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1 Proofs

Theorem 1. The gradient of log-likelihood function L(Θ) = EG∼pd

[
log pΘ(G|I)

]
can be computed

with the unnormalized likelihood function fΘ as below:
∇ΘL(Θ) = EG∼pd

[∇Θ log fΘ(G, I)]− EG∼pΘ [∇Θ log fΘ(G, I)],

where pd is the data distribution, pΘ denotes the conditional distribution pΘ(G|I) defined by the
model.

Proof. Based on the formulation of the likelihood function pΘ(G|I) = fΘ(G, I)/ZΘ(I), we can
reformulate the gradient of log-likelihood function as:

∇ΘL(Θ) = EG∼pd
[∇Θ log fΘ(G, I)]−∇Θ logZΘ(I).

For the second term of this equation, we deduce as below:

∇Θ logZΘ(I) =
1

ZΘ(I)
∇ΘZΘ(I)

=
1

ZΘ(I)
∇Θ

∑
G∈G

fΘ(G, I)

=
1

ZΘ(I)

∑
G∈G
∇ΘfΘ(G, I)

=
1

ZΘ(I)

∑
G∈G

fΘ(G, I)∇Θ log fΘ(G, I)

=
∑
G∈G

pΘ(G|I)∇Θ log fΘ(G, I)

= EG∼pΘ
[∇Θ log fΘ(G, I)],

where G is the set of all possible scene graphs for image I . In conclusion, we can express∇ΘL(Θ)
as below:

∇ΘL(Θ) = EG∼pd
[∇Θ log fΘ(G, I)]− EG∼pΘ [∇Θ log fΘ(G, I)].

Theorem 2. In the initialization phase, the potential function ψtriplet(r, yoh , yot) for modeling label
dependency is omitted in p(G|I), yielding a simplified model distribution p̂(G|I). The following
factors make the variational distribution q(G) equal to p̂(G|I):

q(yo) =
φ(yo, I)∑

y′
o∈C

φ(y′o, I)
∀o ∈ O, q(r) =

ψvisual(r, I)∑
r′∈T ψvisual(r′, I)

∀(oh, r, ot) ∈ R.
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Proof. By not considering the potential functionψtriplet(r, yoh , yot), the simplified model distribution
p̂(G|I) has the following form:

p̂(G|I) =
1

ZΘ(I)

∏
o∈O

φ(yo, I)
∏

(oh,r,ot)∈R

ψvisual(r, I).

If the factors q(yo) (o ∈ O) and q(r) ((oh, r, ot) ∈ R) take the expressions in Theorem 1, we can
express the variational distribution q(G) as below:

q(G) =
∏
o∈O

φ(yo, I)∑
y′
o∈C

φ(y′o, I)

∏
(oh,r,ot)∈R

ψvisual(r, I)∑
r′∈T ψvisual(r′, I)

.

In this situation, q(G) and p̂(G|I) take a very similar expression. We further express the partition
function ZΘ(I) with the following form:

ZΘ(I) =
∏
o∈O

∑
y′
o∈C

φ(y′o, I)
∏

(oh,r,ot)∈R

∑
r′∈T

ψvisual(r
′, I).

Now, we can exactly derive that q(G) = p̂(G|I).

Theorem 3. In the update phase, we use the full expression of p(G|I) with the potential function
ψtriplet(r, yoh , yot) for modeling label dependency. In the variational distribution q(G), if we are to
update one factor q(yo) (or q(r)) with all other factors fixed, its optimum q∗(yo) (or q∗(r)) which
maximizes the variational lower bound L(q) = Eq(G)[log p(G, I) − log q(G)] can be specified by
the following expression:

log q∗(yo) = log φ(yo, I) +
∑

(o,r,ot)∈R

∑
yot∈C

∑
r∈T

q(yot)q(r) logψtriplet(r, yo, yot)

+
∑

(oh,r,o)∈R

∑
yoh
∈C

∑
r∈T

q(yoh)q(r) logψtriplet(r, yoh , yo) + const ∀o ∈ O,

log q∗(r) = logψvisual(r, I)

+
∑

yoh
∈C

∑
yot∈C

q(yoh)q(yot) logψtriplet(r, yoh , yot) + const ∀(oh, r, ot) ∈ R.

Proof. By substituting the formulation of the assumed variational distribution into the variational
lower bound L(q), we can have the following expression:

L(q) =
∑
G

{∏
o∈O

q(yo)
∏

(oh,r,ot)∈R

q(r)

[
log p(G, I)−

∑
o∈O

log q(yo)−
∑

(oh,r,ot)∈R

log q(r)

]}
.

(1) For updating the factor q(yo) (o ∈ O) with all other factors fixed, we can deduce the variational
lower bound as below:

L(q) =
∑
yo∈C

q(yo)
∑

G\{o}

{ ∏
o′∈O\{o}

q(yo′)
∏

(oh,r,ot)∈R

q(r) log p(G, I)

}

−
∑
yo∈C

q(yo) log q(yo) + const

= −DKL

[
q(yo) || p̃(yo, I)

]
+ const,

log p̃(yo, I) =
∑

G\{o}

{ ∏
o′∈O\{o}

q(yo′)
∏

(oh,r,ot)∈R

q(r) log p(G, I)

}
+ const,
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where DKL denotes the KL divergence. In this case, maximizing L(q) is equivalent to minimizing
the KL divergence term, and the minimum occurs when q(yo) = p̃(yo, I). We thus get the expression
of the optimal solution q∗(yo) as below:

log q∗(yo) = log p̃(yo, I)

=
∑

G\{o}

{ ∏
o′∈O\{o}

q(yo′)
∏

(oh,r,ot)∈R

q(r) log p(G, I)

}
+ const

= log φ(yo, I) +
∑

(o,r,ot)∈R

∑
yot∈C

∑
r∈T

q(yot)q(r) logψtriplet(r, yo, yot)

+
∑

(oh,r,o)∈R

∑
yoh
∈C

∑
r∈T

q(yoh)q(r) logψtriplet(r, yoh , yo) + const.

(2) For updating the factor q(r) ((oh, r, ot) ∈ R) with all other factors fixed, we can deduce the
variational lower bound as below:

L(q) =
∑
r∈T

q(r)
∑

G\{(oh,r,ot)}

{∏
o∈O

q(yo)
∏

(o′h,r
′,o′t)∈R\{(oh,r,ot)}

q(r′) log p(G, I)

}

−
∑
r∈T

q(r) log q(r) + const

= −DKL

[
q(r) || p̃(r, I)

]
+ const,

log p̃(r, I) =
∑

G\{(oh,r,ot)}

{∏
o∈O

q(yo)
∏

(o′h,r
′,o′t)∈R\{(oh,r,ot)}

q(r′) log p(G, I)

}
+ const.

Similarly, the maximum of L(q) is achieved when q(r) = p̃(r, I), which derives the optimal solution
q∗(r) as below:

log q∗(r) = log p̃(r, I)

=
∑

G\{(oh,r,ot)}

{∏
o∈O

q(yo)
∏

(o′h,r
′,o′t)∈R\{(oh,r,ot)}

q(r′) log p(G, I)

}
+ const

= logψvisual(r, I) +
∑

yoh
∈C

∑
yot∈C

q(yoh)q(yot) logψtriplet(r, yoh , yot) + const.

2 More Implementation Details

Implementation details of JM-SGG (triplet). In the ablation study, we study a variant of JM-SGG
that models the joint distribution of an individual relational triplet instead of the whole scene graph,
named as JM-SGG (triplet), which has the same model expressiveness as two previous works [2, 1].
For a relational triplet e composed of head object oh, tail object ot and relation r, JM-SGG (triplet)
models the joint distribution of all possible triplet labels upon image I as below:

pΘ(e|I) =
1

ZΘ(I)
fΘ(e, I), (1)

fΘ(e, I) = φ(yoh , I)φ(yot , I)ψ(r, yoh , yot , I), (2)
where Θ summarizes all model parameters, fΘ is an unnormalized likelihood function, and ZΘ is the
partition function. The definitions of potential function φ and ψ follow those in JM-SGG model.

In the learning phase, we use a similar expression as the one in Theorem 1 to estimate the gradients
for maximum likelihood learning:

∇ΘL(Θ) = Ee∼pd
[∇Θ log fΘ(e, I)]− Ee∼pΘ

[∇Θ log fΘ(e, I)]. (3)
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We employ the triplets in ground-truth scene graphs to estimate the first expectation in Eq. (3), and the
triplets sampled from the model distribution are used to estimate the second expectation in Eq. (3).

In the inference phase, JM-SGG (triplet) also defines a variational distribution qΘ(e) based on
mean-field approximation:

qΘ(e) = qΘ(yoh)qΘ(yot)qΘ(r). (4)
Following JM-SGG, the three factors in Eq. (4) are first independently initialized and then iteratively
updated (the iteration number NT is set as 1 for both sampling and test).

3 More Visualization Results
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Figure 1: The scene graphs generated by JM-SGG model. (Red labels in scene graphs are wrong.)

In Fig. 1, we visualize three typical scene graphs generated by JM-SGG model, in which the results
with and without applying factor update are respectively shown. In these examples, factor update
is able to correct some wrong relation labels (e.g. man has board→ man holding board, sign on
sidewalk→ sign above sidewalk) by considering the dependency among different object and
relation labels in the scene graph.
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