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1 SUPPLEMENTARY RESULTS ON INCONSISTENCIES IN ACTION RANKING IN
ADVERSARIALLY TRAINED DEEP NEURAL POLICIES

As we mentioned in Section 6.2 of the main body of the paper the inaccuracies of the state-action
value function reach a high enough level for the state-of-the-art adversarially trained deep neural
policies such that the ranking of the sub-optimal actions is not correct anymore. This can be seen in
Figure 1 in the P2 and Pw results. Note that P2 represents the performance drop (Definition 4.2) with
action modification a2, and Pw (Definition 4.2) represents the action modification with aw. Thus, it
can be observed from Figure 1 that the performance drop P2 with action modification a2 is higher
than the performance drop Pw with action modification aw. In more detail P2 0.18257-dominates
Pw (Definition 4.3). This demonstrates that the state-of-the-art adversarially trained deep neural
policies are not ranking the sub-optimal actions correctly. Note that as we discussed in the main body
of the paper in Section 6.2 this poses a problem for learning optimal state-action value functions Lin
& Zhou (2020); Alshiekh et al. (2018).

Figure 1: Consistency results for ranked actions via performance drop P2 and Pw for the state-of-the-
art adversarially trained deep neural policies.

2 OVERESTIMATION OF STATE-ACTION VALUES

In this section we provide supplementary results for the overestimation bias caused by state-of-
the-art adversarially trained deep neural policies. In particular, in Section 6.3 of the main body
of the paper we explained the problem of overestimation of state-action values. Furthermore, in
Section 6.2 we empirically demonstrate that state-of-the-art adversarially trained deep neural policies
overestimate the state-action values. In this section we further provide results on state-action values
of the optimal action for vanilla and adversarially trained deep neural policies when pa2 is equal to
0.1, 0.2 and 0.3 respectively. Note that in the main body of the paper we claim that the reason for
this overestimation lies in the fact that the state-of-the-art deep neural policy adversarial training is
solely an extension of adversarial training in image classification tasks, which is based on penalizing
the wrong “label”. However, this approach does not directly correspond to deep neural policies. The
correct label in image classification can be connected to the optimal action in deep neural policies
in this analogy. However, the wrong label does not correspond to sub-optimal actions. An optimal
Q-function represents the discounted expected cumulative rewards received when taking an action a
in state s. Hence, the sub-optimal actions have much more meaning in collecting rewards than solely
misclassifying an image.
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Figure 2: State-action values of the best action Q(s, a∗) for vanilla trained deep neural policies and
adversarially trained deep neural policies when pa2 is 0.1.

Figure 3: State-action values of the best action Q(s, a∗) for vanilla trained deep neural policies and
adversarially trained deep neural policies when pa2 is 0.2.

Figure 4: State-action values of the best action Q(s, a∗) for vanilla trained deep neural policies and
adversarially trained deep neural policies when pa2 is 0.3.

3 IMPLEMENTATION DETAILS

Note that to be able to provide a fair comparison State-Adversarial Double Deep Q-Network and
Double Deep Q-Network are the exact same implementations described in Huan et al. (2020) and
Wang et al. (2016) respectively. In more detail for Double Deep Q-Network the batch size is 32,
discount factor γ is 1, buffer size 50000, learning rate is 5 × 10−5 for the Adam optimizer, and
random action probability is 0.02. Note that experience replay Schaul et al. (2016) is utilized.
More details can be found in Dhariwal et al. (2017) and Wang et al. (2016) on Double Deep Q-
Networks. The state-of-the-art adversarial deep neural policy is the exact same implementation as
Huan et al. (2020). Adversarial deep neural policies are trained via experience replay as well Schaul
et al. (2016). Note that State-Adversarial Double Deep Q-Network is trained via the regularizer
R(θ) =

∑
s

(
maxs̄∈Dε(s) maxa6=a∗(s)Qθ(s̄, a)−Qθ(s̄, a∗(s))

)
where a∗(s) = arg maxaQ(s, a)

inside ε-ball Dε(s) = {s̄ : ‖s− s̄‖∞ ≤ ε}. Hence, this ε is set to 1/255. Note that the regularization
is added to the temporal difference loss in the Q-update. The regularization parameter of state-
adversarial is κ ∈ {0.005, 0.01, 0.02}. The initial 1.5×106 frames are trained without regularization.
See more detail in Huan et al. (2020).
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4 SUPPLEMENTARY RESULTS ON ACTION GAP

In Section 6.4 of the main body of our paper we discuss the action gap phenomenon introduced
by Farahmand (2011). Note that the action gap is defined as κ(Q, s) = maxa′∈AQ(s, a′) −
maxa/∈arg maxa′∈AQ(s,a′)Q(s, a). Further, we argue that both the existence of overestimation of
state action values and the higher action gap in state-of-the-art adversarially trained deep neural
policies demonstrates that the hypothesis of Bellemare et al. (2016) cannot be true. In this section we
provide supplementary results on the action gap without the normalization Q(s, a)/

∑
a |Q(s, a)|. In

particular, Figure 5, Figure 6 and Figure 7 show the action gap for the vanilla trained deep neural
policies and state-of-the-art adversarial deep neural policies when pa2 is 0, 0.1 and 0.2 respectively.
Hence, the action gap for adversarially trained deep neural policies is higher than the vanilla trained
deep neural policies.

Figure 5: The action gap Q(s, a∗)−Q(s, a2) for the state-of-the-art adversarially trained deep neural
policies and vanilla trained deep neural policies for pa2 is 0.

Figure 6: The action gap Q(s, a∗)−Q(s, a2) for state-of-the-art adversarially trained deep neural
policies and vanilla trained deep neural policies for pa2 is 0.1.

Figure 7: The action gap Q(s, a∗)−Q(s, a2) for state-of-the-art adversarially trained deep neural
policies and vanilla trained deep neural policies for pa2 is 0.2.

5 SUPPLEMENTARY RESULTS ON ACTION GAP WITH NORMALIZED
STATE-ACTION VALUES

In the remainder of this section we provide additional results on normalized state-action values for
adversarially trained and vanilla trained deep neural policies. In more detail, Figure 8 and Figure 9
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show the normalized state-action values of the optimal action, second best action a2 and worst action
aw for vanilla trained deep neural policies and adversarially trained deep neural policies when pa2
is 0.01 and 0.1 respectively. Thus, Figure 8 and Figure 9 demonstrate that the action gap is higher
for the state-of-the-art adversarially trained deep neural policies compared to vanilla trained deep
neural policies. Note that the state-action values in Figure 8 and Figure 9 are normalized Q-values
(i.e. normalized via Q(s, a)/

∑
a |Q(s, a)|).

Figure 8: Normalized state-action values for the best action a∗, second best action a2 and worst action
aw over states when pa2 is 0.01. Row1: Vanilla trained deep neural policies. Row2: State-of-the-art
adversarially trained deep neural policies.

Figure 9: Normalized state-action values for the best action a∗, second best action a2 and worst action
aw over states when pa2 is 0.1. Row1: Vanilla trained deep neural policies. Row2: State-of-the-art
adversarially trained deep neural policies.
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