
Supplementary material416

Appendix A provides proofs of theorems stated in Sec 2, where we presented the proposed reject417

option models for the OOD setup and their optimal strategies. Appendix A is organized as follows:418

• Appendix A.1. Proof of Theorem 1 providing an optimal strategy of the cost-based OOD model.419

• Appendix A.2. Proof of Theorem 2 and Theorem 4 that claim that the Bayes ID classifier (4)420

is an optimal solution of the bounded TPR-FPR and the bounded Precision-Recall model,421

respectively. The proof of both theorems is the same, hence we put it to the same section.422

• Appendix A.3. Proof of Theorem 3 providing a form of an optimal selective function under the423

bounded TPR-FPR model for an arbitrary fixed ID classifier.424

• Appendix A.4. In this section, we characterize the form of τ(x) function, which defines the425

acceptance probability of boundary inputs Xs(x)=λ = {x ∈ X | s(x) = λ} for the optimal426

selective function (9).427

• Appendix A.5. In the case of finite input space, i.e. |X | < ∞, we can find an optimal selective428

function under the bounded TRP-FPR model via Linear Programming described in this429

section.430

• Appendix A.6. Proof of Theorem 5 providing a form of an optimal selective function under the431

Bounded Precision-Recall model for an arbitrary fixed ID classifier.432

Appendix B provides supplementary material for Sec. 3. The evaluation curves obtained for the433

examplar methods on synthetic data are shown in Sec B.1. The algorithm to solve the problems (13)434

and (14) is discussed in Sec. B.2.435

A Proofs of theorems from Sec 2436

A.1 Proof of Theorem 1437

Due to the additivity of the expected risk R(h, c) = Ex,y∼p(x,ȳ)ℓ̄(ȳ, (h, c)(x)), the optimal strategy438

minimizing the risk can be found for each input x ∈ X separately by solving439

q∗(x) = argmin
q∈Ȳ

Rx(q)

where Rx(q) is the partial risk defined as440

Rx(q) =
∑
ȳ∈Ȳ

p(x, ȳ) ℓ̄(ȳ, q) = pO(x)π
(
[[q = ∅]] ϵ3 + [[q(x) ̸= ∅]]ϵ2

)
+ (1− π)

∑
y∈Y

pI(x, y)
(
[[q = ∅]]ϵ1 + [[q ̸= ∅]] ℓ(y, q)

)
We can se that441

Rx(q = reject) = pO(x)π ϵ3 + PI(x) (1− π) ϵ1

Rx(q ̸= reject) = pO(x)π ϵ2 + (1− π)
∑
y∈Y

pI(x, y) ℓ(y, q)

min
q∈Y

Rx(q) = pO(x)π ϵ2 + (1− π) pI(x) rB(x) ,

where r(x) is the minimal conditional risk442

rB(x) = min
ŷ∈Y

∑
y∈Y

pI(y | x)ℓ(y, ŷ)

It is optimal to reject when443

0 ≤ min
q∈Y

Rx(q)−Rx(q = reject)

= pO(x)π ϵ2 + (1− π) pI(x) r(x)− pO(x)π ϵ3 − pI(x) (1− π) ϵ1
= pO(x)π (ϵ2 − ϵ3) + (1− π) pI(x) (rB(x)− ϵ1)

= s(x) .
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The inequality 0 ≤ s(x) is equalivalent to444

rB(x) + (ε2 − ε3)
π

1− π
g(x) ≥ ϵ1 .

In case that π < 10 and K
0 = ∞, the optimal strategy then reads445

q∗ =

{
reject if s(x) ≥ 0

argmin
ŷ∈Y

∑
y∈Y pI(x, y)ℓ(y, ŷ) if s(x) ≤ 0

Note that in the boundary case s(x) = 0 we can reject or accept arbitrarily without affecting the446

solution.447

A.2 Proof of Theorem 2 and Theorem 4448

The definition of hB allows to derive RS(hB , c) ≤ RS(h, c) as follows:449

RS(hB , c) =
1

ϕ(c)

∫
X

∑
y∈Y

p(x, y) ℓ(y, hB(x)) c(x) dx

=
1

ϕ(c)

∫
X

p(x)c(x)

∑
y∈Y

p(y |x) ℓ(y, hB(x))

 dx

≤ 1

ϕ(c)

∫
X

p(x)c(x)

∑
y∈Y

p(y |x) ℓ(y, h(x))

 dx

=
1

ϕ(c)

∫
X

∑
y∈Y

p(x, y) ℓ(y, h(x)) c(x) dx

= RS(h, c) .

A.3 Proof of Theorem 3450

It is a direct consequence of the following theorem.451

Theorem 6. For any (h, c) optimal to (8), there exist real numbers λ, µ such that452 ∫
X<

pI(x)c(x)dx =

∫
X<

pI(x)dx ,

∫
X>

pI(x)c(x)dx = 0 ,

where453

X< = {x ∈ X | r(x) + µ
pO(x)

pI(x)
< λ} ,

X> = {x ∈ X | r(x) + µ
pO(x)

pI(x)
> λ} .

Proof. We first give a proof for countable sets X , when integrals can be expressed as sums, then we454

present its generalization to arbitrary X .455

Assume X is countable and (h, c) is optimal to (8). Observe that we do not need to pay attention to456

those x ∈ X for which pI(x) = 0 as they do not have any impact on the theorem statement. Denote457

X+ = {x ∈ X | pI(x) > 0} ,

X0 =
{
x ∈ X+ | c(x) = 0

}
,

X1 =
{
x ∈ X+ | c(x) = 1

}
,

X2 =
{
x ∈ X+ | 0 < c(x) < 1

}
.
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Let P : X+ → R2
+ be a mapping such that P (x) =

(
pO(x)
pI(x)

, R(x)
pI(x)

)
, where458

R(x) =
∑
y∈Y

p(x, y)ℓ(y, h(x)) .

To confirm the existence of suitable λ, µ, it suffices to show that the sets459

A0 = {P (x) | x ∈ X0} , (15)
A1 = {P (x) | x ∈ X1} , (16)
A2 = {P (x) | x ∈ X2} (17)

are “almost” linearly separable, i.e., there is a line L that includes A2 and linearly separates the sets460

A0 \ L, A1 \ L. The existence of such L is ensured if461

dim span ((conv(A0) ∩ conv(A1)) ∪A2) < 2 , (18)

where conv(·) denotes the convex hull and span(·) denotes the span of a set of vectors.462

We will check validity of condition (18) by using the following two claims.463

Claim 6.1. Let x1, x2 ∈ X+, r(x1) > r(x2), and pO(x1)
pI(x1)

≥ pO(x2)
pI(x2)

. Then, x1 ∈ X0 or x2 ∈ X1.464

Proof of the claim. By contradiction. Assume c(x1) > 0 and c(x2) < 1. Define a selective function465

c′ which is identical to c up to c′(x1) = c(x1)−∆, c′(x2) = c(x2) +
pI(x1)
pI(x2)

∆, where466

∆ = min

{
c(x1),

pI(x2)

pI(x1)
(1− c(x2))

}
> 0 .

Now, observe that467

ϕ(c′)− ϕ(c) = −∆ · pI(x1) +
pI(x1)

pI(x2)
∆ · pI(x2) = 0 ,

468

ρ(c′)− ρ(c) = −∆ · pO(x1) +
pI(x1)

pI(x2)
∆ · pO(x2) ≤ 0 , and

469

ϕ(c)
(
RS(h, c′)− RS(h, c)

)
= −∆ ·R(x1) +

pI(x1)

pI(x2)
∆ ·R(x2) = ∆ · pI(x1)(r(x2)− r(x1)) < 0

contradicts the optimality of (h, c). ■470

Claim 6.2. Let x1, x2, x3 be elements of X+ such that the points P1 = P (x1), P2 = P (x2), P3 =471

P (x3) are non-collinear and β · P3 = α1 · P1 + α2 · P2 holds for some α1, α2, β ∈ R+, where472

α1 + α2 = 1.473

• If β < 1, then x3 ∈ X0 or {x1, x2} ∩ X1 ̸= ∅.474

• If β > 1, then x3 ∈ X1 or {x1, x2} ∩ X0 ̸= ∅.475

Proof of the claim. We will give a proof for β < 1 and note that the steps for β > 1 are analogous.476

By contradiction. Assume c(x1) < 1, c(x2) < 1, and c(x3) > 0. To simplify the notation, for477

i ∈ {1, 2, 3}, let pi = pI(xi), qi = pO(xi), and Ri = R(xi).478

Define a selective function c′ which is identical to c up to479

c′(x1) = c(x1) + ∆ · α1
p3
p1

,

c′(x2) = c(x2) + ∆ · α2
p3
p2

,

c′(x3) = c(x3)−∆ ,
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where480

∆ = min

{
c(x3),

p1
α1p3

(1− c(x1)),
p2

α2p3
(1− c(x2))

}
> 0 .

Observe that481

ϕ(c′)− ϕ(c) = ∆α1p3 +∆α2p3 −∆p3 = 0 ,
482

ρ(c′)− ρ(c) = ∆α1
p3
p1

q1 +∆α2
p3
p2

q2 −∆q3 = ∆(β − 1)q3 ≤ 0 , and
483

ϕ(c)
(
RS(h, c′)− RS(h, c)

)
= ∆α1

p3
p1

R1 +∆α2
p3
p2

R2 −∆R3

= ∆p3

(
α1

R1

p1
+ α2

R2

p2

)
−∆R3 = ∆p3β

R3

p3
−∆R3

= ∆(β − 1)R3 < 0

contradicts the optimality of c. ■484

We are ready to confirm condition (18), this is done by analyzing the potential infeasible cases.485

1. dim span(conv(A0) ∩ conv(A1)) = 2. Then, there are x1, x2, x3, x4 ∈ X+ such that486

P (x1), P (x2), P (x3) are non-collinear, P (x4) is inside the triangle P (x1), P (x2), P (x3),487

and, either x1, x2, x3 ∈ X0, x4 ∈ X1, or x1, x2, x3 ∈ X1, x4 ∈ X0.488

2. dim span(A2) = 2. There are x1, x2, x3 ∈ X2 such that P (x1), P (x2), P (x3) are non-489

collinear.490

3. dim span(conv(A0)∩ conv(A1)) = 1 and dim span((conv(A0)∩ conv(A1))∪A2) = 2.491

There are x1, x2 ∈ X0, x3, x4 ∈ X1, x5 ∈ X2 such that points P (x1), P (x3) lie on a half-492

line H1, points P (x2), P (x4) lie on a half-line H2, where H1∩H2 = ∅ and conv(H1∪H2)493

is a line not containing P (x5).494

4. dim span(A2) = 1, and dim span((conv(A0)∩conv(A1))∪A2) = 2. There are x1 ∈ X0,495

x2 ∈ X1, x3, x4 ∈ X2 such that P (x3) ̸= P (x4), points P (x3), P (x4) lie on a line L, and496

points P (x1), P (x2) lie in one half-plane of L, but not on L.497

It is not difficult to check that all the listed points configurations always enable to select a subset of498

two or three points whose existence is ruled out by Claim 6.1 or Claim 6.2, respectively.499

Consider now that X is an arbitrary set.500

For a, b, ε ∈ R+, where ε > 0, let Ba,b,ε = {(x, y) | a ≤ x < a+ ε ∧ b ≤ y < b+ ε}.501

For a given ε > 0, we can decompose the positive quadrant Q = {(x, y) | x ∈ R+, y ∈ R+} into502

countably many pairwise disjoint sets as follows503

Q =
⋃

B(ε) , B(ε) = {Bεm,εn,ε | m,n ∈ N} .

For B ∈ B(ε), define504

X (B) =
{
x ∈ X+ | P (x) ∈ B

}
,

pI(B) =

∫
X (B)

pI(x)dx .

In analogy to X+,X0,X1,X2, define505

B+(ε) = {B ∈ B(ε) | pI(B) > 0} ,

c(B) =
1

pI(B)

∫
X (B)

pI(x)c(x)dx ∀B ∈ B+(ε) ,

B0(ε) = {B ∈ B+(ε) | c(B) = 0} ,
B1(ε) = {B ∈ B+(ε) | c(B) = 1} ,
B2(ε) = {B ∈ B+(ε) | 0 < c(B) < 1} .
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The set B+(ε) can thus be viewed as a discretisation of X .506

Since a·pI(x) ≤ pO(x) ≤ (a+ε)·pI(x) and b·pI(x) ≤ R(x) ≤ (b+ε)·pI(x) for all x ∈ X (Ba,b,ε),507

it holds508

a · pI(Ba,b,ε)c(Ba,b,ε) ≤
∫

X (Ba,b,ε)

pO(x)c(x)dx ≤ (a+ ε) · pI(Ba,b,ε)c(Ba,b,ε) , (19)

509

b · pI(Ba,b,ε)c(Ba,b,ε) ≤
∫

X (Ba,b,ε)

R(x)c(x)dx ≤ (b+ ε) · pI(Ba,b,ε)c(Ba,b,ε) . (20)

Define510

P̌ (Ba,b,ε) = (a, b) ,

P̂ (Ba,b,ε) = (a+ ε, b+ ε) ,

i.e., P̌ (Ba,b,ε) and P̂ (Ba,b,ε) is the bottom-left and top-right corner of Ba,b,ε, respectively.511

Claims 6.1 and 6.2 can be generalized to elements of B+(ε) as follows.512

Claim 6.3. Let Ba,b,ε, Ba′,b′,ε ∈ B+(ε), a ≥ a′ + ε, and b > b′ + ε. Then, Ba,b,ε ∈ B0(ε) or513

Ba′,b′,ε ∈ B1(ε).514

Proof of the claim. Denote B = Ba,b,ε, B′ = Ba′,b′,ε. By contradiction. Assume c(B) > 0515

and c(B′) < 1. Find a selective function c′ which is identical to c up to c′(B) = c(B) − ∆,516

c′(B′) = c(B) + pI(B)
pI(B′)∆, where517

∆ = min

{
c(B),

pI(B
′)

pI(B)
(1− c(B′))

}
> 0 .

Observe that518

ϕ(c′)− ϕ(c) = −∆ · pI(B) +
pI(B)

pI(B′)
∆ · pI(B′) = 0 .

With the use of (19) and (20), derive519

ρ(c′)− ρ(c) =

∫
X (B′)

pO(x)c
′(x)dx−

∫
X (B)

pO(x)c(x)dx ≤ (a′ + ε)pI(B
′)c(B′)− a · pI(B)c(B)

≤ a(ϕ(c′)− ϕ(c)) = 0 , and
520

ϕ(c)
(
RS(h, c′)− RS(h, c)

)
=

∫
X (B′)

R(x)c′(x)dx−
∫

X (B)

R(x)c(x)dx

≤ (b′ + ε)pI(B
′)c(B′)− b · pI(B)c(B)

< b · (ϕ(c′)− ϕ(c)) = 0 .

Hence, (h, c′) contradicts the optimality of (h, c). ■521

Claim 6.4. Let ε > 0 and B1, B2, B3 be elements of B+(ε).522

• If β · P̌ (B3) = α1 · P̂ (B1)+α2 · P̂ (B2), where α1, α2, β ∈ R+, α1 +α2 = 1, β < 1, then523

B3 ∈ B0(ε) or {B1, B2} ∩ B1(ε) ̸= ∅.524

• If β · P̂ (B3) = α1 · P̌ (B1)+α2 · P̌ (B2), where α1, α2, β ∈ R+, α1 +α2 = 1, β > 1, then525

B3 ∈ B1(ε) or {B1, B2} ∩ B0(ε) ̸= ∅.526

Proof of the claim. Apply the technique from the proof of Claim 6.3 to the proof of Claim 6.2. ■527

For ε > 0, define528

C0(ε) =
⋃

B0(ε) , C1(ε) =
⋃

B1(ε) , C2(ε) =
⋃

B2(ε) .
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For ε > ε′ > 0, let B ∈ B+(ε), B′ ∈ B+(ε′), B′ ⊂ B. Observe that B ∈ B0(ε) and pI(B
′) > 0529

implies B′ ∈ B0(ε
′). And similarly, B ∈ B1(ε) and pI(B

′) > 0 implies B′ ∈ B1(ε
′). This means530

that531

C2

(ε
2

)
⊆ C2 (ε) ,

C0

(ε
2

)
∪ C2

(ε
2

)
⊆ C0 (ε) ∪ C2 (ε) ,

C1

(ε
2

)
∪ C2

(ε
2

)
⊆ C1 (ε) ∪ C2 (ε) .

We can thus define532

C2 = lim
n→∞

C2

( ε

2n

)
,

C0 =
(
lim

n→∞

[
C0

( ε

2n

)
∪ C2

( ε

2n

)])
\ C2 ,

C1 =
(
lim

n→∞

[
C1

( ε

2n

)
∪ C2

( ε

2n

)])
\ C2 .

where we utilize the fact: if a sequence of sets {Dn}∞n=0 fulfills Dn+1 ⊆ Dn ⊆ R2 for all n ∈ N,533

then limn→∞ Dn =
⋂∞

n=0 Dn.534

Note that each Ci corresponds to Ai (see 15– 17) in the following sense:535 ∫
X (A2∆C2)

p(x)dx = 0 ,

∫
X ((A0∪A2)∆(C0∪C2))

p(x)dx = 0 ,

∫
X ((A1∪A2)∆(C1∪C2))

p(x)dx = 0 ,

where ∆ denotes the symmetric difference of two sets.536

It holds537

dim span ((conv(C0) ∩ conv(C1)) ∪ C2) < 2 ,

otherwise we can find ε > 0 and a configuration of two or three elements of B+(ε) which is ruled538

out by Claims 6.3 and 6.4 (the analysis of infeasible configurations is analogous to cases 1– 4).539

A.4 Characterization of function τ in Theorem 3540

Theorem 7. Let there be real numbers µ, λ such that (8) fulfills R(x) + µpO(x) = λpI(x) for all541

x ∈ X . Then, there are real numbers γ1, γ2, χ1, χ2, where γ1 ≤ γ2, and χ1, χ2 ∈ [0, 1], such that542

the selective function τ defined as543

τ(x) =


1 if γ1 < pO(x)

pI(x)
< γ2

χ1 if pO(x)
pI(x)

= γ1

χ2 if pO(x)
pI(x)

= γ2
0 otherwise

is an optimal solution to (8).544

Proof. Since, for all x ∈ X , R(x) = λpI(x)− µpO(x), we can write545

RS(h, c) =

∫
X R(x)c(x)dx

ϕ(c)
=

λϕ(c)− µρ(c)

ϕ(c)
= λ− µ

ρ(c)

ϕ(c)
.

For a, b ∈ R+, let Ma,b = {x ∈ X | a < pO(x)
pI(x)

< b}, and Ma = {x ∈ X | pO(x)
pI(x)

= a}. Define546

continuous functions Φ,P : [0, 1]2 × R2
+ → [0, 1] as547

Φ(α, β, s, t) = α

∫
Ms

pI(x)dx+

∫
Ms,t

pI(x)dx+ [[s < t]]β

∫
Mt

pI(x)dx ,

P(α, β, s, t) = α

∫
Ms

pO(x)dx+

∫
Ms,t

pO(x)dx+ [[s < t]]β

∫
Mt

pO(x)dx .

Distinguish two cases.548
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Case µ < 0. The problem reduces to549

min
h,c

ρ(c)

ϕ(c)
s.t. ϕ(c) ≥ ϕmin and ρ(c) ≤ ρmax .

An optimal solution τ is obtained by setting550

γ1 = 0 ,

γ2 = inf {t ∈ R+ | Φ(1, 1, 0, t) ≥ ϕmin} ,

χ2 =

{
inf{β ∈ [0, 1] | Φ(1, β, 0, γ2) ≥ ϕmin} if γ2 > 0
inf{β ∈ [0, 1] | Φ(β, 0, 0, 0) ≥ ϕmin} otherwise ,

χ1 =

{
1 if γ2 > 0
χ2 otherwise .

Note that P(χ1, χ2, γ1, γ2) > ρmax means that the problem is not feasible.551

Case µ > 0. The problem reduces to552

max
h,c

ρ(c)

ϕ(c)
s.t. ϕ(c) ≥ ϕmin and ρ(c) ≤ ρmax .

Define a partial function F : [0, 1]× R+ → [0, 1]× R+ such that F (α, s) = (β, t) iff553

P(α, β, s, t) = ρmax ,

t = sup{a ∈ R+ | P(α, 0, s, a) ≤ ρmax} ,
β = sup{b ∈ [0, 1] | P(α, b, s, t) ≤ ρmax} .

By the assumption that the problem is feasible, an optimal solution τ is obtained by setting554

γ1 = sup{s ∈ R+ | ∃α ∈ [0, 1] : F (α, s) = (β, t) ∧ Φ(α, β, s, t) ≥ ϕmin} ,
χ1 = sup{α ∈ [0, 1] | F (α, γ1) = (β, t) ∧ Φ(α, β, γ1, t) ≥ ϕmin} ,

(χ2, γ2) = F (χ1, γ1) .

555

A.5 Linear programming formulation of the Bounded TPR-FPR model for finite input sets556

Lemma 1. For any (h, c) optimal to (8), ϕ(c) = ϕmin unless RS(h, c) = 0.557

Proof. By contradiction. Assume that RS(h, c) > 0 and ϕ(c) = α · ϕmin for some α > 1. Let c′ be558

the selective function defined by c′(x) = c(x)/α for all x ∈ X . Then,559

ϕ(c′) = ϕmin ,

ρ(c′) =
ρ(c)

α
≤ ρmax ,

RS(h, c′) =
RS(h, c)

α
< RS(h, c) ,

and thus (h, c′) contradicts the optimality of (h, c).560

If X is a finite set, Lemma 1 enables us to refomulate Problem 1 as the following linear program:561

min
c∈[0,1]X

∑
x∈X

1

ϕmin
R(h, x)c(x) s.t.

∑
x∈X

pI(x)c(x) = ϕmin ,
∑
x∈X

pO(x)c(x) ≤ ρmax . (21)

A.6 Proof of Theorem 5562

Let (h, c∗) be optimal to (10). Denote C = ϕ(c∗). By rewriting (10), it turns out that (h, c∗) is563

optimal to564

min
h,c

∫
X

1

C
R(x)c(x)dx s.t.

ϕ(c) = C

ρ(c) ≤ (1−π)(1−κmin)
πκmin

C .

According to Lemma 1, this is synonymous with (8), and as a result, Theorem 3 is applicable to c∗.565
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B Post-hoc tuning and evaluation metrics566

B.1 Figures567

In Sec. 3, we proposed new evaluation metrics and applied them to synthetic data and exemplar568

single-score and double-score methods. Synthetic data and exemplar methods are described in Sec 3.1.569

The proposed evaluation metrics follow from the definition of an optimal OOD selective classifier.570

We provided two such formulations that avoid the definition of the loss function. Namely, we propose571

the bounded TPR-FPR rejection model and the Bounded Precision-Recall rejection model.572

In case of the bounded TPR-FPR model, the objective, and also the evaluation metric, is the selective573

risk attained RS
n at minimal acceptable TPR ρmin and maximal acceptable FPR ρmax. In addition to574

reporting a selective risk for a single operating point, it can be useful to fix the maximal acceptable575

FPR ρmax and show the selective risk RS
n as the function of varying TPR/coverage ϕmax, which576

yields the Risk-Coverage curve at FPR ρmax. The RC curve at ρmax = 0.2 for our example on577

synthetic data is shown in Figure 1(a). The proposed double score method D(R) is seen to achieve578

the lowest selective risk in the entire range of coverages available. The selective risk of the methods579

D(R) and C(0) is the same; however, the method C(0) has much lower maximal attainable coverage,580

namely, ϕmax = 0.58 and hence the method is marked as unable to achieve the target coverage; see581

Table 1.582

The problem of defining the TPR-FPR model (13) can be infeasible. To choose a feasible target583

value of ϕmin and ρmax, it is advantageous to plot the ROC curve, that is, the TPR and FPR values584

attainable by the classifiers in Q. ROC curve for the methods in our example is shown in Figure 1(b).585

The operation point (ϕmin, ρmax) is attainable if the ROC curve of the given method is entirely above586

the point.587

In case of the bounded Precision-Recall model, the objective, and also the evaluation metric, is the588

selective risk attained RS
n at minimal acceptable Precision κmin and minimal acceptable Recall/TPR589

ϕmin. In our example, the single-score method achieves the same selective risk under both models as590

we use the same target TPR/recall and the selective risk is a monotonic function of the score, see591

discussion in sec 3.3, hence we do not show the risk-coverage curve at fixed precision. However, we592

show the Precision-Recall curve, Figure 1(c), which is useful for determining the feasible target value593

for precision and recall. Again, the operation point (κmin, ϕmin) is achievable if the PR curve of the594

given method is entirely above the point.595

B.2 Algorithms596

The single-score OODD methods output a set of selective OOD classifiers Q = {(h, c) | c(x) =597

[[s(x) ≤ λ]] , λ ∈ R} parameterized by the decision threshold λ. Double-score OODD methods598

output a set Q = {(h, c) | c(x) = [[sr(x) + µ sg(x) ≤ λ]] , µ ∈ R , λ ∈ R} parameterized by λ ∈ R599

and µ ∈ R.600

The post hoc tuning aims to find the best OOD selective classifier out of Q based on the appropriate601

metric. To this end, the existing methods used the AUROC, AUPR of OSCR score as the metric to602

find the best classifier. Instead, we formulate the bounded TPR-FPR and the bound Precision-Recall603

model, where we find the best selective amounts to solving the constrained optimization problem (13)604

and (14), respectively.605

In case of single-score methods, the problem (13) and (14) 1-D optimization, namely, one needs606

to find the decision threshold λ ∈ R which leads to the minimal selective risk and simultaneously607

satisfies both constraints on the validation set T = ((xi, ȳi) ∈ X × Ȳ | i = 1, . . . , n). The threshold608

λ influences the involved metrics, that is, (RS
n(h, c), ϕn(c), ρn(c), κn(c)), only via the value of the609

selective function c(x) = [[s(x) ≤ λ]] which is a step function of the optimized threshold λ. Hence,610

we can see (RS
n(λ), ϕn(λ), ρn(λ), κn(λ)), as a function of λ and we can find all n+ 1 achievable611

values of (RS
n(λ), ϕn(λ), ρn(λ), κn(λ)) in a single sweep over the validation examples T sorted612

according to the value of s(xi). This procedure has complexity O(n log n) attributed to the sorting613

of n examples.614

In case of the double-score methods, we need to optimize w.r.t. λ and µ which are the free parameters615

of the selective function c(x) = [[sr(x) + µ sg(x) ≤ λ]]. The selective classifier can be seen616

as a binary in 2-D space. Hence, we equivalently parameterize the selective function as c(x) =617
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a) Risk-coverage curve at FPR ρmax = 0.2

b) ROC curve c) Prec-Recall curve

Figure 1: Evaluation curves for the exemplar methods on the synthetic data. The risk-coverage/TPR
curve at the maximal acceptable FPR is shown in Fig. a). For each method we also show attainable
coverage ϕ. The ROC curve and the Precision-Recall curve are shown in Fig. b) and c), respectively.

[[sr(x), cos(α) + sg(x) sin(α) ≤ λ′]] where α ∈ A = [0, π] and λ′ ∈ R. We approximate A by a618

finite set Ā ⊂ A, where Ā contains d equidistantly placed values over the interval [0, π]. For each619

α ∈ Ā, we compute all values n+ 1 of(RS
n(λ), ϕn(λ), ρn(λ), κn(λ)), using the algorithm described620

above. We found that setting d = 360 is enough, as higher values d do not change the results.621
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