectively enable
the agents to continuously adapt and effectively respond to increasingly complex user demands.

Memory Mechanism. The most common mechanism facilitating agent evolution is the memory mech-
anism, wherein agents summarize historical success/failure experiences (Wang et al., 2023a} [Zhang et al.l
2024f) into memory representations (Zhang et al., 2024g), anticipating that these distilled experiences will be
beneficial when addressing previously unseen tasks. For instance, Mobile-Agent-E (Wang et al., [2025k]) em-
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Figure 8: Categorization of where to evolve into two major types: General Domain Evolution, which focuses
on broad capability enhancement across diverse tasks (e.g., memory mechanisms, co-evolution, curriculum
training), and Specific Domain Evolution, which targets domain-specific expertise in areas such as coding,
GUI, finance, medical, education, and others.

ploys a long-term memory structure consisting of "Tips," which provide general guidelines, and "Shortcuts,"
representing reusable action sequences derived from past experiences. This self-evolutionary module supports
the continuous enhancement of performance on complex smartphone tasks. Another typical example is Mo-
bileSteward , which coordinates multiple app-specific Agents under a central Agent, with
specialized modules for task scheduling, execution, and evaluation. It also incorporates a memory-based self-
evolution mechanism that summarizes successful executions to improve future cross-app instruction handling.
Meanwhile, Generative Agents (Park et al.l 2023) store episodic memories of their experiences, synthesize
higher-level reflections, and condition future planning on this self-reflection. In these examples, memory
serves as the foundation that enables agents to internalize past experiences, abstract high-level patterns, and
refine their future behavior.

Model-Agent Co-Evolution. Another line of work is to perform Model-Agent Co-evolution for LLM
agents. Ul-Genie (Xiao et al., [2025) constructs a specialized image-text reward model that scores trajecto-
ries at both step and task levels. It jointly fine-tunes the agent and reward model using synthetic trajec-
tories—generated by controlled corruption and hard-negative mining—across multiple generations. WebE-
volver (Fang et al., 2025b)) introduces a co-evolving world model LLM that simulates web environments. It
generates synthetic training data by predicting next observations and enables look-ahead reasoning during
inference, which greatly improves real-web task success. Absolute Zero (Zhao et all [2025a)) co-evolves a
reasoning agent and its internal self-reward model through reinforced self-play. By adversarially generating
increasingly challenging reasoning problems and optimizing the agent using internal self-certainty as a reward
signal, the framework simultaneously updates both the agent’s policy and the self-rewarding mechanism. To-
gether, these methods demonstrate the effectiveness of co-evolving agents and auxiliary models (e.g., reward
or world models) to achieve more robust, generalizable, and scalable learning in LLM agentic systems.

Curriculum-Driven Training. Curriculum-driven training also serves as a critical mechanism for build-
ing a self-evolving general assistant. For example, WebRL uses a self-evolving curriculum:
when an agent fails, similar but manageable tasks are automatically generated. Coupled with a learned
reward model and adaptive policy updates, this yields a success rate uplift on WebArena benchmarks.
Voyager (Wang et al., [2023al) similarly leverages an automatic, bottom-up curriculum in Minecraft, where
GPT-4 proposes appropriate next tasks based on agent progress, building a growing code-based skill li-
brary through iterative prompting and environmental feedback. These approaches highlight how curriculum
learning enables agents to autonomously expand their capabilities through iterative task adaptation.
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6.2 Specialized Domain Evolution

In addition to general digital agents, self-evolving agents have also been effectively applied within specialized
domains, where their evolution is tailored to significantly enhance performance within narrower task sets.

Coding. The power of self-evolving agents extends directly to practical applications like coding, where
their ability to autonomously adapt and improve offers a transformative approach to software development.
SICA (Robeyns et all |2025a)) demonstrates that a self-improving coding agent can autonomously edit its
own codebase and improve its performance on benchmark tasks. EvoMAC (Hu et al., 2024d) introduces
a self-evolving paradigm on multi-agent collaboration networks, which automatically optimizes individual
agent prompts and multi-agent workflows, significantly improving code generation performance by over-
coming the limitations of manually designed systems. AgentCoder (Huang et al., 2024) also focuses on a
multi-agent code generation framework that self-evolves through iterative refinement. A programmer agent
continuously improves code based on feedback from a test executor agent, validated against independent
test cases from a test designer, significantly boosting effectiveness and efficiency. Zhang et al. (Zhang et al.|
2025b)) enable LLM agents to continuously evolve by filtering high-quality answers, stratifying earned expe-
riences by difficulty, and adaptively selecting demonstrations from self-generated data, leading to significant
performance improvements and the construction of ML libraries. While these instances differ in their spe-
cific mechanisms—ranging from single-agent self-editing to complex multi-agent collaborative networks and
experience-based learning—they commonly share the core principle of iterative self-improvement and au-
tonomous adaptation to enhance coding capabilities. These advancements highlight how self-evolving agents
can dramatically enhance coding efficiency and code quality by continuously learning and optimizing.

Graphical User Interfaces (GUI). Self-evolving GUI agents extend LLM capabilities from pure text
reasoning to direct manipulation of desktop, web, and mobile interfaces, where they must cope with large
discrete action spaces, heterogeneous layouts, and partial visual observability. Yuan et al. couple pixel-level
vision with self-reinforcement, enabling the agent to iteratively refine click—type grounding accuracy with-
out additional human labels (Yuan et al., |2025b). On real desktop software, the Navi agent from Win-
dowsAgentArena replays and critiques its own failure trajectories, ultimately doubling its task-completion
rate across 150 Windows challenges (Bonatti et al. 2024). For open-web automation, WebVoyager fuses
screenshot features with chain-of-thought reflection; successive self-fine-tuning raises its end-to-end success
on unseen sites from 30 % to 59 % (He et al., [2024), while ReAP adds episodic memories of past outcomes,
recovering a further 29-percentage-point margin on previously failed queries (Azam et all |2025). Beyond
RL and memory, AutoGUI continuously mines functionality annotations from live interfaces to expand a
reusable skill library each training cycle (Li et al., [2025a), and Mobile Use deploys a hierarchical self-reflection
stack that monitors, verifies, and revises smartphone actions in situ (Li et all [2025¢). Collectively, these
systems epitomize the full triad of self-evolution— what evolves (grounding modules, skill memories), when
it evolves (offline consolidation vs. online reflection), and how it evolves (reinforcement learning, synthetic
data, hierarchical monitoring)—charting a path toward universally competent interface agents.

Financial. The primary bottleneck in customizing agents for specialized domains like financial tasks lies in
efficiently constructing and integrating a domain-specific knowledge base into the agent’s learning process—a
challenge that can be effectively mitigated by incorporating self-evolving mechanisms. QuantAgent (Wang
et al., 2024d) proposed a two-layer framework that iteratively refines the agent’s responses and automatically
enhances its domain-specific knowledge base using feedback from simulated and real-world environments.
This iterative process helps the agent progressively approximate optimal behavior, reduces reliance on costly
human-curated datasets, and demonstrably improves its predictive accuracy and signal quality in trading
tasks. TradingAgents (Xiao et al., 2024) incorporates dynamic processes such as reflection, reinforcement
learning, and a feedback loop from real-world trading results, alongside collaborative debates, to continuously
refine its strategies and enhance trading performance. These developments underscore the potential of self-
evolving agents to revolutionize the financial domain by autonomously building domain expertise, adapting
to dynamic market conditions, and continuously improving decision-making and trading performance.
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Medical. Self-evolving agents have become a powerful paradigm in medical AI, where adaptability and the
ability to evolve are essential for managing the complexity and ever-changing nature of real-world clinical
practice. One of the most prominent applications is hospital-scale simulation. For example, Agent Hospi-
tal (Li et al. 2024a)) creates closed environments with LLM-driven doctors, patients, and nurses, allowing
the doctor agent to treat thousands of virtual cases. This process helps these agents autonomously refine
and evolve their diagnostic strategies without manual labeling, ultimately achieving strong performance on
USMLE-style exams. Similarly, MedAgentSim (Almansoori et al.l|2025a) integrates an LLM doctor, patient,
and tool agent. It records successful consultations as reusable trajectories and employs chain-of-thought re-
flection and consensus to drive self-evolution, improving success rates over successive interactions. Another
example is EvoPatient (Du et all |2024)) places a doctor agent and a patient agent in continuous dialogue.
With each generation, they update their memory with high-quality exchanges: the patient develops more
realistic symptom narratives, while the doctor learns to ask sharper questions. Notably, this happens with-
out explicit gradient updates or hand-crafted rewards. Reinforcement learning is also central to building
adaptive medical agents. For instance, DoctorAgent-RL (Feng et al., 2025c) models consultations as a
Markov decision process, using a reward function that scores diagnostic accuracy, coverage, and efficiency.
This guides policy-gradient updates that help the agent ask more relevant questions and reach correct di-
agnoses faster than imitation-based approaches, thus achieving self-improvement. In addition, automated
architecture-search approaches like Learning to Be a Doctor treat the workflow itself as an evolvable object,
iteratively inserting specialist sub-agents or new reasoning hops to cover observed failure modes and improve
multimodal diagnostic accuracy (Zhuang et al.,[2025). Finally, beyond clinical decision-making, self-evolving
agents have also been extended to biomedical discovery. OriGene (Zhang et al.,|2025p) functions as a virtual
disease biologist that evolves by iteratively refining its analytical process. It leverages human and experimen-
tal feedback to update core reasoning templates, adjust tool usage strategies, and refine analytical protocols.
Similarly, STELLA (Jin et al. |[2025) is a self-evolving biomedical research agent that improves over time by
distilling successful reasoning workflows into reusable templates through its Template Library and expanding
its Tool Ocean with external or newly assembled tools to meet emerging analytical needs.

Education. Self-evolving LLM agents have also found strong applications in the education domain. At the
learner level, self-evolving agents like the personalized tutor PACE (Liu et al., |2025¢) adjust their prompts
based on detailed student profiles and continually refine their questioning during conversations. Meanwhile,
an LLM-to-LLM self-play framework generates diverse tutor—student dialogues that further fine-tune the
agent, allowing its teaching strategies to evolve both during and after interactions. Another example is
MathVC (Yue et al.l |2025), which employs symbolic persona profiles for virtual students and a meta-planner
that orchestrates realistic problem-solving stages. This setup enables the agent’s conversational process to
evolve step by step toward correct solutions, closely mirroring how collaborative learning naturally unfolds.
On the instructor side, self-evolving agent systems like the professional-development platform i-vip (Yang
et al., [2025al) deploy a team of cooperating LLM agents—a coach, assessor, and feedback generator—that
critique and enhance each other’s outputs in real time. These agents adapt their explanations based on
teacher-learners’ responses and continue to evolve by incorporating expert feedback after deployment, thereby
refining their prompt strategies over time Similarly, EduPlanner (Zhang et al.l |2025l) frames lesson-plan
creation as an adversarial loop where a planner’s draft is repeatedly reviewed and refined by evaluator
and optimizer agents until it meets diverse educational goals. Similarly, SEFL (Zhang et al., |2025h) uses
teacher—student self-play to generate large sets of homework-feedback examples, which then fine-tune a
lightweight feedback model. This self-evolving process significantly improves the clarity and usefulness of
the comments. Collectively, these examples illustrate how self-evolving LLM agents can dynamically adapt
to both learners and instructors, driving more personalized, effective, and scalable educational experiences.

Others. Beyond the four major verticals discussed above, self-evolving agents demonstrate broader appli-
cability, delivering superior adaptability and performance in specialized domains where conventional agents
often fall short. For instance, Arxiv Copilot (Lin et al., 2024) learns and adapts by incorporating histor-
ical user interactions, including generated answers, research trends, and ideas, into its thought database,
enhancing its ability to provide personalized and augmented academic assistance. In a very different con-
text, Voyager (Wang et al. 2023a), an agent in the game Minecraft, excels at solving novel tasks from
scratch in new worlds through a process of self-evolution. It continually refines its task goals via an auto-
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Figure 9: Overview of evaluation angles for self-evolving agents, encompassing core Evaluation Goals and
Metrics—such as adaptivity, retention, generalization, safety, and efficiency—and a continuum of Evaluation
Paradigms spanning from static assessment to short-term adaptability and long-horizon lifelong learning
evaluation.

matic curriculum, expands its skill library, and enhances its actions using an iterative prompting mechanism
without human intervention. Transitioning to domains that require explicit strategic planning, Agents-of-
Change (Belle et al., [2025) autonomously refines prompts and rewrites code based on iterative performance
analysis and strategic research, thereby helping agents overcome inherent limitations in long-term strategic
planning and achieve consistently superior and more coherent gameplay in complex environments like Set-
tlers of Catan. Lastly, in the realm of diplomacy, Richelieu (Zhao et al.l |2024d) introduces AI diplomacy
agents that can self-evolve through their self-play mechanism, which allows the agent to augment its memory
by acquiring diverse experiences without human data, thereby enhancing its strategic planning, reflection,
and overall performance in diplomacy activities. While these diverse examples operate in distinct environ-
ments—from academic research and virtual game worlds to strategic board games and complex diplomatic
negotiations—they all share the fundamental characteristic of leveraging continuous learning, self-refinement,
and autonomous adaptation to achieve increasingly sophisticated and effective performance within their re-
spective domains. These diverse examples reinforce the versatility of self-evolving agents, showcasing their
growing potential to excel in a wide range of complex, dynamic, and human-like tasks beyond traditional
domains.

7 Evaluation of Self-evolving Agents

Evaluating self-evolving agents presents a unique set of challenges that extend beyond the traditional assess-
ment of static Al systems. Unlike conventional agents typically evaluated on a fixed set of tasks at a single
point in time, self-evolving agents are designed to continuously learn, adapt, and improve through ongoing
interaction with dynamic environments. Consequently, their evaluation must capture not only immediate
task success but also crucial aspects such as adaptation over time, knowledge accumulation and retention,
long-term generalization, and the ability to transfer learned skills across sequential or novel tasks, all while
mitigating catastrophic forgetting. This demands a fundamental shift from conventional “single-shot” as-
sessments to a longitudinal view of their growth trajectory.

7.1 Evaluation Goals and Metrics

To effectively evaluate self-evolving agents, we must move beyond traditional metrics and establish a com-
prehensive framework that captures their dynamic, adaptive, and long-term learning capabilities. A truly
capable and desirable self-evolving agent must not only learn and improve but also remember past
knowledge, transfer it to new situations, operate sustainably, and behave responsibly. Grounded in
these critical requirements for continuous and robust Al, we categorize the key evaluation goals into five core
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dimensions: Adaptivity, Retention, Generalization, Efficiency, and Safety, as illustrated in Table
Each dimension addresses a vital aspect of an agent’s self-evolutionary process, providing a holistic view of
its performance.

Adaptivity Adaptivity serves as a foundational evaluation criterion for any self-evolving agent, measuring
its ability to improve performance on in-domain tasks through experience. This dimension focuses on quan-
tifying the learning curve and the extent of performance enhancement as an agent iterates and evolves within
a specific domain. Rather than a static success rate, adaptivity is gauged over time, steps, or iterations.
Typical metrics include the Success Rate by Iteration Steps (Hu et al., 2024c; [Wang et all [2024j; Zheng
et al.,|2025b), which tracks performance in downstream tasks as a function of the agent’s interaction history.

Retention Retention is a crucial criterion for evaluating the stability of a self-evolving agent’s knowledge
base. This dimension specifically focuses on the challenge of catastrophic forgetting, a common issue in
lifelong learning where new knowledge acquisition erodes previously learned information, and knowledge
retention within extended interactions. Two key metrics can be used to quantify this stability from different
perspectives: Forgetting (FGT) and Backward Transfer (BWT) (Zheng et all, 2025¢). Specifically, Let .J; ;
be the performance of LLM agents on task i after completing ¢ tasks. FGT and BWT can be calculated as

follows:
t—1

t—1
1 1
FGT, = AYY_ 7.1 BWT = T
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FGT evaluates the average accuracy drop on old tasks after an agent learns a new one, thereby measur-
ing whether useful experience is successfully maintained. In contrast, BWT assesses the average accuracy
improvement on old tasks due to the experience gained from a new task. A positive BWT indicates that

new learning positively benefits old tasks, signifying successful knowledge transfer and a more robust, stable
learning process.

Generalization While Adaptivity and Retention focus on in-domain performance, Generalization is a
pivotal measure of a self-evolving agent’s ability to apply its accumulated knowledge to new, unseen do-
mains or tasks. A truly intelligent agent should not only perform well within its familiar territory but also
demonstrate a capacity for cross-domain generalization. This capability can be evaluated by assessing an
agent’s performance on a diverse set of tasks that span multiple task distributions and domains. Common
approaches include computing aggregate performance metrics (e.g., mean success rates) across multi-domain
test suites (Liu et al.,|2023b; |Sun et al.| [2023), and conducting out-of-domain evaluations using held-out task
distributions that simulate real-world novelty scenarios (Hu et al., [2024b} [Peng et al., [2025).

Efficiency Efficiency quantifies the resourcefulness of a self-evolving agent. As agents operate continu-
ously and make decisions autonomously, it is essential to evaluate the cost and speed of their evolutionary
process. These metrics are particularly important for practical, real-world applications where resources like
computation and time are finite. Key indicators include token consumption (Hu et al.; [2024a), which mea-
sures the computational cost of an agent’s reasoning and generation steps), time consumption(Lu et al.
2024b), the number of steps (Wang et al.l [2023a) and the number of interaction with the tools (e.g. tool
productivity) (Wang et al., [2025f) required to complete a task, which rewards agents for completing tasks
in the fewest possible resource consumption. Several key metrics quantify agent efficiency in task execution,
including token consumption (measuring computational overhead in reasoning and generation)(Hu et al.,
2024a)), time expenditure(Lu et al., [2024b), the number of required steps(Wang et al., |2023a)), and tool
interaction frequency(Wang et al., 2025f). These indicators collectively assess an agent’s ability to minimize
resource utilization while maintaining task performance, with lower values generally reflecting more efficient
operation.

Safety From the perspective of self-evolving, the Safety domain critically examines whether these agents
develop unsafe or undesirable behavioral patterns throughout their continuous evolution. This dimension
assesses an agent’s adherence to predefined rules and its propensity for harmful actions. Key metrics in
evaluating safety of self-evolving agents may include: (1) Safety Score (Zhang et al., [2024i), measures the
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Table 5: Overview of Agent Evaluation Metrics Across Core Dimensions

Goal Metric Description

Success Rate by Iteration Steps (Hu et al.

. ) ,
024c| [Wang et al] [2024j] [Zheng ot aL| ?i]rforr?ancfl ‘1‘r; downstream tasks as a function of the agent’s
Adaptivity 2025b interaction history

How quickly an agent reaches a certain performance threshold

Adaptation Speed (Wang et al.||2023a) or converges to an optimal strategy within a given adaptation

period

The average accuracy drop on old tasks after an agent learns

Forgetting (FGT) (Zheng et al.|[2025¢) a new one, measuring whether useful experience is successfully

Retention maintained

Backward Transfer (BWT) (Zheng et al.| The average accuracy improvement on old tasks due to the
2025cp experience gained from new tasks

Aggregate Performance (Liu et al.l 2023b] Mean success rates or other performance indicators across
Sun et al.l 2023P multi-domain test suites to gauge overall proficiency

Out-of-Domain (OOD) Performance
|et a1.| |2024b1 |Peng et al.l |2025P

Generalization

The agent’s performance in held-out task distributions

Token Consumption (Hu et al. Computational overhead in reasoning and generation steps
Time Expenditure 1IM Total duration required for task completion

Efficiency Number of Steps (Wang et al.| 2023}
. The ratio between task benefit (e.g., answer accuracy) and tool
Tool Productivity (Wang et al.||[2025f g @) (e, e 6 (el ool
- Proportion of test cases where agent behavior meets predefined
Safety Score (Zhang et al.||2024i) safety criteria

Graded assessment of harmful outputs based on violation

Minimal actions needed to accomplish objectives

Harm Score (jAndriushchenko et al.| |2024}

Safety severity
1;8120 Under Policy (CuP) (Levy Task success rate while complying with specified constraints
Risk Ratio (Levy et al.l 2024b Frequency of policy violations per interaction opportunity

Refusal Rate (]Zhang et al.l |2024b|
|driushchenk0 et al.|2024)

Leakage Rate (]Shao et al.| |2024a} Incidence of unintended sensitive information disclosure

Percentage of tasks declined due to safety concerns

proportion of test cases where the agent’s behavior is labeled “safe” ; (2) Harm Score (Andriushchenko et al.|
, computes via a detailed manually written grading rubric where outputs earn partial credit whenever
some but not all harmful criteria are triggered; (3) Completion Under Policy (CuP) (Levy et al., 2024)),
assesses whether an agent successfully completes a task while strictly adhering to a given set of rules or
policies ; (4) Risk Ratio (Levy et al) [2024)), calculates the frequency of an agent’s rule violations along a
specific dimension, providing a quantitative measure of non-compliance ; (5) Refusal Rate
[2024b; |Andriushchenko et al., 2024), evaluates the proportion of tasks an agent refuses to perform due to
their aggressive, malicious, or otherwise unsafe nature; (6) Leakage Rate (Shao et all 2024a)), tracks how
often an agent unintentionally leaks sensitive or private information.

7.2 Evaluation Paradigm

The evaluation of self-evolving agents, given their continuous learning paradigm, necessitates a multi-faceted
approach that extends beyond traditional static assessments. Current evaluation paradigm can be broadly
categorized based on the temporal scope of the assessment: Static Assessment, Short-horizon Adaptive
Assessment, and Long-horizon Lifelong Learning Ability Assessment. FEach category addresses
different aspects of an agent’s evolving capabilities, from its instantaneous performance to its long-term
learning trajectory.
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7.2.1 Static Assessment

Static assessment evaluates the instantaneous performance of self-evolving agents at a specific point in
time. Although these agents are designed for continuous improvement, static methods remain crucial for
establishing baseline performance, comparing different agent architectures on fixed task sets, or evaluating
capabilities after discrete training phases. This approach aligns with conventional Al evaluation, focusing
on immediate performance in fixed environments. While useful for assessing generalization in an “in-domain
evolving, out-of-domain evaluation” paradigm, static assessment inherently does not capture the dynamic,
continuous learning, or long-term evolutionary aspects central to self-evolving agents.

For evaluating an agent’s general capabilities at a given moment, standard benchmarks designed for static
AT systems are often employed. These benchmarks offer diverse task domains and test various core agent
competencies, providing a snapshot of an agent’s proficiency before or at specific stages of its evolution.
These assessments can be systematically categorized into External Task-Solving Evaluation and In-
ternal Agent Components Evaluation, where External Task-Solving Evaluation measures end-to-end
performance in completing domain-specific or cross-domain tasks, and Internal Capability Evaluation fo-
cuses on fundamental components in the agent, including planning, tool utilization, memory management,
multi-agent coordination, etc.

External Task-Solving Evaluation This category assesses an agent’s end-to-end proficiency in complet-
ing tasks across various real-world or simulated environments. In scientific data analysis and machine
learning engineering, benchmarks like ScienceAgentBench(Chen et al., [2024e) and MLE-Bench(Chan
et al.l [2024)) test agents’ ability to generate and execute code for data analysis and solve Kaggle-style prob-
lems. For web search/Browse, environments such as WebShop(Yao et al., 2022), WebArena(Zhou et al.
2023), X-WebAgentBench(Wang et al., 2025h)), Mind2Web(Deng et al., |2023), and BrowseComp(Wei et al.,
2025a)) simulate realistic web interactions, complex Browse scenarios, and task completion under security
constraints. In software engineering, the SWE-bench series(Jimenez et al.l 2023; |Openail 2024; |Alei-
than et all [2024} [Yang et al., 2024) uses real GitHub issues to assess agents’ code repair capabilities. For
computer-use interactions, OSWorld(Xie et al., [2024) offers a unified environment for open-ended tasks
involving various desktop and web applications. Specialized domains like marketing also feature bench-
marks such as xbench(Chen et al., [2025f). Beyond specific domains, generalist agent benchmarks like
AgentBench(Liu et al.| |2023b]), GATA (Mialon et al., [2023)), and TheAgentCompany(Xu et al., [2024b|) eval-
uate broad problem-solving abilities across multiple knowledge domains and professional tasks, simulating
real-world demands on general Al assistants.

Internal Agent Components Evaluation Beyond end-to-end task completion, assessing an agent’s un-
derlying core competencies is crucial. These benchmarks evaluate fundamental capabilities that contribute
to an agent’s overall intelligence and self-evolutionary potential. As for Planning, Benchmarks such as Plan-
Bench(Valmeekam et al., |2023), Natural Plan(Zheng et al., [2024a)), AutoPlanBench(Stein et al.| 2025)), and
ACPBench(Kokel et al.l 2025) comprehensively evaluate an agent’s ability to understand dynamic environ-
ments, devise strategies, decompose complex problems, and execute reasoning in various planning domains.
For Tool Usage, simple benchmarks like ToolAlpaca(Tang et all [2023) and ToolBench(Qin et al., [2023)
test basic selection and parameter mapping, while more complex ones like ToolSandbox(Lu et al., [2024a)),
Seal-Tools(Wu et al. |2024)), API-Bank(Li et al., 2023)), T-Eval(Chen et al., [2023), 7-Bench(Yao et al., [2024),
AceBench(Chen et al., |2025al) simulate real-world scenarios involving multi-turn interactions, implicit state
dependencies, and nested calls. Memory Management benchmarks such as LTMbenchmark(Castillo-
Bolado et al., [2024), MemoryAgentBench(Hu et al.)), and StoryBench(Wan & Mal, 2025)) evaluate the agent’s
capacity to retain and utilize information across multi-turn interactions, dynamic scenarios, and long-range
dependencies. For evaluating Multi-Agent Collaboration, benchmarks such as MultiAgentBench(Zhu
et al.l |2025) and SwarmBench(Ruan et al., |2025) assess coordination, communication, and emergent swarm
intelligence in both collaborative and competitive settings.

Metrics for Static Assessment Typical metrics for static assessment include accuracy, success rate,
progress rate, completion rate, and various domain-specific performance indicators (e.g., CodeBertScore,
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Table 6: Differences between Short-horizon Adaptive Assessment and Long-horizon Lifelong Learning Ability

Assessment

Dimension

Short-horizon Adaptation Assessment

Long-horizon Lifelong Learning Ability As-
sessment

Primary Fo-
cus

Immediate learning and incremental improvement
within consistent or slightly varying tasks

Continuous knowledge accumulation and sustained
performance across diverse, evolving tasks and envi-
ronments.

Rapid adaptation to minor changes; Improving on
similar, repeated tasks

Mitigating catastrophic forgetting; Robust knowl-
edge transfer; Maintaining efficiency/safety over
time; handling true novelty and significant distribu-
tion shifts

Core Chal-
lenges
Temporal
Scope

Small number of sequential tasks or iterations over
a short period; Improvement on the same or similar

Large, potentially unbounded sequence of diverse,
cross-domain tasks; Very long interaction periods re-

task types.

quiring integration of new skills with old

Table 7: Representative Benchmarks for Evaluating Self-Evolving Agents

Benchmark Name

Task Domain

Goal

Core Metrics

Task Quantity

Temporal Scope

ScienceAgentBench(Chen et al.

Valid Execution Rate, Success

5 Scientific Data Analysis Adaptivity, Efficiency Rate, CodeBERTScore, API 102 Static
Cost,
MLE-Bench \ ML-Engineering Adaptivity - 75 Static
Task Success Rate, Cost, In-
DS-Bench(J Data Science Adaptivity ference Time, Competition-level 540 Static
Accuracy
SWEfl)ench Software Engineering Adaptivity Pass Rate 2,294 Static
OSW{)rld 2024 Computer-Use / GUI Adaptivity Success Rate 369 Static
. s I Action Accuracy, Reflection Ac- . .
Mobile-Eval-E(Wang et al. n Computer-Use / GUI Adaptivity, Efficiency curacy, Termination Error 25 Static, Short-horizon
WebShop|( Web Search / Browse Adaptivity Success Rate 12,087 Static
\Vchrcna Web Search / Browse Adaptivit Success Rate 812 Static
‘WebWalkerQA \ml Web Search / Browse Adaptivity, Efficiency Accuracy, Action Count 680 Static
;(’}‘QZVebAg,entBenc hLevy et _al Web Search / Browse Safety Completion under Policy 235 Static
X ench m Web Search / Browse Adaptivity LLM-Judge Score 100 Static
Browse omp Web Search / Browse Adaptivity Accuracy 1,266 Static
-;\[;g;gt—Safetyenc (Zhang _ct General Safety Safety Sore 20,000 Static
ongAgentBench(Zheng et al. General Adaptw.lty,. Retention, Success Rate 1396 Long-horizon
Generalization
General Adaptlvlty. Generaliza- ~ Success Rate, F1, Reward, Game 1360 Static
tion Progress
GATA (Mialon et al.||2023 General Adaptivity Accuracy 466 Static
TheAgentCompany(Xu et  al. § - Completion Score, Steps, Cost e
505ah General Adaptivity, Efficiency pacr Instance 175 Static
Accuracy, Slope, Position of 1st
EVdLearn General Adaptivity, Efficiency solution, Num of consecutive so- 648 Long-Horizon
lutions
PlanBench(Valmeekam et al.[|2023}  Planning Adaptivity Accuracy ~26,250 Static, Short-horizon
Natural Plan(Zheng et al.| W Planning Adaptivity Exact Match 3,600 Static
ACPBench (Kokel et al. Planning ﬁg;?pt“’“y’ Generaliza- 4 curacy 3,720 Static
AppBench (Wang et al.|[2024b Planning Adaptivity Success Rate, F1 800 Static
ToolBench(Qin et al. Tool Usage Adaptivity Pass Rate, Win Rate 126,486 Static
ToolSandbox(Lu et al. da, Tool Usage Adaptivity Similarity Score 1,032 Static
Seal-Tools(Wu et al.||202. Tool Usage Adaptivity Accuracy, P/R/F1 14,076 Static
API-Bank(Li et al. 3} Tool Usage Adaptivity Accuracy, Rouge 4,125 Static
T-Evalqchen et al.||202: Tool Usage Adaptivity Domain-Specific Score 23,305 Static
7-Bench(Yao et al.|202 Tool Usage Adapti Pass"k 165 Static
Tool Usage Adaptivity Accuracy 2,000 Static
Agent Memory Retention, Efficiency Score, Accuracy, GoodAI LTM 30 Long-Horizon

StoryBench

MemoryAgentBench

MultiAgentBench(Z

SwarmBench(Ruan et aLl 2025'

Agent Memory

Retention, Efficiency

Score, Speed, Cost, Verbosity
Accuracy, First-Try Accuracy,
Longest Corr, Retry Count,
Runtime Cost, Token Cons,
SubEM, Recall, ROUGE F1, Ac-

311 scene nodes,
86 choice nodes

Short-Horizon,
Horizon

Agent Memory Adaptivity curacy, Recall@5, Model Based 2200 Static, Short-horizon
Acc/F1
KPI, Text-Based Score, Commu-

Multi-Agent Collaboration Adaptivity nication Score, Planing Score, 100 Static
Coordination Score

Multi-Agent Collaboration Adaptivity Perspective-specific Metrics 5 Short-horizon

Long-

Valid Execution Rate, Pass Rate, F1 score). These metrics provide a singular performance score

isolated invocation or a fixed set of tasks.
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7.2.2 Short-Horizon Adaptive Assessment

Short-horizon adaptations extend beyond static evaluations by assessing an agent’s ability to adapt and
improve over a relatively short period or a limited number of interactions. The agent might improve per-
formance on the same task instance with more attempts, or adapt to new instances of the same task type.
This category focuses on capturing the capacity of the self-evolving agent for immediate adaptability and
incremental learning within a relatively consistent or slightly varying task distribution. These evaluation
schemes can be broadly categorized into two ways: (1) augment traditional benchmarks with a temporal
dimension, and (2) specially design benchmarks and metrics that can inherently support Short-Horizon
dynamic learning.

Augmented Traditional Benchmarks Many studies leverage existing benchmarks but introduce a new
dimension to track performance over time. This typically involves analyzing performance as a function of the
number of iterations, steps, or examples. For example, ADAS(Hu et al.; [2024c) evaluated the held-out test
accuracy with the number of agent system iterations on the ARC benchmark (Chollet, [2019); AWM (Wang
et al., 2024j) studied the cumulative success rate over the process of online evaluation under WebArena map
test split(Zhou et al., |2023), using a number of examples to mark the evolution progress; WebEvolver (Fang
et al.} 2025b) studied the success rate with self-improving iterations under Mind2web-Live (Pan et al., 2024).
This approach allows for tracking the Adaptivity of the agent within a confined scope.

Benchmarks with Built-in Dynamic Evaluation Some benchmarks are designed with short-horizon
dynamic learning in mind. MemoryAgentBench (Hu et al.), for example, includes a “Test-Time Learning”
(TTL) dimension that evaluates an agent’s ability to learn new tasks directly from conversation within a single
interaction session. In practice, TTL is evaluated through two types of tasks: Multi-Class Classification and
Recommendation. In these settings, the agent must utilize previously provided information—such as labeled
examples in context or a long movie-related dialogue history—to perform new tasks like mapping sentences to
class labels or recommending relevant movies. This assesses immediate adaptation and knowledge acquisition
during ongoing interaction.

Metrics and Methods for Evaluating Short-Horizon Adaptations The primary metrics and meth-
ods for short-horizon adaptations are designed to quantify Adaptivity. These include: (1) Success Rate by
Iteration Steps(Hu et al., [2024c; \Wang et al., |2024]; [Zheng et al. [2025b), which tracks performance improve-
ments as the agent interacts more with the environment or attempts a task multiple times. (2) Learning
Curve Analysis, visualizing how performance (e.g., success rate, accuracy) changes over a limited number of
training steps, episodes, or interactions (Hu et al., 2024c; Wang et al., [2024j). (3) Adaptation Speed (Wang
et all [2023a), measuring how quickly an agent reaches a certain performance threshold or converges to an
optimal strategy within the short horizon.

Short-horizon adaptations are well-suited for evaluating the initial learning capabilities and immediate adapt-
ability of self-evolving agents. They can effectively demonstrate whether an agent can learn from recent
experiences and improve its performance on in-domain tasks. This category is widely used for current self-
evolving agents. However, the limited temporal window makes it challenging to assess long-term knowledge
retention (mitigating catastrophic forgetting) and true lifelong learning capabilities across vastly different or
sequentially presented tasks.

7.2.3 Long-Horizon Lifelong Learning Ability Assessment

Long-horizon lifelong learning ability assessment is crucial for truly assessing self-evolving agents, as they
focus on the agent’s ability to continuously acquire, retain, and reuse knowledge across diverse environments
and over extended periods. As shown in Table [7.2.1] it mainly focuses on continuous learning, knowledge
accumulation, and sustained performance across a diverse and potentially ever-changing stream of tasks or
environments over an extended period. This is a nascent but critical area, where unique challenges include
catastrophic forgetting, robust knowledge transfer across disparate tasks, efficient resource management over
extended durations, and mitigating data leakage when continuously evaluating on evolving data distributions.
Specialized benchmarks are emerging to tackle these complexities.
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Currently, there are few benchmarks of this type. LTMBenchmark(Castillo-Bolado et al., |2024) is a special-
ized benchmark focusing on long-term memory (LTM) evaluation. It assesses LLM agents’ memory retention
and continual learning through dynamic conversational tests, using interleaved dialogues with controlled dis-
tractions to simulate real-world recall challenges. Key metrics include task accuracy, memory-span-weighted
LTM Score, and efficiency measures (tests/hour, cost) for cross-architecture comparison. LifelongAgent-
Bench (Zheng et al., 2025b)) is another pioneering benchmark specifically designed to evaluate agent lifelong
learning. It constructs sequences of interdependent tasks across domains like Database (DB), Operating
System (OS), and Knowledge Graph (KG), requiring agents to progressively build upon previously acquired
skills. This allows for systematic tracking of performance improvement and knowledge retention across a
prolonged learning trajectory. In addition, there is a solution that constructs a dynamic benchmark through
continuously updating benchmark datasets (White et al. [2024; [Yang et al., 2025b)) or evolving the bench-
mark itself by reconstructing original benchmarks to evaluate self-evolving agents, which can alleviate data
leakage to some extent (Chen et al., 2025g). Benchmark Self-Evolving (Wang et al.; 2024e), for example,
proposes a solution to continuously update the existing benchmark through iteration. Preliminary findings
from such dynamic benchmark scenarios have shown that model performance can degrade as the benchmark
evolves, highlighting the difficulty of continuous adaptation.

Metrics for long-horizon lifelong learning go beyond simple success rates to quantify the agent’s evolving
ability, such as Forgetting (FGT), Backward Transfer (BWT) (Zheng et al., [2025¢), Cost-per-Gain. Long-
term Generalization metrics could involve assessing performance on a continuously evolving set of out-of-
distribution tasks or measuring the breadth of tasks an agent can still perform effectively after prolonged
learning across many domains.

Long-horizon lifelong learning ability assessment is essential for comprehensively evaluating the core promise
of self-evolving agents: their ability to learn continuously, retain knowledge, and generalize effectively over
extended periods. They are critical for assessing Retention, Generalization to truly novel scenarios, and the
Efficiency of long-term operation. This area remains a key frontier for research in evaluating self-evolving
agents.

8 Future Direction

8.1 Personalize Al Agents

With the increasing interest in self-evolving agents, deploying personalized agents has become a crucial and
increasingly significant objective for the research community (Zhang et all [2024h). For instance, in applica-
tions such as chatbots, digital twins, and emotional support dialogues, a key challenge is enabling Al agents
to accurately capture and adapt to users’ unique behavioral patterns or preferences over extended interac-
tions. Existing personalized agents typically depend heavily on labeled data and post-training methodologies
(Cheng et al.,2024). Recent work by |Zhang et al.| (2025m)) proposes a self-generated preference data approach
aimed at rapidly personalizing LLMs. TWIN-GPT Wang et al.| (2024h)) leverages electronic health records to
create digital twins of patients, enhancing the accuracy of clinical trial outcome predictions. However, these
existing strategies hinge on the critical assumption that LLMs can consistently obtain high-quality, large-
scale user data. In practical deployment scenarios, the primary challenge remains the cold-start problem:
agents need to progressively refine their personalized understanding, accurately interpret user intentions,
and effectively construct user profiles, even when initial data is limited. Additionally, significant challenges
persist in personalized planning and execution, such as effective long-term memory management, external
tool integration, and personalized generation (ensuring outputs consistently align with individual user facts
and preferences) (Li et al., [2025d). Moreover, it is essential to ensure that self-evolving agents do not inad-
vertently reinforce or exacerbate existing biases and stereotypes, highlighting another critical direction for
future research.

With the integration of personalized data, evaluation metrics for personalizing self-evolving agents should
extend beyond intrinsic evaluations (e.g., directly assessing personalized generated text quality using metrics
such as ROUGE (Lin, 2004) and BLEU (Papineni et al. 2002)) or extrinsic evaluations (e.g., indirect as-
sessments of personalization effects through recommendation systems, classification tasks, and other specific
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applications). Traditional personalization evaluation metrics often fail to adequately capture the evolving
dynamics inherent in self-evolving agents. Consequently, future research calls for more lightweight and adap-
tive evaluation metrics (Zhang et al.,[2024h)). Additionally, to better assess self-evolving personalized agents,
there is a clear need for flexible, dynamic benchmarks capable of accurately evaluating agents’ performance,
particularly in managing long-tailed personalization data throughout their self-evolving processes.

8.2 Generalization

Self-evolving agents also face considerable challenges in achieving robust generalization across diverse task
domains and environments. The fundamental tension between specialization and broad adaptability remains
one of the most pressing challenges in the field, with significant implications for scalability, knowledge
transfer, and collaborative intelligence.

Scalable Architecture Design: A central challenge in developing generalizable self-evolving agents lies in
designing scalable architectures capable of maintaining performance as complexity and scope increase. Cur-
rent agent systems frequently encounter a trade-off between specialization and generalization, where agents
optimized for specific tasks struggle to transfer their learned behaviors to novel environments (Chen et al.)
2024d)). Additionally, the computational cost associated with dynamic reasoning in LLM-based agents grows
non-linearly with the complexity of adaptation mechanisms, imposing practical constraints on achievable
generalization within realistic resource limitations (Kim et all [2025). Recent studies indicate that self-
evolving agents equipped with reflective and memory-augmented capabilities show substantial promise for
enhancing generalization, particularly in smaller, resource-constrained models (Liang et al.| [2024). Nonethe-
less, these approaches continue to encounter limitations when addressing complex real-world scenarios that
require sustained adaptation over prolonged periods.

Cross-Domain Adaptation: Achieving generalization across domains represents a critical frontier for
self-evolving agents. Current methods frequently rely on domain-specific fine-tuning, restricting agents’
adaptability to new environments without retraining (Belle et al., |2025). Recent advancements in test-time
scaling and inference-time adaptation provide promising pathways for enhancing cross-domain generalization
(Snell et al.l |2024; Zhang et al., 20251). These techniques allow agents to dynamically allocate additional
reasoning capacity to unfamiliar scenarios by scaling computational resources during inference, avoiding the
need for increasing model parameters. Additionally, meta-learning strategies have demonstrated consider-
able potential in facilitating rapid few-shot adaptation to new domains (Bilal et all |2025). However, their
effectiveness critically depends on an agent’s capability to accurately determine when supplementary com-
putational resources are necessary and efficiently distribute these resources across diverse reasoning tasks.

Continual Learning and Catastrophic Forgetting: Self-evolving agents must continuously adapt to
new tasks while retaining previously acquired knowledge, a challenge exacerbated by the catastrophic for-
getting phenomenon (Ghosal et all 2024) of continual memorization (Chen et al., [2024b) inherent in LLMs
(Bell et all [2025). The stability-plasticity dilemma becomes particularly acute in foundation model-based
agents, where the computational costs of retraining for every new task are prohibitive (Zheng et al.l [2025c¢).
Recent research has explored parameter-efficient fine-tuning methods, selective memory mechanisms, and in-
cremental learning strategies to mitigate catastrophic forgetting while preserving adaptability (Wang et al.,
2024c)). Nonetheless, achieving an optimal balance between efficiency and preventing model drift remains a
significant open challenge, especially when agents operate under resource constraints or manage streaming
data with stringent privacy considerations.

Knowledge Transferability: Recent studies have identified critical limitations in knowledge transfer
among Al agents. |Shi et al| (2025a) emphasized that knowledge integration and transfer capabilities in
current agents still require significant optimization. In particular, |Geng et al. (2025b) found that LLM-
based agents often fail to effectively propagate newly acquired knowledge from interactions to other agents,
restricting their collaborative potential. Furthermore, [Vafa et al.| (2025)) revealed that foundation models
might depend heavily on shallow pattern matching, rather than developing robust and transferable inter-
nal world models. These findings indicate several important future research directions: 1) it is essential to
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better understand the conditions under which knowledge acquired by one agent can be reliably generalized
and communicated to others; 2) developing methods to quantify the limitations in agents’ knowledge trans-
ferability could lead to clearer insights into agent collaboration bottlenecks; 3) we need to have an explicit
mechanism that encourage the formation of robust, generalizable world models could significantly improve
the collaborative effectiveness of self-evolving agents.

8.3 Safe and Controllable Agents

As autonomous Al agents become increasingly capable of learning, evolving, and performing complex tasks
independently, more agent-based studies are shifting their focus towards the deployment of safer and more
controllable agents. These safety concerns arise primarily from user-related risks, such as vague or misleading
instructions that lead agents to execute harmful actions, as well as environmental risks, including exposure
to malicious content, such as phishing website links (Zhou et al., [2025b)).

Many studies aimed to address safety concerns about the automatic adaptation of agents. For instance,
TrustAgent (Hua et al.l 2024)) implements pre-planning, in-planning, and post-planning strategies to foster
safer agent behavior. However, as highlighted in (Zharmagambetov et al., 2025), current agents based on
LLM still struggle to accurately differentiate between sensitive information that is necessary and irrelevant
information. A major challenge here is the precise identification and understanding of task-related versus
unrelated information. Furthermore, managing agent actions when goals involve deceptive or unethical meth-
ods presents further difficulties, as ongoing learning uncertainty exacerbates these safety challenges for the
deployment of controllable agents (Anwar et all|2024). This uncertainty is reflected similarly in ambiguous
contexts (Bagdasarian et all 2024)) and poorly designed memory modules (Wang et al |2025al). Therefore,
deploying a reliable, controllable, and safe self-evolving system has become a critical issue. Future research
should focus on collecting larger-scale, more diverse real-world scenario data to support comprehensive learn-
ing of safe behaviors. Further refining the Agent Constitution by developing clearer, more understandable
rules and case libraries is essential. Furthermore, exploring safer training algorithms and thoroughly inves-
tigating the impacts of privacy-protection measures on agent efficiency are necessary steps toward achieving
a more balanced and secure deployment of autonomous Al agents.

8.4 Ecosystems of Multi-Agents

Multi-agent self-evolving systems face several unique challenges that require further exploration.

Balancing Individual and Collective Reasoning: Recent studies highlight the difficulty of balancing
independent reasoning with effective group decision-making in multi-agent environments (Chen et al.l |2025d;
Sun et al., [2025)). While collective discussions can significantly enhance diagnostic reasoning, agents often risk
becoming overly reliant on group consensus, thereby diminishing their independent reasoning capabilities.
To mitigate this issue, future research should explore dynamic mechanisms that adjust the relative weight
of individual versus collective input. Such an approach would help prevent decision-making from being
dominated by a single or a small subset of agents, ultimately promoting robust, balanced consensus-building
and innovation. Additionally, developing explicit knowledge bases and standardized updating methodolo-
gies—leveraging agents’ successes and failures—could further improve the agents’ self-evolution abilities and
strengthen their individual reasoning contributions within collaborative contexts.

Efficient Frameworks and Dynamic Evaluation: Another crucial challenge lies in developing efficient
algorithms and adaptive frameworks that allow agents to collaborate effectively while preserving their in-
dividual decision-making strengths. (Hu et all |2024d) introduced adaptive reward models and optimized
dynamic network structures, which can significantly enhance cooperative self-improvement among agents.
However, a major gap identified by (Sun et al.;|2025) is the absence of clear mechanisms for agents to dynam-
ically manage and update their knowledge. Addressing this issue will require new frameworks that explicitly
integrate continuous learning and adaptive collaboration mechanisms. Furthermore, existing benchmarks
for multi-agent evaluation are predominantly static (Zhu et al., 2025)) and therefore fail to capture the long-
term adaptability and continuous evolution of agent roles. Future benchmarks should incorporate dynamic
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assessment methods, reflecting ongoing adaptation, evolving interactions, and diverse contributions within
multi-agent systems, thus providing more comprehensive evaluation metrics for self-evolving agents.

9 Conclusion

The emergence of self-evolving agents marks a paradigm shift in artificial intelligence, moving beyond static,
monolithic models toward dynamic agentic systems capable of continual learning and adaptation. As lan-
guage agents are increasingly deployed in open-ended, interactive environments, the ability to evolve, adapt-
ing reasoning processes, tools, and behaviors in response to new tasks, knowledge, and feedback, has become
essential for building the next generation of agentic systems. In this survey, we provide the first compre-
hensive and systematic review of self-evolving agents, organized around three foundational questions: what
aspects of an agent should evolve, when evolution should occur, and how to implement evolutionary processes
effectively. Moreover, we discuss several methods for evaluating the progress of self-evolving agents in terms
of metrics and benchmarks, followed by corresponding applications and future directions. Looking ahead,
realizing the full potential of self-evolving agents will be critical in laying the groundwork for Artificial Su-
per Intelligence (ASI). The evolution of these agents will require significant advancements in models, data,
algorithms, and evaluation practices, and so on. Addressing issues such as catastrophic forgetting, human
preference alignment during autonomous evolution, and the co-evolution of agents and environments will be
key to unlocking agents that are not only adaptive but also trustworthy and aligned with human values. We
hope this survey provides a foundational framework for researchers and practitioners to design, analyze, and
advance the development and progress of self-evolving agents.
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