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A APPENDIX

A.1 QUALITATIVE ANALYSIS

(a) MLP shortest-path behavior. The model reconstructs a small patch approximating the target path, but
misses and misplaces a few tiles, and fails to maintain local coherence.

(b) GCN shortest-path behavior. The model produces a (somewhat blurry) reconstruction of the optimal path.
It has difficulty reconstructing longer paths from the training set.

(c) NCA shortest-path behavior. The model appears to propagate activation out from both source and target,
which meet in the middle of the optimal path and proceed to reinforce it.

(d) NCA diameter behavior. The model successfully identifies the diameter of the maze.

(e) NCA diameter behavior. The model selects the incorrect (shorter) upper fork.

Figure 2: Behavior of various models on shortest-path/diameter path-finding problems. GCN and
MLP models are seen to fail frequently on simpler mazes from the training set for the shortest-
path problem. NCAs can master the most complex mazes from the training set while sometimes
generalizing to larger test mazes, on both the shortest-path and (more challenging) diameter problem.
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A.2 HAND-CODED NCA

In discussion of the hand-coded implementations, we denote W
(m,n)
k as the (m,n)th element of

the weight matrix Wk. We will define a number of elementary convolutional weight matrices, then
specify how they are combined in a single convolutional layer to propagate activation over various
channels. Finally, we will specify activation functions and skip connections applied to each forward
pass through this convolutional layer. Initially, the hidden activation is all-zeros. We assume that,
prior to each pass through the NCA, the hidden activation is concatenated channel-wise with a one-hot
encoding of the input maze.

A.2.1 DIJKSTRA MAP GENERATION

In Dijkstra map generation, we define three channels: floods, floodt and age.

Convolutional weights. We define an identity-preserving convolutional weight matrix W1 ∈ R3×3

with W
(1,1)
1 = 1; otherwise, W(k,l)

1 = 0 so only center tile of the weight matrix is active. This
matrix is used to keep a channel active once it is activated (e.g., once a tile is flooded, it needs to stay
flooded). It is also used to produce the initial activation in the flood channels from source and target
channels, and prevent tiles with active wall channels (i.e. walls in the maze) from being flooded.

Then, we define WT ∈ R3×3, which is the Von Neumann neighborhood, with W
(k,l)
T = 1 if

(k, l) ∈ {(0, 1), (1, 0), (1, 1), (1, 2), (2, 1)}; otherwise, W(k,l)
T = 0 and it’s used to flood the tiles

next to flood since one can only move in this four directions.

W1 :=

[
0 0 0
0 1 0
0 0 0

]
WT :=

[
0 1 0
1 1 1
0 1 0

]

In Table 7, we use the elementary weight matrices W1 and WT to define the weight matrices between
channels in the convolutional layer of which our hand-coded Dijkstra activation map-generating NCA
consists.

Convolutional slice Channel relationship Weight matrix
WBFS[flood , source] source −→ floods W1

. floods −→ floods WT

. wall −→ floods −6W1

. target −→ floodt W1

floodt −→ floodt WT

wall −→ floodt −6W1

floods −→ age W1

floodt −→ age W1

age −→ age W1

Table 7: hand-coded weights between channels of NCA for Dijkstra map generation.

The overall convolutional layer WBFS ∈ R3×7×3×3 consists of the channel-to-channel kernels given
in Table 7. For each 3 × 3 patch of the (padded) input activation, it maps to the next value at the
center cell; it maps from the 3 hidden activation channels ({age,floods,floodt}) plus the 4 channels
required for one-hot encoding the maze {empty,wall, source, target}—which is concatenated with
the input activation at each step—to the 3 hidden channels at the next step.

The floods floods and floodt flow from tiles with active source and target tiles, respectively (i.e.
sources/targets in the input maze), to empty tiles, stopping at walls. While the age channel will first
activate with the appearance of a flood channel, then increment at each following timestep. Once the
separate floods meet, the activation map Xage can then be used to reconstruct optimal paths (which
process is detailed in the path extraction NCA in the following section).
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Forward pass. At each step through the hand-coded BFS-NCA, we apply the convolutional weights
to the input activation, then apply a step function to the flood channel, so that its output lies between
0 and 1. (Since the flood activation is always integer-valued before being input to the activation
function, this could also be achieved with duplicate channels, using ReLU’s, with biases to off-set
them, effectively resulting in a step function that is linear for x ∈ [0, 1]. For simplicity, we simply
apply a step function, but note that a ReLU network could represent the same algorithm.)

step =

{
0 for x < 0

1 for x ≥ 0

Let Xt denote the hidden activation at time-step t, with Xt ∈ R3×w×h (where w and h are the width
and height of the input maze), and Xt = 0 when t = 0; and let Xmaze denote the one-hot encoding of
the input maze, with Xmaze ∈ R4×w×h. We denote by Xi,j the slice of the tensor X taken at spatial
co-ordinates i, j (where these spatial coordinates correspond to the last two dimensions of the tensor),
and by Xchannel the slice of the tensor X corresponding to the channel channel (where channels lie
along the first dimension of the tensor). The concatenate operation acts along the channel dimension.
To denote setting the value of an activation X at channel chan, we write Xchan ← · · · ; generally,
this operation is individually applied to each (x, y) tile of X. At time-step t the forward pass operates
as follows:

Xt ←− concatenate (Xt,Xmaze)

∀x, y, Xx,y
t+1 ←−

2∑
i=0

2∑
j=0

Wi,j
BFS ⊙Xx+i−1,y+j−1

t

Xflood
t+1 ←− step

(
Xflood

t+1 , 0, 1
)

The BFS-NCA will terminate when the source and target floods overlap on some tile.

A.2.2 PATH EXTRACTION

We now construct an NCA for path extraction (PE-NCA) which will take the output of the BFS-NCA
and additionally perform path extraction. Path extraction starts once source and target floods, which
are defined in Dijkstra collides. We use the age activations from Dijkstra output to reconstruct the
optimal path(s) between the corresponding source and target.

Convolutional weights. For path extraction, we add 5 new channels: path channel, which will
ultimately output the binary map of the optimal path(s), and 4 directional path-activation channels
(for detecting the presence of a path coming from the right, left, top, and bottom neighbors) denoted
as pathi,j for (i, j) ∈ {(0, 1), (1, 0), (1, 2), (2, 1)}. Then, we define weight matrices for detecting

adjacent activations: W(i,j) ∈ R3×3, with W
(k,l)
(i,j)

:= 1 if (k, l) = (i, j), and W
(k,l)
(i,j)

:= 0 otherwise.

W1,0 :=

[
0 0 0
1 0 0
0 0 0

]
W0,1 :=

[
0 1 0
0 0 0
0 0 0

]
W1,2 :=

[
0 0 0
0 0 1
0 0 0

]
W2,1 :=

[
0 0 0
0 0 0
0 1 0

]

We can then construct the overall convolutional path extraction matrix WPE, with WPE ∈ R5×8×3×3

using the channel-to-channel weight matrices detailed in Table 8 (and setting all other weights to
0). For each 3× 3 patch of the (padded) input activation, it maps to the next value at the center cell;
it maps from its own 5 hidden activation channels (the 4 pathi,j activations, and the overall path
activation) plus the 3 hidden channels resulting from the BFS-NCA—whose output is concatenated
with the input activation at each step—to the 5 hidden channels at the next step.

The identity weights from floods and floodt to path, combined with the bias of −1 applied to path,
ensure that path activations will first appear on any tiles where these floods have overlapped (seeing
as these tiles will correspond to mid-points in the optimal path(s)). The weights from age and path
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Channel relationship Weight matrix Bias
floods −→ path W1

floodt −→ path W1

path -1
age −→ pathi,j 2(W(i,j) −W1)

path −→ pathi,j W(i,j)

Table 8: hand-coded weights between channels of NCA for path extraction.

to each pathi,j are chosen so that when a path activation should “flow” to an adjacent tile in a given
direction—which is the case exactly when this neighbor’s age is greater than the current cell’s by
1—the corresponding pathi,j activation will be exactly −1.

Forward pass. At each step through the PE-NCA, we apply the convolutional weights and biases
corresponding to path extraction—WPE and bPE, respectively. Then, we apply a saw-tooth activation
function to the directional path-activation channels. (Similar to the step function in the forward pass
of the BFS-NCA, this sawtooth activation could be replicated with 3 ReLU’s, and corresponding
additional channels.)

sawtootha(x) =


0 for x < −2
x+ a− 1 for x ∈ [a− 1, a]

−x+ a+ 1 for x ∈ [a, a+ 1]

1 for x > a+ 1

Since the directional path-activations are always integer-values, we can apply sawtooth−1 to them in
order to obtain activations of 1 wherever they have value −1 (i.e., they should accept an adjacent path
activation and are part of the optimal path by virtue of their age-difference with their path-activated
neighbor), and 0 everywhere else.

Then, we set the path channel to be 1 if any of the directional path activations at the corresponding
tile are equal to 1. This can be achieved by taking the sum of the directional path activations (which
are either 0 or 1 after the sawtooth activation), and applying a step function.

Xt ←− concatenate (Xt,XBFS)

∀x, y, Xx,y
t+1 ←−

2∑
i=0

2∑
j=0

Wi,j
PE ⊙Xx+i−1,y+j−1

t + bPE

∀i, j, Xpathi,j

t+1 ←− sawtooth−1

(
X

pathi,j

t+1

)
Xpath

t+1 ←− step

∑
(i,j)

Xpathi,j


We illustrate the step-by-step operation of the path extraction NCA in Figure 3b.

A.2.3 DFS

Convolutional weights. Let us again denote an identity-preserving convolutional weight matrix
W2 ∈ R5×5 with W

(2,2)
2 = 1 (at the center of the weight matrix) and W

(k,l)
2 = 0 everywhere else.

W2 is similar to W1, in that only the center tile is active, allowing for the transfer of activations
between channels, the inhibition of one activation by another (i.e. having wall activations prevent the
activation of route or stack channels), and the holding-constant of activations across time-steps.

Then, we define the adjacent-activation weight matrices W5,(i,j) ∈ R5×5 for (i, j) ∈
{(1, 2), (2, 1), (3, 2), (2, 3)}, which are used to check whether neighbors have any adjacent route
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(a) Demonstration of hand-coded Dijkstra map generation by flooding from both source and target. The blue
color age and floor activation are due to source and red one is due to target. The map generation is completed
when both flood channels are active.
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(b) Demonstration of hand-coded path-extraction by using Dijkstra map. The first activation of the path is where
source and target flood meets. The purple color demonstrates the current path activation tile. The path extraction
is completed when path channel of source and target is activated.

Figure 3: Demonstration of hand-coded NCA for a) Dijkstra map generation, b) path extraction

activations, with W
(k,l)
5,(i,j) = 1 for (k, l) = (i, j), and W

(k,l)
5,(i,j) = 0 otherwise. Just as the identity-

preserving matrix W2 is equivalent to W1, plus a border of 0-padding, so is each matrix W5,(i,j) to
the corresponding 3× 3 adjacent-activation matrix W(i,j).

In DFS, we propagate the route activation (equivalent to flood in BFS) sequentially. To this end, we
combine the adjacent-activation matrices above with priority weight-matrices. These priority weights
are the only matrices to make use of our 5× 5 kernel; their job is to detect whether—given that some
neighbor of a given cell has an active route which should be propagated to said cell—there is not
some neighbor’s neighbor to whom this activation should be propagated first.

For moving down, the priority weight matrix is defined as Wp,(1,2) ∈ R5×5 and it is equal to 0
since moving down is the highest-priority move. Then, in order to check the priority of moving
right, we define Wp,(2,1) ∈ R5×5, with W 3,1

p,(2,1) = 1; and 0 everywhere else. This matrix effectively
checks whether the neighbor to our left has some neighbor below it to whom it could pass its ‘route’
activation, in which case this cell should take priority over us. Similarly, we define Wp,(3,2) ∈ R5×5

for the upward move priority, with Wm,n
u := 1 if (m,n) ∈ {(4, 2), (3, 3)}, and 0 otherwise. This

matrix is used to check whether the neighbor above us as a neighbor either below or to its right
to whom it should pass activation first. Finally, moving left is the least prioritized action, and is
represented with Wp,(2,3) ∈ R5×5 , where W

(m,n)
p,(2,3) = 1 if (m,n) ∈ {(1, 3), (2, 4), (3, 3)}, and 0

otherwise. This matrix only sends activation from the neighbor to a cell’s right if this neighbor has no
cells below, to the right, or above it, which would then take priority over us.

Wp,(2,1) :=


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0

 Wp,(3,2) :=


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0

 Wp,(2,3) :=


0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 1 0
0 0 0 0 0


When the route activation is not propagated to some adjacent, available neighbor as a result of one
of the priority-rankings as defined above, we add a binary stack activation to the ignored tile. We
then count the age of this stack activation with the stack_rank channel. When the pebble becomes
stuck, the least stack_rank activations will correspond to the edges that the pebble has ignored most
recently. Since, if the pebble ignores multiple edges at a given iteration (e.g., by moving downward
when both right and left neighbors are also available), there will be multiple equivalent stack_rank
activations, we further encode their directional priority on the stack via the stack_direction channel.
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Chanel relationship Weight
source −→ route W2

route −→ route W2

wall −→ route −W2

stack −→ route −W2

route −→ routei,j W5,(i,j)

route −→ routei,j Wp,(i,j)

empty −→ routei,j −Wp,(i,j)

source −→ routei,j −Wp,(i,j)

target −→ routei,j −Wp,(i,j)

pebble −→ stack Wa

stack −→ stack W2

wall −→ stack −2W2

route −→ stack −2W2

pebble −→ stack_direction Wp

stack_direction −→ stack_direction W2

wall −→ stack_direction −2W2

route −→ stack_direction −2W2

pebble −→ stack_rank W2

stack_direction −→ stack_rank W2

wall −→ stack_rank −2W2

route −→ stack_rank −2W2

stack −→ stack_rank W2

pebble −→ since_binary W2

since_binary −→ since_binary W1

since_binary −→ since_binary W1

since −→ since W1

Table 9: hand-coded weights between chan-
nels of NCA for DFS.

For the priority of the direction, we define Wp ∈ R5×5 and W 1,2
p = 0.2, W 2,1

p = 0.4, W 3,2
p = 0.6,

W 2,3
p = 0.8; otherwise, W k,l

p = 0. Then, we define Wa ∈ R5×5 to check the neighbor tiles to follow

the ‘pebble’ and W
(m,n)
a = 1 if (m,n) ∈ {(1, 2), (2, 1), (3, 2), (2, 3)}; otherwise, W (m,n)

a = 0.

Wp :=


0 0 0 0 0
0 0 1

5 0 0
0 4

5 0 2
5 0

0 0 3
5 0 0

0 0 0 0 0

 Wa :=


0 0 0 0 0
0 0 1 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 0 0


Note that in the event a cell which is already “on the stack” is added to it again (i.e., the pebble passes
by it at two neighboring cells, without having moved onto it), the stack_rank and stack_direction
activations at this tile are effectively reset or overwritten, to correspond to this more “recent” edge in
terms of the pebble’s traversal over the graph.

Having defined these elementary weights, we give the full specification of the hand-coded DFS-NCA
in Table 9. The result is a convolutional weight matrix WDFS ∈ R3×3

The source tile will result in the initial route activation. Once a tile has an active route, it will be
maintained at following timesteps. wall and stack activations will inhibit the appearance of a route
activation. Directional route activations will appear if the tile is empty and if any of the higher
priority neighbors in Wp,(i,j) are available (that is, they are empty, source or target tiles, without
any existing route activation already present on them).

If the pebble passes by a some tile at any of its neighbors (given by Wa), this tile is added to the
stack, with the stack activation sustaining itself across following timesteps. This stack activation
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is nullified, however, if there is a wall on the current tile, or is received route activation at the next
iteration. (A stack activation thus only becomes active when the pebble “ignores” an available tile
as a result of directional priority.)

The stack_direction channel is similarly self-sustaining, and is activated when the pebble passes by
the current tile without having been inhibited by a wall and without moving onto the tile at the next
iteration, though this time it is activated according to the directional priority matrix Wp.

The stack_direction channel is, again, self-sustaining and activated when ignored by a pebble.
Additionally, it increments at each following time-step as long as a stack remains present at the
current tile.

Forward pass. We apply a step function to the directional routei,j activation channels. The result
will indicate whether, given the presence of adjacent route activations, the priority allotted to any
relevant and available second-neighbors, and the presence of any wall or stack activations, route
activation if flowing into a given tile in a given direction. As a first step toward, determining the
route activation at a given tile, we take the sum of the directional route-activations at this tile, and
apply a step function to the result. This will indicate whether route activation is flowing into this tile
from any direction. We then add the result to the route activation and take the step function again:
this will ensure that any blocking wall or stack activations prevent the final route activation.

We apply ReLU functions to the stack, stack rank, and stack direction channels. To address the event
of a given tile being re-added to the stack before being popped from it, we apply a sawtooth to detect
tiles with a stack activation equal to 2, resulting in a binary array, dbl_stacked ∈ {0, 1}w×h. To
overwrite the old stack_rank and stack_direction activations (and reset the stack activation to 1),
we subtract from each of these channels the product of their value at the preceding time-step (t− 1)
with dbl_stacked. For the stack_rank channel, we must subtract its previous value +1, since its
stack_rank has incremented during the most recent convolution (as occurs at each time-step) in
addition to having increased as a result of its new position at the top of the stack.

The pebble channel is given by the difference between the route activations at the current time-step
and those at the previous time-step, so that there is at most a single pebble on the board, in the place
of the single newly-added route activation. If the pebble is stuck, there is no pebble activation, so we
take the spatial max-pool over the pebble channel and apply a sawtooth0 to obtain a binary value
corresponding to the pebble’s being stuck.

In case the pebble is stuck, we need to know which tile on the stack to pop next, taking into
account both the directional priority and time spent on the stack of each tile. We thus calculate
the total_rank of each tile (stored as a temporary variable, with total_rank ∈ Rw×h) by taking
the sum of its stack_rank and stack_direction channels. The tile with least non-zero total_rank
is the next tile to be popped. We first replace all 0 activations in the total_rank array by adding
to this array the result of step0(total_rank multiplied by a large integer L (i.e. the maximum
value of stack_rank + 1 Then, we take the minimum over the resulting total_rank: this is the
min_total_rank ∈ Z0 (the same could be achieved by flipping signs and using a max-pooling layer).
(Note that if min_total_rank = L, then the stack is empty, we are effectively done, and the following
steps will have no effect.)

Wherever the difference total_rank −min_rank is 0, we must pop from the stack, provided also
that the pebble is stuck. Thus, to obtain a binary array is_popped ∈ {0, 1}w×h with a 1 in at the
one tile to be popped (if any), we take the product of sawtooth0 applied to the above difference,
with the binary variable indicating the pebble’s being stuck. Finally, to release the given tile from
the stack, we subtract from the stack, stack_rank and stack_direction channels their product with
is_popped, zeroing-out these channels and dis-inhibiting the flow of route activation to these tiles at
following time-steps.

We note that since channel activation happens when pebble triggers the stack channel so pebble is
next to this node. The reason of the since channel is to count how many iterations passed after the
node is added to the stack. Therefore, since channel increases by 1 after the activation.
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Xt ←− concatenate (Xt,Xmaze)

∀x, y, Xx,y
t+1 ←−

2∑
i=0

2∑
j=0

Wi,j
DFS ⊙Xx+i−1,y+j−1

t

∀i, j, Xt+1 ←− step
(
X

routei,j
t+1

)
Xroute

t+1 ← step

Xroute
t+1 + step

∑
(i,j)

Xroutei,j


∀chan ∈ {stack, stack_rank,stack_direction},

Xchan
t+1 ← ReLU

(
Xchan

)
dbl_stacked← sawtooth2

(
Xstack

)
∀chan ∈ {stack,stack_direction},

Xchan
t+1 ← Xchan

t+1 −Xchan
t ⊙ dbl_stacked

Xstack
t+1 ← Xstack

t+1 −
(
Xstack

t + 1
)
⊙ dbl_stacked

Xpebble
t+1 ← Xroute

t+1 −Xroute
t

is_stuck← step

(∑
x,y

Xpebble,x,y
t+1

)
total_rank← Xstack_rank

t+1 +Xstack_direction
t+1

total_rank← total_rank + sawtooth0 (total_rank) · L
min_total_rank← min

x,y

(
total_rankx,y

t+1

)
is_popped← sawtooth0 (total_rank−min_total_rank) · is_stuck

∀chan ∈ {stack, stack_rank,stack_direction},
Xchan

t+1 ← Xchan
t+1 −Xchan

t+1 ⊙ is_popped

A.3 EXPERIMENTAL DETAILS

For each experiment (each row in a table), 5 trials were conducted, involving 50, 000 model update
steps. Each trial took up to 5, running on nodes with a single GPU on a High Performance Computing
cluster, with GPUs comparable to the GTX 2080 Ti. In tables, we report standard deviations of each
experiment in each metric over all trials.

A.4 EXTENDED RESULTS

In Table 11, we compare Graph Convolutional Networks (GCNs) and Graph Attention Networks
(GATs) on the pathfinding task. Surprisingly, GATs are outperformed by GCNs on this task, even
though the anisotropic capacity of GATs more closely ressembles that of NCAs. In Table 10, we find
that representing the grid-maze as a graph in which only traversable tiles and edges are included in
the graph leads to significantly increased performance in the GCN model.

In Table 12 we conduct a hyperparameter sweep over various model architectures.
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model train test
— 16x16 16x16 32x32

n. params accuracy accuracy pct. complete accuracy

model traversable
edges only n. layers n. hid chan

GCN

False

16
96 81,600 27.22 ± 9.68 27.09 ± 9.62 10.67 ± 4.10 0.04 ± 2.80
128 143,616 15.49 ± 16.35 15.41 ± 16.26 6.21 ± 6.59 0.36 ± 1.28
256 565,760 20.94 ± 17.78 20.36 ± 17.29 8.85 ± 7.66 -1.14 ± 2.69

32
96 158,400 27.31 ± 14.44 27.13 ± 14.34 11.74 ± 6.44 -1.52 ± 3.52
128 278,784 28.81 ± 15.18 28.54 ± 15.04 13.14 ± 7.37 -1.43 ± 3.19
256 1,098,240 28.12 ± 19.30 27.24 ± 18.71 14.92 ± 10.61 -4.64 ± 6.94

64
96 312,000 17.87 ± 18.31 17.87 ± 18.30 8.36 ± 8.93 -2.02 ± 5.27
128 549,120 7.73 ± 15.80 7.69 ± 15.72 3.92 ± 8.26 -1.65 ± 5.13
256 2,163,200 12.11 ± 19.33 11.96 ± 19.09 6.66 ± 10.76 -0.51 ± 2.43

True

16
96 81,600 50.05 ± 26.80 50.16 ± 26.87 22.87 ± 13.01 -45.97 ± 215.37
128 143,616 56.78 ± 30.19 56.97 ± 30.30 31.74 ± 17.11 -42.62 ± 150.45
256 565,760 55.57 ± 38.38 55.59 ± 38.39 32.49 ± 22.45 -85.07 ± 229.68

32
96 158,400 39.26 ± 34.24 39.27 ± 34.25 19.10 ± 17.12 27.99 ± 25.41
128 278,784 45.65 ± 40.03 45.68 ± 40.05 25.50 ± 22.98 33.75 ± 29.60
256 1,098,240 69.17 ± 36.46 68.95 ± 36.35 40.32 ± 21.27 50.21 ± 28.55

64
96 312,000 39.04 ± 82.35 38.42 ± 84.73 28.22 ± 17.24 16.01 ± 99.26
128 549,120 42.11 ± 37.59 42.15 ± 37.61 23.21 ± 20.91 29.47 ± 29.44
256 2,163,200 51.27 ± 44.19 51.26 ± 44.18 29.87 ± 25.75 44.59 ± 38.42

Table 10: Shortest path problem: graph representation. Representing the grid-maze as a graph
containing only traversable nodes and edges increases generalization.

model train test
— 16x16 16x16 32x32

n. params accuracy accuracy pct. complete accuracy
model positional edge features n. layers n. hid chan

GAT

False

16
96 153,600 40.98 ± 23.59 41.20 ± 23.72 5.84 ± 5.69 31.06 ± 17.73

128 270,336 55.75 ± 4.41 56.11 ± 4.56 13.11 ± 5.10 41.76 ± 3.02
256 1,064,960 55.22 ± 30.90 55.38 ± 30.99 16.04 ± 12.82 41.43 ± 23.17

32
96 307,200 24.93 ± 34.14 24.99 ± 34.22 5.97 ± 9.22 19.04 ± 26.08

128 540,672 56.63 ± 31.71 56.62 ± 31.70 17.92 ± 11.88 44.11 ± 24.82
256 2,129,920 62.84 ± 35.22 62.78 ± 35.19 22.37 ± 13.54 51.25 ± 28.74

64
96 614,400 53.83 ± 30.27 53.85 ± 30.27 16.03 ± 11.84 42.17 ± 23.61

128 1,081,344 61.71 ± 34.60 61.78 ± 34.64 21.99 ± 12.56 50.76 ± 28.65
256 4,259,840 44.59 ± 41.08 44.66 ± 41.15 14.23 ± 15.33 37.58 ± 34.97

True

16
96 156,672 27.56 ± 25.32 27.69 ± 25.45 5.24 ± 6.67 21.47 ± 19.66

128 274,432 44.97 ± 25.86 45.14 ± 25.96 12.28 ± 9.92 33.99 ± 19.51
256 1,073,152 26.54 ± 36.38 26.57 ± 36.41 4.17 ± 5.72 20.10 ± 27.57

32
96 313,344 39.26 ± 36.02 39.31 ± 36.06 10.10 ± 11.75 29.72 ± 27.29

128 548,864 54.86 ± 30.75 54.97 ± 30.82 19.12 ± 11.04 41.53 ± 23.28
256 2,146,304 15.51 ± 34.68 15.45 ± 34.55 5.58 ± 12.47 12.64 ± 28.27

64
96 626,688 73.62 ± 2.12 73.77 ± 2.13 26.01 ± 5.62 58.15 ± 2.16

128 1,097,728 71.93 ± 6.94 72.10 ± 6.97 26.18 ± 3.82 49.45 ± 23.78
256 4,292,608 15.48 ± 34.61 15.46 ± 34.58 2.50 ± 5.58 12.96 ± 28.98

GCN False

16
96 153,600 53.07 ± 30.04 53.26 ± 30.14 26.36 ± 15.27 39.91 ± 22.68

128 270,336 68.96 ± 4.56 69.19 ± 4.65 37.93 ± 4.27 51.16 ± 3.53
256 1,064,960 31.27 ± 42.82 31.29 ± 42.85 18.66 ± 25.55 24.07 ± 32.97

32
96 307,200 40.64 ± 37.91 40.58 ± 37.86 19.96 ± 19.50 30.95 ± 29.40

128 540,672 44.89 ± 41.90 44.95 ± 41.95 24.19 ± 23.36 34.92 ± 32.78
256 2,129,920 68.75 ± 38.43 68.51 ± 38.30 39.55 ± 22.11 56.53 ± 31.62

64
96 614,400 65.21 ± 36.49 65.33 ± 36.55 35.88 ± 20.19 52.38 ± 29.40

128 1,081,344 49.12 ± 44.84 49.13 ± 44.86 27.60 ± 25.22 39.17 ± 35.80
256 4,259,840 69.48 ± 38.85 69.35 ± 38.77 40.27 ± 22.52 58.19 ± 32.54

Table 11: Shortest path problem – GNN model architectures (without weight-sharing): Despite
being more closely aligned to the NCA, the GAT does not outperform GCNs, potentially due to
insufficient training time.

In Tables 13 and 14, we conduct hyperparameter sweeps on NCA models on the pathfinding and
diameter problems, respectively (all prior tables focusing on NCAs comprise select rows from this
larger sweep).
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model train test
— 16x16 16x16 32x32

n. params accuracies accuracies pct. complete accuracies
model n. layers n. hid chan

GCN

16
96 9,600 47.02 ± 26.29 47.09 ± 26.32 19.38 ± 10.84 -131.51 ± 291.67

128 16,896 44.59 ± 40.73 44.77 ± 40.89 25.56 ± 23.36 -136.19 ± 169.80
256 66,560 79.85 ± 1.99 79.90 ± 1.97 46.31 ± 1.69 -194.49 ± 296.77

32
96 9,600 37.89 ± 34.59 37.95 ± 34.65 18.24 ± 16.65 25.01 ± 23.75

128 16,896 46.41 ± 42.99 46.41 ± 42.99 26.80 ± 25.24 32.57 ± 29.88
256 66,560 69.61 ± 38.92 69.36 ± 38.78 41.09 ± 22.97 43.92 ± 27.12

64
96 9,600 12.87 ± 110.48 11.50 ± 114.14 20.54 ± 10.68 -20.56 ± 134.55

128 16,896 35.10 ± 32.34 35.19 ± 32.41 18.83 ± 17.30 19.77 ± 20.87
256 66,560 33.88 ± 46.40 33.98 ± 46.54 18.94 ± 26.10 29.56 ± 40.55

MLP

16
96 16,257,024 77.94 ± 1.32 14.75 ± 0.68 2.73 ± 0.18 0.00 ± 0.00

128 21,565,440 75.90 ± 3.30 12.42 ± 1.74 2.77 ± 0.10 0.00 ± 0.00
256 42,799,104 52.11 ± 29.83 8.13 ± 4.57 1.88 ± 1.11 0.00 ± 0.00

32
96 16,257,024 31.90 ± 43.68 5.85 ± 8.04 1.24 ± 1.71 0.00 ± 0.00

128 21,565,440 29.47 ± 40.36 4.83 ± 6.63 1.02 ± 1.39 0.00 ± 0.00
256 42,799,104 2.82 ± 42.89 -8.34 ± 25.59 0.54 ± 1.20 0.00 ± 0.00

64
96 16,257,024 70.69 ± 3.29 13.91 ± 1.04 2.74 ± 0.20 0.00 ± 0.00

128 21,565,440 63.58 ± 3.09 12.48 ± 1.74 2.45 ± 0.20 0.00 ± 0.00
256 42,799,104 52.92 ± 6.63 12.82 ± 1.78 1.94 ± 0.17 0.00 ± 0.00

NCA

16
96 86,400 99.78 ± 0.05 96.04 ± 0.33 93.86 ± 0.59 62.71 ± 35.01

128 152,064 99.97 ± 0.01 96.67 ± 0.20 95.16 ± 0.26 87.08 ± 1.26
256 599,040 79.97 ± 44.71 78.03 ± 43.62 77.58 ± 43.37 70.12 ± 39.22

32
96 86,400 99.67 ± 0.28 96.79 ± 0.70 96.26 ± 0.47 84.75 ± 6.69

128 152,064 99.92 ± 0.09 97.78 ± 0.32 97.61 ± 0.30 91.78 ± 1.51
256 599,040 79.68 ± 44.54 78.33 ± 43.79 78.27 ± 43.76 74.24 ± 41.55

64 128 152,064 99.39 ± 0.15 97.44 ± 0.13 97.61 ± 0.20 90.06 ± 2.93
256 599,040 79.14 ± 44.24 77.90 ± 43.55 78.35 ± 43.80 73.92 ± 41.36

Table 12: Shortest path problem: model architecture. Neural Cellular Automata generalize best,
while Graph Convolutional Networks generalize better than Multilayer Perceptrons.
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m
odel

train
test

—
16x16

16x16
32x32

n.param
s

sollen
accuracies

accuracies
accuracies

m
odel

evo.data
kernel

m
ax-pool

shared
w

eights
cutcorners

n.hid
chan

N
C

A

False

3

False
False

False
128

9,584,640
24.09

±
0.00

99.82
±

0.06
78.52

±
0.71

16.85
±

14.55
True

128
5,324,800

24.09
±

0.00
99.85

±
0.07

73.38
±

2.33
12.77

±
5.20

True
False

128
149,760

24.09
±

0.00
95.93

±
0.42

83.65
±

0.53
33.46

±
9.10

True
128

83,200
24.09

±
0.00

78.05
±

43.63
66.89

±
37.40

-9.86
±

12.18

True
False

False
128

9,584,640
24.09

±
0.00

99.79
±

0.05
79.21

±
1.90

30.88
±

12.92
True

128
5,324,800

24.09
±

0.00
99.67

±
0.15

82.57
±

0.93
46.06

±
4.74

True
False

128
149,760

24.09
±

0.00
77.41

±
43.27

67.20
±

37.57
27.47

±
52.59

True
128

83,200
24.09

±
0.00

95.72
±

0.45
86.54

±
1.07

56.31
±

26.80

5

False
False

False
128

26,624,000
24.09

±
0.00

99.93
±

0.04
59.30

±
4.76

-8.37
±

9.73
True

128
13,844,480

24.09
±

0.00
99.84

±
0.03

68.04
±

6.29
-1.71

±
25.78

True
False

128
416,000

24.09
±

0.00
95.09

±
0.94

77.63
±

1.01
17.58

±
2.79

True
128

216,320
24.09

±
0.00

95.06
±

1.69
80.73

±
1.64

26.02
±

7.79

True
False

False
128

26,624,000
24.09

±
0.00

99.90
±

0.06
67.60

±
1.17

2.78
±

8.84
True

128
13,844,480

24.09
±

0.00
99.79

±
0.14

75.09
±

2.22
23.18

±
12.67

True
False

128
416,000

24.09
±

0.00
96.62

±
0.96

76.89
±

0.93
21.85

±
14.69

True
128

216,320
24.09

±
0.00

96.30
±

0.54
81.43

±
0.45

49.74
±

2.58

True

3

False
False

False
128

9,584,640
29.45

±
0.72

86.88
±

0.87
88.37

±
1.58

39.32
±

17.32
True

128
5,324,800

29.56
±

0.21
76.45

±
0.97

89.88
±

0.98
46.38

±
2.70

True
False

128
149,760

26.34
±

1.27
69.32

±
38.76

71.53
±

39.99
-6.90

±
42.96

True
128

83,200
24.81

±
0.54

69.91
±

39.08
72.31

±
40.43

-62.54
±

95.29

True
False

False
128

9,584,640
30.58

±
0.58

82.15
±

2.07
89.02

±
1.56

55.48
±

15.45
True

128
5,324,800

30.24
±

0.37
83.18

±
2.97

89.41
±

0.86
70.35

±
2.62

True
False

128
149,760

27.43
±

0.15
87.76

±
0.79

90.02
±

0.44
30.02

±
64.80

True
128

83,200
26.19

±
0.36

86.96
±

1.41
89.54

±
0.91

31.89
±

44.56

5

False
False

False
128

26,624,000
30.52

±
0.41

82.21
±

0.81
90.50

±
0.21

43.19
±

4.75
True

128
13,844,480

29.62
±

0.52
80.37

±
1.31

88.96
±

1.64
47.23

±
3.04

True
False

128
416,000

28.03
±

0.13
86.06

±
1.22

88.95
±

1.36
38.04

±
5.62

True
128

216,320
27.61

±
0.27

85.77
±

1.01
89.96

±
1.71

29.37
±

26.44

True
False

False
128

26,624,000
30.68

±
0.20

87.87
±

1.00
88.82

±
0.36

40.32
±

12.18
True

128
13,844,480

30.24
±

0.18
84.83

±
2.20

88.24
±

1.02
53.65

±
7.34

True
False

128
416,000

28.03
±

0.35
85.54

±
1.06

89.88
±

0.55
48.12

±
16.01

True
128

216,320
27.44

±
0.29

86.44
±

1.09
89.58

±
0.52

24.46
±

29.35

Table 13: Diameter problem: hyperparameter sweep.
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m
odel

train
test

—
16x16

16x16
32x32

n.param
s

sollen
accuracies

accuracies
pct.com

plete
accuracies

m
odel

evo.data
kernel

m
ax-pool

shared
w

eights
cutcorners

n.hid
chan

N
C

A

False

3

False
False

False
128

9,732,096
9.02

±
0.00

99.92
±

0.08
97.12

±
0.42

97.07
±

0.59
86.72

±
3.29

True
128

5,406,720
9.02

±
0.00

99.89
±

0.11
97.01

±
0.38

96.75
±

0.76
86.85

±
1.66

True
False

128
152,064

9.02
±

0.00
98.91

±
0.69

97.38
±

0.65
97.66

±
0.93

90.89
±

2.09
True

128
84,480

9.02
±

0.00
79.12

±
44.24

78.09
±

43.66
78.30

±
43.77

73.87
±

41.30

True
False

False
128

9,732,096
9.02

±
0.00

99.94
±

0.02
96.47

±
0.13

96.07
±

0.06
86.12

±
2.09

True
128

5,406,720
9.02

±
0.00

99.91
±

0.04
97.11

±
0.42

96.76
±

0.57
86.30

±
1.38

True
False

128
152,064

9.02
±

0.00
98.96

±
0.46

97.09
±

0.56
97.76

±
0.41

87.00
±

3.14
True

128
84,480

9.02
±

0.00
99.58

±
0.12

98.08
±

0.28
98.32

±
0.31

88.61
±

4.07

5

False
False

False
128

27,033,600
9.02

±
0.00

79.95
±

44.69
74.95

±
41.90

74.97
±

41.92
51.93

±
35.75

True
128

14,057,472
9.02

±
0.00

99.95
±

0.03
94.89

±
0.79

95.05
±

0.61
78.46

±
3.80

True
False

128
422,400

9.02
±

0.00
39.70

±
54.36

38.89
±

53.26
39.01

±
53.41

36.43
±

49.89
True

128
219,648

9.02
±

0.00
59.48

±
54.30

58.29
±

53.21
58.48

±
53.39

54.40
±

49.66

True
False

False
128

27,033,600
9.02

±
0.00

99.95
±

0.04
92.95

±
0.55

92.10
±

1.36
64.62

±
16.19

True
128

14,057,472
9.02

±
0.00

99.87
±

0.07
93.27

±
1.19

93.09
±

0.99
75.81

±
3.94

True
False

128
422,400

9.02
±

0.00
39.40

±
53.95

38.24
±

52.36
38.53

±
52.77

32.80
±

44.95
True

128
219,648

9.02
±

0.00
99.40

±
0.14

97.36
±

0.37
97.67

±
0.18

87.28
±

4.18

True

3

False
False

False
128

9,732,096
28.08

±
0.21

98.73
±

0.11
99.25

±
0.27

98.61
±

0.96
97.91

±
0.50

True
128

5,406,720
24.04

±
8.40

78.71
±

44.00
79.61

±
44.51

79.59
±

44.49
78.55

±
43.91

True
False

128
152,064

23.75
±

1.36
96.81

±
1.54

99.29
±

0.53
99.53

±
0.32

98.47
±

1.01
True

128
84,480

24.50
±

1.17
97.54

±
0.88

99.64
±

0.12
99.75

±
0.07

98.95
±

0.40

True
False

False
128

9,732,096
28.06

±
0.23

99.49
±

0.31
99.30

±
0.35

98.77
±

0.97
95.22

±
3.48

True
128

5,406,720
26.43

±
1.21

98.77
±

0.39
99.48

±
0.09

99.25
±

0.34
94.82

±
1.32

True
False

128
152,064

19.88
±

6.13
76.83

±
42.96

79.39
±

44.38
79.60

±
44.50

78.43
±

43.85
True

128
84,480

22.39
±

7.48
78.07

±
43.64

79.64
±

44.52
79.62

±
44.51

78.95
±

44.13

5

False
False

False
128

27,033,600
24.55

±
8.68

79.59
±

44.49
79.44

±
44.41

79.12
±

44.24
76.94

±
43.02

True
128

14,057,472
28.62

±
0.19

98.79
±

1.33
98.72

±
0.82

98.04
±

1.73
96.19

±
1.12

True
False

128
422,400

25.52
±

0.30
95.90

±
1.40

99.04
±

0.43
99.23

±
0.54

97.80
±

0.88
True

128
219,648

22.69
±

3.80
95.29

±
2.23

98.40
±

1.01
98.66

±
1.20

96.13
±

3.56

True
False

False
128

27,033,600
24.61

±
0.55

99.57
±

0.09
98.67

±
0.36

97.78
±

0.85
88.58

±
9.19

True
128

14,057,472
24.21

±
0.65

99.42
±

0.22
99.13

±
0.05

98.53
±

0.23
94.94

±
1.11

True
False

128
422,400

22.07
±

1.38
92.99

±
4.99

95.28
±

6.31
93.76

±
9.44

66.13
±

64.35
True

128
219,648

18.43
±

5.20
91.74

±
4.23

97.78
±

1.14
98.40

±
0.71

94.08
±

3.15

Table 14: Pathfinding problem: hyperparameter sweep.
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