
Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 A CONCRETE SYSTEM IMPLEMENTATION OF MPC: CRYPTEN

In this section, we provide how a concrete MPC system (Crypten) implements primitives and
functions for Transformer models in detail (Knott et al., 2021). We provide a portion of details
here to help describe the complexity of Transformer inference in MPC. A more complete system
overview and privacy proof are available in the Crypten paper.

Threat model. Crypten follows Evans et al. (2018) to assume that parties are semi-honest. Under
this assumption, parties are honest that they will follow the system protocols. However, each party is
also curious (i.e., semi-honest), meaning it will try to infer the information about others’ data based
on the values it receives.

Secret shares Crypten uses secret shares to implement private computation. A floating point value
xf is first scaled to an integer x4, then secretly shared with both parties. Secret shares are of type
arithmetic or binary. The arithmetic secret shares [x] = {[x]1, [x]2} is a set of two numbers, where
the first party holds [x]1, and the second holds [x]2. They are constructed with a pair of zero-sum
random maskings (Cramer et al., 2005) so that [x]1 + [x]2 = x. Binary shares ⟨x⟩ are formed by
arithmetic secret shares of bits in x, so that the bitwise xor ⟨x⟩1 ⊕ ⟨x⟩1 = x.

Primitives and functions In arithmetic secret shares, to privately evaluate addition [x] + [y] ,
both parties simply compute: [x]i + [y]i individually. Multiplication [x][y] is evaluated by using a
Beaver triple generated off-line ([c], [a], [b]) where c = ab (Beaver, 1991). Both parties compute
and reveal intermediate values [ϵ] = [x] − [a] and [δ] = [y] − [b]. The final result is computed by
[x][y] = [c]+ϵ[b]+[a]δ+ϵδ. Linear functions such as matrix multiplication can be evaluated by using
additions and multiplications. Non-linear functions are evaluated by numerical approximations
using additions and multiplications, such as Taylor expansion.

Comparison requires conversions between arithmetic and binary secret shares. Conversion from
[x] to ⟨x⟩ first creates binary secret shares ⟨[x]i⟩ from arithmetic secret share [x]i (i = 0, 1), then
computes ⟨x⟩ = ⟨[x]1⟩ + ⟨[x]2⟩ using an adder circuit. Conversion from ⟨x⟩ to [x] is done by:
[x] =

∑B
b=1 2

b[⟨x⟩(b)], where ⟨x⟩(b) is the bth bit of ⟨x⟩. The comparison function [z < 0] is then
evaluated by: (1) convert [z] to ⟨z⟩ (2) compute the sign bit ⟨b⟩ = ⟨z⟩ >> (L− 1). (3) Convert ⟨b⟩
to [b].

We study on the standard setting where each tensor is represented in 64 bits (i.e. L=64). Each
multiplication requires one round of communication for revealing the intermediate values ϵ, δ. Each
conversion from [x] to ⟨x⟩ requires log2 L = 6 rounds of communications for the adder circuit;
each conversion from ⟨x⟩ to [x] requires one round for generating [⟨x⟩(b)]. Thus, each comparison
requires 7 rounds of communication. Each max(·) between N elements requires O(log2(N)) rounds
of communications, assuming a tree-reduction algorithm.

We provide a simple addition example here. The scaling factor and ring size Q are set to small for
ease of understanding.

Table 6: Example of secure addition computation. Suppose m is the actual message, then each party
holds a share of m such that: [m]1 + [m]2 = m.

Action Party 1 Party 2 Note

Declare x x = 1 x = random x provided by party 1
Generate a secret-sharing mask for x [zx]1 = −4 [zx]2 = 4 sum to 0

secret share x [x]1 = x+ [zx]1 = −3 [x]2 = [zx]2 = 4 sum to x1

Declare y y = random y = 2 y provided by party 2
Generate a secret-sharing mask for y [zy]1 = 50 [zy]2 = −50 sum to 0

secret share y [y]1 = [zy]1 = 50 [y]2 = y + [zy]2 = −48 sum to y2
Compute x+ y [x+ y]i = [x]1 + [y]1 = 47 [x+ y]2 = [x]2 + [y]2 = −44
Reveal x+ y x+ y = [x+ y]1 + [x+ y]2 = 3 x+ y = [x+ y]1 + [x+ y]2 = 3 both get correct results

4x ∈ Z/QZ is required for privacy protocols, where Z/QZ is a ring with Q elements.

13



Under review as a conference paper at ICLR 2023

A.2 2QUAD IMPLEMENTATION DETAILS

We note that, implementing “2Quad“ to replace the softmax requires attention to the effect brought
by the masking operation. For example, the default implementation by Huggingface Wolf et al.
(2019) would result in an exploding problem due to masking. Therefore, we would need to do a
different version of the implementation of masking. We describe it in detail below.

The default attention implementation by Huggingface is

Attention(Q,K, V ) = softmax(
QKT

√
dk

+M{0,−inf})V

=
e

(
QKT√

dk
+M{0,−inf}

)

∑K
j=1 e

(
QKT√

dk
+M{0,−inf}

)
j

V.

If we directly replace the ex with (x+c)2 as in 2Quad approximation, where x = QKT

√
dk

+M{0,−inf}
will explode when being masked, causing a problem in the forward pass. To solve this problem, we
could simply change the implementation of masking from “adding a zero or negative infinite number
in the exponent” to “multiplying one or zero to the exponential function”. That is,

Attention(Q,K, V ) =
e

(
QKT√

dk

)
⊙M{1,0}∑K

j=1 e

(
QKT√

dk

)
j ⊙M{1,0}

V

→

(
QKT

√
dk

+ c
)2

⊙M{1,0}∑K
j=1

(
QKT
√
dk

+ c
)2

j
⊙M{1,0}

V.

It’s just a different implementation of the same masking purpose but avoids exploding at the masking
positions.

In our experiments, we empirically tried c = 5 and it worked pretty well, indicating the choice of
the constant c could be flexible.

A.3 HYPER-PARAMETER CHOICE

For baselines, We study the effect of hyper-parameters by running a grid search over the STS-B
dataset 5, with learning rate from [1e-6, 5e-6, 1e-5, 5e-5, 1e-4, 5e-4], batch size from [256, 128, 64,
32, 16], epoch from [3, 10, 30, 50, 80, 100, 200]. We show the grid search results with BERTBASE
in figure 6, 7, and a smaller grid search for BERTLarge and ROBERTABASE in Figure 8, 9. We
empirically discover that the learning rates from 1e-6, 5e-6, 1e-5, batch size from 64 and 256,
epoch from 10, 100 give good performance. To let baselines explore more hyper-parameters, we
use learning rate from [1e-6, 5e-6, 1e-5, 1e-4], batch size from [64, 256], epochs from [10, 30,
100] for all Glue datasets. Since we use sequence length 512 for IMDB dataset, we use batch size
32 to fit into our 16GB Tesla V100 GPU. We also empirically discover that (1) MPCBert-Bw/o{d}
(best 0.43) can not scale up when the base model scales to BERTLarge i.e., MPCBert-Lw/o{d} (best
0.08). (2) baseline benefits from using the pre-trained weights, i.e., MPCBert-Bw/o{d} (best 0.42)
performs better than MPCBert-Bw/o{p, d} (best 0.23). (3) MPCFormerw/o{d} benefits when the base
model becomes better, i.e., MPCRoberta-Bw/o{d} (best 0.62) performs better than MPCBert-Bw/o{d}
(best 0.42).

For MPCFORMER, we decide the number of epochs according to the MSE loss for embedding and
Transformer layer distillation, 5 epochs for prediction layer distillation, and batch size 8 for small
datasets (CoLA, MRPC, RTE) and 32 for larger ones (MNLI, QQP, SST2, STS-B). We minimize the
hyper-parameter tuning for MPCFORMER, since we would like the performance to be an expectation
for future researchers using MPCFORMER, who prefer not to tune hyper-parameters. Specifically,

5We select STS-B because it is a regression task, where performance varies in a large range.

14



Under review as a conference paper at ICLR 2023

we use 5 epochs for MNLI, 5 epochs for QQP, 10 epochs for QNLI, 10 epochs for SST-2, 20 epochs
for MRPC, 30 epochs for IMDB 50 epochs for STS-B, 50 epochs for CoLA, 50 epoches for RTE,
for the embedding and Transformer layer distillation stage.

0 100 200

0.00

0.05

0.10

0.15

0.20

bs=256

0 100 200
0.05

0.00

0.05

0.10

0.15

0.20

bs=128

0 100 200

0.00

0.05

0.10

0.15

0.20

bs=64

0 100 200
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
bs=32

0 100 200
0.05

0.00

0.05

0.10

0.15

0.20

bs=16
lr=1e-06
lr=5e-06
lr=1e-05
lr=5e-05
lr=1e-04
lr=5e-04

Figure 6: Grid search results for MPCBert-Bw/o{p,d} on STS-B dataset. X-axis is number of epochs,
and Y-axis is correlation (unscaled).

0 100 200

0.1

0.0

0.1

0.2

0.3

0.4
bs=256

0 100 200

0.1

0.0

0.1

0.2

0.3

0.4

bs=128

0 100 200

0.1

0.0

0.1

0.2

0.3

0.4

bs=64

0 100 200
0.1

0.0

0.1

0.2

0.3

0.4

bs=32

0 100 200

0.0

0.1

0.2

0.3

0.4

bs=16
lr=1e-06
lr=5e-06
lr=1e-05
lr=5e-05
lr=1e-04
lr=5e-04

Figure 7: Grid search results for MPCBert-Bw/o{d} on STS-B dataset. X-axis is number of epochs,
and Y-axis is correlation (unscaled).

0 25 50 75

0.06

0.04

0.02

0.00

0.02

0.04
bs=256

0 25 50 75

0.06

0.04

0.02

0.00

0.02

0.04

bs=128

0 25 50 75

0.04

0.02

0.00

0.02

0.04

0.06

bs=64

0 25 50 75
0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05
bs=32

0 25 50 75
0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03
bs=16

lr=1e-06
lr=5e-06
lr=1e-05
lr=5e-05
lr=1e-04
lr=1e-06

Figure 8: Grid search results for MPCBert-Lw/o{d} on STS-B dataset. X-axis is number of epochs,
and Y-axis is correlation (unscaled).

15



Under review as a conference paper at ICLR 2023

0 25 50 75

0.1

0.0

0.1

0.2

0.3

bs=256

0 25 50 75

0.1

0.0

0.1

0.2

0.3

0.4

bs=128

0 25 50 75

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

bs=64

0 25 50 75

0.1

0.0

0.1

0.2

0.3

0.4

0.5

bs=32

0 25 50 75

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

bs=16
lr=1e-06
lr=5e-06
lr=1e-05
lr=5e-05
lr=1e-04
lr=5e-04

Figure 9: Grid search results for MPCRoberta-Bw/o{d} on STS-B dataset. X-axis is number of
epochs, and Y-axis is correlation (unscaled).

16


