© ® N O g A~ W N =

FAVAS: Federated AVeraging with ASynchronous
clients

Anonymous Author(s)
Affiliation
Address

email

Abstract

In this paper, we propose a novel centralized Asynchronous Federated Learning
(FL) framework, FAVAS for training Deep Neural Networks (DNN5) in resource-
constrained environments. Despite its popularity, “classical” federated learning
faces the increasingly difficult task of scaling synchronous communication over
large wireless networks. Moreover, clients typically have different computing
resources and therefore computing speed, which can lead to a significant bias (in
favor of “fast” clients) when the updates are asynchronous. Therefore, practical
deployment of FL requires to handle users with strongly varying computing speed
in communication/resource constrained setting. We provide convergence guaran-
tees for FAVAS in a smooth, non-convex environment and carefully compare the
obtained convergence guarantees with existing bounds, when they are available.
Experimental results show that the FAVAS algorithm outperforms current methods
on standard benchmarks.

1 Introduction

Federated learning, a promising approach for training models from networked agents, involves
the collaborative aggregation of locally computed updates, such as parameters, under centralized
orchestration (Konecny et al., 2015; McMahan et al., |2017; |Kairouz et al., |2021). The primary
motivation behind this approach is to maintain privacy, as local data is never shared between agents
and the central server (Zhao et al.,[2018; [Horvath et al., 2022)). However, communication of training
information between edge devices and the server is still necessary. The central server aggregates the
local models to update the global model, which is then sent back to the devices. Federated learning
helps alleviate privacy concerns, and it distributes the computational load among networked agents.
However, each agent must have more computational power than is required for inference, leading to a
computational power bottleneck. This bottleneck is especially important when federated learning is
used in heterogeneous, cross-device applications.

Most approaches to centralized federated learning (FL) rely on synchronous operations, as assumed in
many studies (McMabhan et al.,2017;/Wang et al.,[2021)). At each global iteration, a copy of the current
model is sent from the central server to a selected subset of agents. The agents then update their
model parameters using their private data and send the model updates back to the server. The server
aggregates these updates to create a new shared model, and this process is repeated until the shared
model meets a desired criterion. However, device heterogeneity and communication bottlenecks (such
as latency and bandwidth) can cause delays, message loss, and stragglers, and the agents selected in
each round must wait for the slowest one before starting the next round of computation. This waiting
time can be significant, especially since nodes may have different computation speeds.

To address this challenge, researchers have proposed several approaches that enable asynchronous
communication, resulting in improved scalability of distributed/federated learning (Xie et al.|[2019;

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

37
38
39
40
41

42
43
44

45
46
47
48
49
50

51
52

53
54
55
56
57
58
59
60
61

62

63
64
65
66
67
68
69

70
71
72
73
74
75
76
77
78

79
80
81
82
83

84
85
86
87
88

Chen et al., 2020} 2021} Xu et al.,|2021). In this case, the central server and local agents typically
operate with inconsistent versions of the shared model, and synchronization in lockstep is not required,
even between participants in the same round. As a result, the server can start aggregating client
updates as soon as they are available, reducing training time and improving scalability in practice and
theory.

Contributions. Our work takes a step toward answering this question by introducing FAVAS, a
centralized federated learning algorithm designed to accommodate clients with varying computing
resources and support asynchronous communication.

* In this paper, we introduce a new algorithm called FAVAS that uses an unbiased aggregation
scheme for centralized federated learning with asynchronous communication. Our algorithm
does not assume that clients computed the same number of epochs while being contacted,
and we give non-asymptotic complexity bounds for FAVAS in the smooth nonconvex setting.
We emphasize that the dependence of the bounds on the total number of agents 7 is improved
compared to [Zakerinia et al.| (2022)) and does not depend on a maximum delay.

» Experimental results show that our approach consistently outperforms other asynchronous
baselines on the challenging TinyImageNet dataset (Le and Yang, 2015).

Our proposed algorithm FAVAS is designed to allow clients to perform their local steps independently
of the server’s round structure, using a fully local, possibly outdated version of the model. Upon
entering the computation, all clients are given a copy of the global model and perform at most i > 1
optimization steps based on their local data. The server randomly selects a group of s clients in each
server round, which, upon receiving the server’s request, submit an unbiased version of their progress.
Although they may still be in the middle of the local optimization process, they send reweighted
contributions so that fast and slow clients contribute equally. The central server then aggregates the
models and sends selected clients a copy of the current model. The clients take this received server
model as a new starting point for their next local iteration.

2 Related Works

Federated Averaging (FedAvg), also known as local SGD, is a widely used approach in federated
learning. In this method, each client updates its local model using multiple steps of stochastic gradient
descent (SGD) to optimize a local objective function. The local devices then submit their model
updates to the central server for aggregation, and the server updates its own model parameters by
averaging the client models before sending the updated server parameters to all clients. FedAvg has
been shown to achieve high communication efficiency with infrequent synchronization, outperforming
distributed large mini-batches SGD (Lin et al.,[2019).

However, the use of multiple local epochs in FedAvg can cause each device to converge to the optima
of its local objective rather than the global objective, a phenomenon known as client drift. This
problem has been discussed in previous work; see (Karimireddy et al.,|2020). Most of these studies
have focused on synchronous federated learning methods, which have a similar update structure to
FedAvg (Wang et al., 2020; Karimireddy et al.| 2020; |Qu et al., [2021; Makarenko et al., 2022; Mao
et al.;2022; Tyurin and Richtarikl 2022). However, synchronous methods can be disadvantageous
because they require all clients to wait when one or more clients suffer from high network delays or
have more data, and require a longer training time. This results in idle time and wasted computing
resources.

Moreover, as the number of nodes in a system increases, it becomes infeasible for the central server
to perform synchronous rounds among all participants, and synchrony can degrade the performance
of distributed learning. A simple approach to mitigate this problem is node sampling, e.g. Smith et al.
(2017); Bonawitz et al.| (2019), where the server only communicates with a subset of the nodes in a
round. But if the number of stragglers is large, the overall training process still suffers from delays.

Synchronous FL methods are prone to stragglers. One important research direction is based on
FedAsync (Xie et al.l [2019) and subsequent works. The core idea is to update the global model
immediately when the central server receives a local model. However, when staleness is important,
performance is similar to FedAvg, so it is suboptimal in practice. ASO-Fed (Chen et al.l [2020)
proposes to overcome this problem and handles asynchronous FL with local streaming data by

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

123

124
125

126
127
128
129

130
131
132
133
134
135
136

137

138
139

introducing memory-terms on the local client side. AsyncFedED (Wang et al.| 2022)) also relies on
the FedAsync instantaneous update strategy and also proposes to dynamically adjust the learning
rate and the number of local epochs to staleness. Only one local updated model is involved in
FedAsync-like global model aggregations. As a result, a larger number of training epochs are
required and the frequency of communication between the server and the workers increases greatly,
resulting in massive bandwidth consumption. From a different perspective, QuAFL (Zakerinia et al.,
2022) develops a concurrent algorithm that is closer to the FedAvg strategy. QuAFL incorporates
both asynchronous and compressed communication with convergence guarantees. Each client must
compute K local steps and can be interrupted by the central server at any time. The client updates
its model with the (compressed) central version and its current private model. The central server
randomly selects s clients and updates the model with the (compressed) received local progress (since
last contact) and the previous central model. QuAFL works with old variants of the model at each
step, which slows convergence. However, when time, rather than the number of server rounds, is
taken into account, QuAFL can provide a speedup because the asynchronous framework does not
suffer from delays caused by stragglers. A concurrent and asynchronous approach aggregates local
updates before updating the global model: FedBuff (Nguyen et al.l 2022) addresses asynchrony
using a buffer on the server side. Clients perform local iterations, and the base station updates the
global model only after Z different clients have completed and sent their local updates. The gradients
computed on the client side may be stale. The main assumption is that the client computations
completed at each step come from a uniform distribution across all clients. Fedbuff is asynchronous,
but is also sensitive to stragglers (must wait until Z different clients have done all local updates).
Similarly, [Koloskova et al.|(2022) focus on Asynchronous SGD, and provide guarantees depending
on SOMeE T, q,. Similar toNguyen et al.[(2022) the algorithm is also impacted by stragglers, during
the transitional regime at least. A recent work by [Fraboni et al.| (2023 extend the idea of |Koloskova
et al.| (2022) by allowing multiple clients to contribute in one round. But this scheme also favors fast
clients. [Liu et al.|(2021)) does not run on buffers, but develops an Adaptive Asynchronous Federated
Learning (AAFL) mechanism to deal with speed differences between local devices. Similar to
FedBuff, in|Liu et al.|(2021)’s method, only a certain fraction of the locally updated models contribute
to the global model update. Most convergence guarantees for asynchronous distributed methods
depend on staleness or gradient delays (Nguyen et al., [2022} Toghani and Uribe} 2022; Koloskova
et al.,[2022). Only Mishchenko et al.|(2022) analyzes the asynchronous stochastic gradient descent
(SGD) independently of the delays in the gradients. However, in the heterogeneous (non-IID) setting,
convergence is proved up to an additive term that depends on the dissimilarity limit between the
gradients of the local and global objective functions.

3 Algorithm

We consider optimization problems in which the components of the objective function (i.e., the data
for machine learning problems) are distributed over n clients, i.e.,

1 n
min R(w)v R(w) = E ZE(w,y)fvpéam[é(NN(xvw)vy)]7 (1)

Rd
we i=1

where d is the number of parameters (network weights and biases), n is the total number of clients, ¢
is the training loss (e.g., cross-entropy or quadratic loss), NN(z, w) is the DNN prediction function,
Plata 18 the training distribution on client ¢. In FL, the distributions pi,,, are allowed to differ
between clients (statistical heterogeneity).

Each client maintains three key values in its local memory: the local model w', a counter ¢°, and the
value of the initial model with which it started the iterations w¢,;,. The counter ¢ is incremented for
each SGD step the client performs locally until it reaches K, at which point the client stops updating
its local model and waits for the server request. Upon the request to the client ¢, the local model
and counter ¢° are reset. If a server request occurs before the K local steps are completed, the client
simply pauses its current training process, reweights its gradient based on the number of local epochs
(defined by EtZ 1 1) and sends its current reweighted model to the server.

In Zakerinia et al|(2022), we identified the client update w’ = S_%lwt,l +

shortcoming. When the number of sampled clients s is large enough, ;75 w® dominates the update
and basically no server term are taken into consideration. This leads to a significant client drift. As a

S

w® as a major

1

SN N A W N

=

10

11
12
13
14

140
141
142
143
144
145
146
147
148
149

150
151
152
153
154
155
156
157

158
159

161
162
163
164
165

Algorithm 1: FAVAS over T iterations. In red are highlighted the differences with QuAFL.

Input :Number of steps 7', LR 7, Selection
Size s, Maximum local steps K ; 15
16
17
/* At the Central Server * A8
Initialize 19
Initialize parameters w; 20
Server sends wy to all clients; 21
end 2
fort=1,...,Tdo 23
Generate set S; of s clients uniformly at 24

random;
for all clients i € S; do 25
| Server receives w’, . from client i; 26
end 27
Update central server model

1 1 i .
Wy = mwt*l + (m Z'LGSt wun,b’i,u,(s‘ezd)’ 28
for all clients i € S; do 29
\ Server sends wy to client 7; 30
end 31
end 32
33
34
35
36

/* At Client 4 x/

Initialize
Client receives wqg and K from the Server;
Local variables w® = wg, ¢* = 0;
end
Loop
Run ClientLocalTraining() concurrently;
When Contacted by the Server do
Interrupt ClientLocalTraining();
Define o following (3) ;
Send w'f;,nbiased = w;m’t + 5 (wl - w;nit)
to the server;
Receive w; from the server;
Update w!, ;, < wy, w' < wy, ¢* < 0;
Restart ClientLocalTraining() from
zero with updated variables;

end

end

function ClientLocalTraining():

while ¢ < K do
Compute local stochastic gradient g* at w?;
Update local model w? < w’ — ng*;
Update local counter ¢° < ¢* + 1;

end

Wait();

37 end function

consequence, QUAFL does not perform well in the heterogeneous case (see Section[5). Second, one
can note that the updates in QuAFL are biased in favor of fast clients. Indeed each client computes
gradients at its own pace and can reach different numbers of epochs while being contacted by the
central server. It is assumed that clients compute the same number of local epochs in the analysis
from |Zakerinia et al.| (2022), but it is not the case in practice. As a consequence, we propose FAVAS to
deal with asynchronous updates without favoring fast clients. A first improvement is to update local
weight directly with the received central model. Details can be found in Algorithm[I] Another idea
to tackle gradient unbiasedness is to reweight the contributions from each of the s selected clients:
these can be done either by dividing by the (proper) number of locally computed epochs, or by the
expected value of locally computed epochs. In practice, we define the reweight o' = E[E} L NK],
ora' = P(E},; > 0)(E{,, A K), where A stands for min. We assume that the server performs
a number of training epochs T' > 1. At each time step ¢ € {1,..., T}, the server has a model w;.
At initialization, the central server transmits identical parameters wy to all devices. At each time
step t, the central server selects a subset S; of s clients uniformly at random and requests their local
models. Then, the requested clients submit their reweighted local models back to the server. When
all requested models arrive at the server, the server model is updated based on a simple average (see
Line[I0). Finally, the server multicasts the updated server model to all clients in S;. In particular, all
clients ¢ ¢ S; continue to run their individual processes without interruption.

Remark 1. In FAVAS’s setting, we assume that each client i € {1, ...,n} keeps a full-precision local
model w'. In order to reduce the computational cost induced by the training process, FAVAS can also
be implemented with a quantization function Q. First, each client computes backpropagation with
respect to its quantized weights Q(w?*). That is, the stochastic gradients are unbiased estimates of
Vfi (Q (w’)) Moreover, the activations computed at forward propagation are quantized. Finally,
the stochastic gradient obtained at backpropagation is quantized before the SGD update. In our
supplementary experiments, we use the logarithmic unbiased quantization method of|Chmiel et al.
(2021).

167
168
169

170
171
172
173
174
175

176
177
178

179
180
181

182

183
184
185
186
187

188

189

190
191

Table 1: How long one has to wait to reach an e accuracy for non-convex functions. For simplicity,
we ignore all constant terms. Each constant C' depends on client speeds and represents the unit
of time one has to wait in between two consecutive server steps. L is the Lipschitz constant, and
F := (f(wo) — f«) is the initial conditions term. a;,b are constants depending on client speeds
statistics, and defined in Theorem@

Method ‘ Units of time

FedAvg (W 24 FLYGe} + LFB2 *1) Credvy

FedBuff <FL(02 +G2)e 2+ FL((Zog= +1)(02 + nG2)) e 3 + FLe) Creanuss

AsyncSGD (FL(302 +4G?)e 2 + FLG(STM,,])QE 4 (5TmasF)b e) Crsynescn

QuAFL P FLEK (0% + 2KG)e ™ + MV FKL(0® + 2KG?)}e ? + gl ony/nFBK Le™!

FAVAS FL(0? Y0 % + 8G2b)e? "FLZ(K?U2 +L2K2G? 4 5202 Y o 4 52025)5676 + nFB2K Lbe !

4 Analysis

In this section we provide complexity bounds for FAVAS in a smooth nonconvex environment.
We introduce an abstraction to model the stochastic optimization process and prove convergence
guarantees for FAVAS.

Preliminaries. We abstract the optimization process to simplify the analysis. In the proposed
algorithm, each client asynchronously computes its own local updates without taking into account the
server time step ¢. Here in the analysis, we introduce a different, but statistically equivalent setting.
At the beginning of each server timestep ¢, each client maintains a local model w!_,. We then assume
that all n clients instantaneously compute local steps from SGD. The update in local step ¢ for a
client ¢ is given by:

q—1
fe=0" (wi, =Y mhi],)
s=1

where g’ represents the stochastic gradient that client i computes for the function f;. We also define
n independent random variables E}, ..., E/* in N. Each random variable E! models the number of
local steps the client ¢ could take before receiving the server request. We then introduce the following

random variable: E% = Zf;l E;q. Compared to [Zakerinia et al.| (2022), we do not assume that
clients performed the same number of local epochs. Instead, we reweight the sum of the gradients by
weights o’, which can be either stochastic or deterministic:

; {P(EfH > 0)(Ej,, ANK) stochastic version, 3)

o = i Lo .
E[E}, 1 N K] deterministic version.

. . . 7 EINK T
And we can define the unbiased gradient estimator: h; = ai PRy /\ hl

Finally, a subset S; of s clients is chosen uniformly at random. Th1s subset corresponds to the clients
that send their models to the server at time step ¢. In the current notation, each client i € S; sends the
value w!_, — nh! to the server. We emphasise that in our abstraction, all clients compute E! local
updates. However, only the clients in S; send their updates to the server, and each client ¢ € S; sends
only the K first updates. As a result, we introduce the following update equations:

_ 1 1 i 1 E; /\K i
wt - s—l—lrwtf1 + s+1 ZiESt (wt—l - 7]? Z ht s)
w; =wy, forie€ &,
wy =wy_,, fori¢S;.

Assumptions and notations.
Al. Uniform Lower Bound: There exists f, € R such that f(z) > f, for all x € RY.

A2. Smooth Gradients: For any client i, the gradient V f;(x) is L-Lipschitz continuous for some
L >0, ie forall z,y € R ||Vfi(x) — Vfi(y)|| < L|lz -yl

192

193

194

195

196
197

198
199

201
202

203

204
205
206
207
208
209
210

211
212

213
214

215

216
217
218
219
220

221
222
223
224
225
226
227
228
229

A3. Bounded Variance: For any client 1, the variance of the stochastic gradients is bounded by some
0% >0, ie. forall x € R%: E[H ‘(x) — Vfi()HQ} < o2

A4. Bounded Gradient Dissimilarity: There exist constants G > 0 and B? > 1, such that for all
2
zeRh T BEEE <62+ BV @)

We define the notations required for the analysis. Consider a time step ¢, a client 4, and a local step q.

We define
Mt = (thrZwi) /(n+1))
i=1

the average over all node models in the system at a given time ¢. The first step of the proof is to
compute a preliminary upper bound on the divergence between the local models and their average.

For this purpose, we introduce the Lyapunov function: ®; = [lw; — e ||® + S [Jwi = ||2

Upper bounding the expected change in potential. A key result from our analysis is to upper
bound the change (in expectation) of the aforementioned potential function ®;:

Lemma 2. For any time step t > 0 we have:

Bl < (1B #3507 S B g) winn =t (Y.

The intuition behind Lemmais that the potential function ®; remains concentrated around its mean,
apart from deviations induced by the local gradient steps. The full analysis involves many steps and
we refer the reader to Appendix [B]for complete proofs. In particular, Lemmas[16]and [I8]allow us
to examine the scalar product between the expected node progress ZZL:I ﬁi and the true gradient
evaluated on the mean model V f (). The next theorem allows us to compute an upper-bound
on the averaged norm-squared of the gradient, a standard quantity studied in nonconvex stochastic
optimization.

Convergence results. The following statement shows that FAVAS algorithm converges towards a
first-order stationary point, as 7" the number of global epochs grows.

Theorem 3. Assume AI to A and assume that the learning rate 1 satisfies n < m Then
FAVAS converges at rate:

2(n+1)F Ls

2 720’
+
Tsn n+1

LT
T Z]EHVf (o) |I” < Za + 8G”b)n + L*s*(Za + 56006G2)n?
t=0

with F := (f (o) — f«), and

i 1 P(E{;,>0) 1(Bf,,>0)) 1 P i i

a', b= P(E2+1>0)2(K2 —21— [B AR J),ma?(ip(Ezﬂ>o>)for o' =P(E{y; > 0)(Ei 1 AK),
i 1 E[(EY 1 AK)7] (BB AK)T] i i

a ,b—]E[Eé+1 & KQ]E[E't"Jr]/\K]’ma Z(W) fOI'CE —E[Eﬂ,l /\K]

Note that the previous convergence result refers to the average model p;. In practice, this does not
pose much of a problem. After training is complete, the server can ask each client to submit its final
model. It should be noted that each client communicates 5L times with the server during training.
Therefore, an additional round of data exchange represents only a small increase in the total amount
of data transmitted.

The bound in Theorem [3|contains 3 terms. The first term is standard for a general non-convex target
and expresses how initialization affects convergence. The second and third terms depend on the
statistical heterogeneity of the client distributions and the fluctuation of the minibatch gradients.
Table[T] compares complexity bounds along with synchronous and asynchronous methods.One can
note the importance of the ratio <. Compared to [Nguyen et al.| (2022) or |[Koloskova et al.| (2022)),
FAVAS can potentially suffer from delayed updates when = < 1, but FAVAS does not favor fast
clients at all. In practice, it is not a major shortcoming, and FAVAS is more robust to fast/slow clients
distribution than FedBuff/AsyncSGD (see Figure[2). We emphasize both FedBuff and AsyncSGD rely
on strong assumptions: neither the queuing process, nor the transitional regime are taken into account

230
231
232
233
234
235

237
238
239
240
241
242

243
244
245
246
247
248

249
250

251

252
253
254
255

256
257
258
259
260
261
262

264
265

266

267
268
269
270
271

272
273
274
275
276
277
278

in their analysis. In practice, during the first iterations, only fast clients contribute. It induces a
serious bias. Our experiments indicate that a huge amount of server iterations has to be accomplished
to reach the stationary regime. Still, under this regime, slow clients are contributing with delayed
information. Nguyen et al.| (2022)); Koloskova et al.| (2022)) propose to uniformly bound this delay
by some quantity 7,,,,. We keep this notation while reporting complexity bounds in Table [T} but
argue nothing guarantee 7,,,,, is properly defined (i.e. finite). All analyses except that of Mishchenko
et al.| (2022)) show that the number of updates required to achieve accuracy grows linearly with 7,4,
which can be very adverse. Specifically, suppose we have two parallel workers - a fast machine that
takes only 1 unit of time to compute a stochastic gradient, and a slow machine that takes 1000 units
of time. If we use these two machines to implement FedBuff/AsyncSGD, the gradient delay of the
slow machine will be one thousand, because in the 1 unit of time we wait for the slow machine, the
fast machine will produce one thousand updates. As a result, the analysis based on 7,,,, deteriorates
by a factor of 1000.

In the literature, guarantees are most often expressed as a function of server steps. In the asynchronous
case, this is inappropriate because a single step can take very different amounts of time depending on
the method. For example, with FedAvg or Scaffold (Karimireddy et al., |2020), one must wait for
the slowest client for each individual server step. Therefore, we introduce in Table [I] constants C'
that depend on the client speed and represent the unit of time to wait between two consecutive server
steps. Finally, optimizing the value of the learning rate with Lemma[I2]yields the following:

Corollary 4. Assume Al|to A4] We can optimize the learning rate by Lemmal[I2|and FAVAS reaches
an € precision for a number of server steps I’ greater than (up to numerical constants):

o

2

€ €

™l

FL(Z " a’ +8G?b) FL*(K%0® + I’K*G? + £22 "4 + $°GPb)> FB2KLb
+(n+1) : + :
S€

where F' = (f(uo) — f«), and (a',b) are defined in Theorem

The second term in Corollary E] is better than the one from the QuAFL analysis (n® of Zakerinia
et al.,[2022)). Although this (n + 1) term can be suboptimal, note that it is only present at second
order from e and therefore becomes negligible when € goes to 0 (Lu and De Sa} 2020; |Zakerinia et al.
2022).

Remark 5. Our analysis can be extended to the case of quantized neural networks. The derived
complexity bounds also hold for the case when the quantization function Q) is biased. We make
only a weak assumption about Q) (we assume that there is a constant rq such that for any x € R?
|Q(x) — z||?> < rq), which holds for standard quantization methods such as stochastic rounding and
deterministic rounding. The only effect of quantization would be increased variance in the stochastic
gradients. We need to add to the upper bound given in Theoreman "error floor" of 12L%r 4, which
remains independent of the number of server epochs. For stochastic or deterministic rounding,
rq = @(dQ%), where b is the number of bits used. The error bound is the cost of using quantization
as part of the optimization algorithm. Previous works with quantized models also include error
bounds (Li et al.| 2017, |Li and Sa, |2019).

5 Numerical Results

We test FAVAS on three image classification tasks: MNIST (Dengl 2012}, CIFAR-10 (Krizhevsky
et al.| 2009), and TinyImageNet (Le and Yang} 2015)). For the MNIST and CIFAR-10 datasets, two
training sets are considered: an IID and a non-IIID split. In the first case, the training images are
randomly distributed among the n clients. In the second case, each client takes two classes (out of
the ten possible) without replacement. This process leads to heterogeneity among the clients.

The standard evaluation measure for FL is the number of server rounds of communication to achieve
target accuracy. However, the time spent between two consecutive server steps can be very different
for asynchronous and synchronous methods. Therefore, we compare different synchronous and
asynchronous methods w.r.t. total simulation time (see below). We also measured the loss and
accuracy of the model in terms of server steps and total local client steps (see Appendix [C.3). In all
experiments, we track the performance of each algorithm by evaluating the server model against an
unseen validation dataset. We present the test accuracy and variance, defined as > .-, [lw; — w||%.

279
280
281
282
283
284

286

287

289
290
291
292
293
294
295
296
297
298

299
300
301
302

303
304

305
306
307
308
309
310
311
312
313
314

316
317
318
319

We decide to focus on non-uniform timing experiments as in|Nguyen et al.|(2022)), and we base our
simulation environment on QuUAFL’s codd'| After simulating n clients, we randomly group them into
fast or slow nodes. We assume that at each time step ¢ (for the central server), a set of s clients is
randomly selected without replacement. We assume that the clients have different computational
speeds, and refer to Appendix [C.2)for more details. We assume that only one-third of the clients are
slow, unless otherwise noted. We compare FAVAS with the classic synchronous approach FedAvg
(McMabhan et al., 2017) and two newer asynchronous metods QuAFL (Zakerinia et al., 2022) and
FedBuff (Nguyen et al.| 2022)). Details on implementing other methods can be found in Appendix[C.1]

We use the standard data augmentations and normalizations for all methods. FAVAS is implemented in
Pytorch, and experiments are performed on an NVIDIA Tesla-P100 GPU. Standard multiclass cross
entropy loss is used for all experiments. All models are fine-tuned with n = 100 clients, K = 20
local epochs, and a batch of size 128. Following the guidelines of Nguyen et al.| (2022)), the buffer
size in FedBuff is set to Z = 10. In FedAvg, the total simulated time depends on the maximum
number of local steps K and the slowest client runtime, so it is proportional to the number of local
steps and the number of global steps. In QuAFL and FAVAS on the other hand, each global step has a
predefined duration that depends on the central server clock. Therefore, the global steps have similar
durations and the total simulated time is the sum of the durations of the global steps. In FedBuff, a
global step requires filling a buffer of size Z. Consequently, both the duration of a global step and
the total simulated time depend on Z and on the proportion of slow clients (see Appendix [C.2]for a
detailed discussion).

We first report the accuracy of a shallow neural network trained on MNIST. The learning rate is set
to 0.5 and the total simulated time is set to 5000. We also compare the accuracy of a Resnet20 (He
et al.,[2016) with the CIFAR-10 dataset (Krizhevsky et al.,|2009), which consists of 50000 training
images and 10000 test images (in 10 classes). For CIFAR-10, the learning rate is set to 0.005 and the
total simulation time is set to 10000. In Figure[I] we show the test accuracy of FAVAS and competing

Table 2: Final accuracy on the test set (average and stan-
dard deviation over 10 random experiments) for the MNIST

o
®

Sos o Fedavg classification task. The last two columns correspond to Fig-
3 e uresT|and [2}
&) 0.4 —+— FAVAS
0 . non-IID split non-IID split
Methods 1D split (% fast clients) (é fast clients)
L M e FedAvg 934403 387+7.7 44.8 £ 6.9
QuAFL 92.3+0.9 40.7+6.7 45.5+4.0
Figure 1: Test accuracy on the MNIST FedBuff 96.0£0.1 85.1+3.2 67.3+£5.5
dataset with a non-1ID split in between FpyAS 95.1 +0.1 889+ 0.9 87.3+ 2.3

n = 100 total nodes, s = 20.

methods on the MNIST dataset. We find that FAVAS and other asynchronous methods can offer a
significant advantage over FedAvg when time is taken into account. However, QuAFL does not
appear to be adapted to the non-I1ID environment. We identified client-side updating as a major
shortcoming. While this is not severe when each client optimizes (almost) the same function, the
QuAFL mechanism suffers from significant client drift when there is greater heterogeneity between
clients. FedBuff is efficient when the number of stragglers is negligible compared to n. However,
FedBuff is sensitive to the fraction of slow clients and may get stuck if the majority of clients are
classified as slow and a few are classified as fast. In fact, fast clients will mainly feed the buffer,
so the central updates will be heavily biased towards fast clients, and little information from slow
clients will be considered. Figure|2|illustrates this phenomenon, where one-ninth of the clients are
classified as fast. To provide a fair comparison, Table[2] gives the average performance of 10 random
experiments with the different methods on the test set.

In Figure[3al we report accuracy on a non-IID split of the CIFAR-10 dataset. FedBuff and FAVAS
both perform better than other approaches, but FedBuff suffers from greater variance. We explain
this limitation by the bias FedBuff provides in favor of fast clients. We also tested FAVAS on the
TinyImageNet dataset (Le and Yang, 2015) with a ResNet18. TinylmageNet has 200 classes and each

"https://github.com/ShayanTalaei/QuAFL

320
321
322
323
324

326
327

329
330
331

332

333
334
335
336
337

—e— FedAvg
—B— FedBuff

0.8

> [0}
O o6 O 300
© c
5 ©
3 =
200
O ©
o4 3
dAvg
FedBuff 100
0.2 —e— QUAFL
—— FAVAS o
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Time Time

Figure 2: Test accuracy and variance on the MNIST dataset with a non-IID split between n = 100
total nodes. In this particular experiment, one-ninth of the clients are defined as fast.

0.35

0.30

a 0.20 5‘ 025 —e— FedAvg
© © 0.20 —B- QUAFL
=] 5 —e— FedBuff
g o015 Y ois —+— FAVAS
< <
—e— FedAvg 0.10
0.10 ~#- FedBuff
—e— QUAFL 0.05
0.05 —— FAVAS 0.00
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Time Time
(a) CIFAR-10 (non-1ID) (b) TinyImageNet (IID)

Figure 3: Test accuracy on CIFAR-10 and TinyImageNet datasets with n = 100 total nodes. Central
server selects s = 20 clients at each round.

class has 500 (RGB) training images, 50 validation images and 50 test images. To train ResNet18, we
follow the usual practices for training NNs: we resize the input images to 64 x 64 and then randomly
flip them horizontally during training. During testing, we center-crop them to the appropriate size.
The learning rate is set to 0.1 and the total simulated time is set to 10000. Figure [3b] illustrates
the performance of FAVAS in this experimental setup. While the partitioning of the training dataset
follows an IID strategy, TinylmageNet provides enough diversity to challenge federated learning
algorithms. Figure [3b|shows that FAVAS scales much better on large image classification tasks than
any of the methods we considered.

Remark 6. We also evaluated the performance of FAVAS with and without quantization. We ran the
code Elfrom LUQ (Chmiel et all |2021) and adapted it to our datasets and the FL framework. Even
when the weights and activation functions are highly quantized, the results are close to their full
precision counterpart (see Figure[7]in Appendix|C).

6 Conclusion

We have presented FAVAS the first (centralised) Federated Learning method of federated averaging
that accounts for asynchrony in resource-constrained environments. We established complexity
bounds under verifiable assumptions with explicit dependence on all relevant constants. Empirical
evaluation shows that FAVAS is more efficient than synchronous and asynchronous state-of-the-art
mechanisms in standard CNN training benchmarks for image classification.

*https://openreview.net/forum?id=clw Yez4n8e8

338

339
340
341

342
343
344

345
346
347

348
349

350
351

352
353
354

355
356

357

359
360
361

362
363

365
366

367
368

369

370
371

372

373
374

375

376
377

378
379
380

381
382

References

Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V., Kiddon, C., Kone¢ny,
J., Mazzocchi, S., McMahan, B., et al. (2019). Towards federated learning at scale: System design.
Proceedings of Machine Learning and Systems, 1:374-388.

Chen, Y., Ning, Y., Slawski, M., and Rangwala, H. (2020). Asynchronous online federated learning
for edge devices with non-iid data. In 2020 IEEE International Conference on Big Data (Big
Data), pages 15-24. IEEE.

Chen, Z., Liao, W., Hua, K., Lu, C., and Yu, W. (2021). Towards asynchronous federated learning
for heterogeneous edge-powered internet of things. Digital Communications and Networks,
7(3):317-326.

Chmiel, B., Banner, R., Hoffer, E., Yaacov, H. B., and Soudry, D. (2021). Logarithmic unbiased
quantization: Simple 4-bit training in deep learning. arXiv preprint arXiv:2112.10769.

Deng, L. (2012). The mnist database of handwritten digit images for machine learning research [best
of the web]. IEEE signal processing magazine, 29(6):141-142.

Fraboni, Y., Vidal, R., Kameni, L., and Lorenzi, M. (2023). A general theory for federated optimiza-
tion with asynchronous and heterogeneous clients updates. Journal of Machine Learning Research,
24(110):1-43.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770-778.

Horvith, S., Sanjabi, M., Xiao, L., Richtarik, P., and Rabbat, M. (2022). Fedshuffle: Recipes for
better use of local work in federated learning. arXiv preprint arXiv:2204.13169.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Bonawitz, K.,
Charles, Z., Cormode, G., Cummings, R., et al. (2021). Advances and open problems in federated
learning. Foundations and Trends® in Machine Learning, 14(1-2):1-210.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S., and Suresh, A. T. (2020). Scaffold:
Stochastic controlled averaging for federated learning. In International Conference on Machine
Learning, pages 5132-5143. PMLR.

Koloskova, A., Stich, S. U., and Jaggi, M. (2022). Sharper convergence guarantees for asynchronous
sgd for distributed and federated learning. arXiv preprint arXiv:2206.08307.

Konec¢ny, J., McMahan, B., and Ramage, D. (2015). Federated optimization: Distributed optimization
beyond the datacenter. arXiv preprint arXiv:1511.03575.

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny images.

Lannelongue, L., Grealey, J., and Inouye, M. (2021). Green algorithms: Quantifying the carbon
footprint of computation. Advanced Science, 8(12):2100707.

Le, Y. and Yang, X. (2015). Tiny imagenet visual recognition challenge. CS 231N, 7(7):3.

Li, H,, De, S., Xu, Z., Studer, C., Samet, H., and Goldstein, T. (2017). Training quantized nets: A
deeper understanding. Advances in Neural Information Processing Systems, 30.

Li, Z. and Sa, C. D. (2019). Dimension-free bounds for low-precision training.

Lin, T., Stich, S. U., Patel, K. K., and Jaggi, M. (2019). Don’t use large mini-batches, use local sgd.
In International Conference on Learning Representations.

Liu, J., Xu, H., Wang, L., Xu, Y., Qian, C., Huang, J., and Huang, H. (2021). Adaptive asyn-
chronous federated learning in resource-constrained edge computing. [EEE Transactions on
Mobile Computing.

Lu, Y. and De Sa, C. (2020). Moniqua: Modulo quantized communication in decentralized sgd. In
International Conference on Machine Learning, pages 6415-6425. PMLR.

10

383
384

385
386
387

388
389
390

391
392

394
395

396
397

398
399

400
401

402
403
404

406
407

408
409
410

411
412

413
414

415
416

417
418

419
420

Makarenko, M., Gasanov, E., Islamov, R., Sadiev, A., and Richtarik, P. (2022). Adaptive compression
for communication-efficient distributed training. arXiv preprint arXiv:2211.00188.

Mao, Y., Zhao, Z., Yan, G., Liu, Y., Lan, T., Song, L., and Ding, W. (2022). Communication-efficient
federated learning with adaptive quantization. ACM Transactions on Intelligent Systems and
Technology (TIST), 13(4):1-26.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. (2017). Communication-
efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics,
pages 1273-1282. PMLR.

Mishchenko, K., Bach, F., Even, M., and Woodworth, B. (2022). Asynchronous sgd beats minibatch
sgd under arbitrary delays. arXiv preprint arXiv:2206.07638.

Nguyen, J., Malik, K., Zhan, H., Yousefpour, A., Rabbat, M., Malek, M., and Huba, D. (2022).
Federated learning with buffered asynchronous aggregation. In International Conference on
Artificial Intelligence and Statistics, pages 3581-3607. PMLR.

Qu, L., Song, S., and Tsui, C.-Y. (2021). Feddq: Communication-efficient federated learning with
descending quantization. arXiv preprint arXiv:2110.02291.

Smith, V., Chiang, C.-K., Sanjabi, M., and Talwalkar, A. S. (2017). Federated multi-task learning.
Advances in neural information processing systems, 30.

Toghani, M. T. and Uribe, C. A. (2022). Unbounded gradients in federated leaning with buffered
asynchronous aggregation. arXiv preprint arXiv:2210.01161.

Tyurin, A. and Richtarik, P. (2022). Dasha: Distributed nonconvex optimization with communi-
cation compression, optimal oracle complexity, and no client synchronization. arXiv preprint
arXiv:2202.01268.

Wang, J., Charles, Z., Xu, Z., Joshi, G., McMahan, H. B., Al-Shedivat, M., Andrew, G., Avestimehr,
S., Daly, K., Data, D., et al. (2021). A field guide to federated optimization. arXiv preprint
arXiv:2107.06917.

Wang, J., Liu, Q., Liang, H., Joshi, G., and Poor, H. V. (2020). Tackling the objective inconsistency
problem in heterogeneous federated optimization. Advances in neural information processing
systems, 33:7611-7623.

Wang, Q., Yang, Q., He, S., Shui, Z., and Chen, J. (2022). Asyncfeded: Asynchronous federated learn-
ing with euclidean distance based adaptive weight aggregation. arXiv preprint arXiv:2205.13797.

Xie, C., Koyejo, S., and Gupta, 1. (2019). Asynchronous federated optimization. arXiv preprint
arXiv:1903.03934.

Xu, C., Qu, Y., Xiang, Y., and Gao, L. (2021). Asynchronous federated learning on heterogeneous
devices: A survey. arXiv preprint arXiv:2109.04269.

Zakerinia, H., Talaei, S., Nadiradze, G., and Alistarh, D. (2022). Quafl: Federated averaging can be
both asynchronous and communication-efficient. arXiv preprint arXiv:2206.10032.

Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., and Chandra, V. (2018). Federated learning with non-iid
data. arXiv preprint arXiv:1806.00582.

11

421

422
423
424

425

426
427
428

429

430
431
432
433

434

435
436
437

438

440
441

442

443

A Environmental footprint

In the current context, we estimated the carbon footprint of our experiments to be about 10 kg CO2e
(calculated using green-algorithms.org v2.1 Lannelongue et al.[(2021)). This shed light on the crucial
need to develop energy friendly NNs.

B Proofs of Section d

The complete analysis of Theorem 3]is fully provided in the following pages, and is heavily inspired
by |Zakerinia et al| (2022)’s analysis. We ask the reader to refer to Section 4] for a detailed definition
of the random variables used in the analysis.

B.1 Preliminaries

Let (92, F,P) be a probability space. We assume that all the random variables defined in this proof
are defined on this space. Consider I = N* x N, together with the lexicographical ordering in I.
We recall that (a,b) < (¢, d) in lexicographical ordering if and only if a < cora = cand b < d.
We define two families of o-algebras (]—"(w)) (ta)el and (F),cy- These are defined by the relations

Fo={0,Q} and, fort > 1 and q > 0,
f(t7q) =0 (J_'.t,1 Uo <E;q/ : ql < q,Z S [].,771])) (5)

Fi=o|o(SnEiicLn))ul] Fug
q>0

Therefore, F; contains all information up to the end of time step ¢. Additionally, F; ;) contains all
information up to the local step g of time step ¢. Notice that at this point we do not have information
about S; and E}. We define E, to be the conditional expectation with respect to F;.

For all time steps ¢, local steps ¢, and client ¢, we define:

qg—1
hi,=Vfi <w; = ht> =E [hi,q|f(t,q,1)}
s=1

where Eis is defined in (2).

Contrary to|Zakerinia et al.|(2022)), we do not assume that all clients have computed the same number
of epochs upon being contacted by the server.

We start by establishing a basic, yet useful, algebraic equality in the following Lemma.
Lemma7. Let s € N*, a;,b € R? fori € [|1, s|| be vectors. It holds that:

s 2 s s s
Z'fl a; +b 1 2 1 2 -1 2 1 9
= - 2| E—— b|" = —5 i_b T 1\9 i Uy
H s+ 1 s+ 1 ;:1 ||Cl H s+ 1 ” H (8 + 1)2 ;:1 Ha H (S + 1)2 iEjZI ”a Cl]H

Proof.

[|z th
s+1

2 1 > 1
2 : 2 2

— (s+1)2 <<Z #5Y a0t b> ~ (DY el ~ s+ 1) ||b|2> .

12

444

445

446
447

448

449

450
451
452

453

454

455

456
457

458

460
461

We expand the inner product to obtain:

T=(s+1)"2 | =s|b|? +2Za,, Z (aia;) — (s +1)) [lail®
i=1

1,j=1

EEmE (an 5 P —22%) Znazn 3 ()

1,0=1

- 5 (Znaz—bn2>+ S llas = a1

ij=1

O

Lemma 8. Let n, d be positive integers, a1, az, ..., ay,b € R? be vectors, and g = % be the
center of mass of a1, ..., a. Then the following identity holds:

n n
S llb - aill? = nlo - gl* + Y llg — a>.
i=1 i=1

Proof. We may compute:

n

Dolb—aillP =Y lb—g+g—al®=> (Ib—gl* +llg - ail® +2(b—g,9 - a;))
i=1 =1

i=1
We can easily see that > | (b — g, g — a;) = 0. The identity then follows. O
Lemma 9. Let X1,...,X,, be random variables. Moreover, let S be a subset of {1,2,...,n}

containing s elements chosen uniformly at random. Assume that S is independent from X; for
t =1,...,n. Then, we have:

E[Zies l} zn: E[X

i=1

Sl

Proof. We introduce indicator functions in the sum above and apply linearity of expectation:

E[Zies ’} [Z_lX]ls } ZIEX]lS

Using that S is independent of each X; we get:

3
3

™
m
V)
I
ing
E
3w
m

i=1 i=1

O

The following preliminary lemmas allow one to recover unbiased gradient estimates in FAVAS, and
bound their variance.

Lemma 10. Let {Y7} -0 a collection of independent random variables such that E[Y,] = p. Let S
be a positive random variable independent from the collection {Y 7}, and with expected value

E[S] = m. Consider M; = E[SPf;SO) Zq 1YY, and M, = E| &;0 Zq Y. My, M, are

unbiased estimate of p, i.e. M = pu.

13

a2 Proof. M : One can note this setting corresponds to o = P(E! > 0)(E! A K). We have

1 1[S > 0] =,
M =p s g EEI=—5— 2 YIS]

(S >0) =
B 1 1[S > 0]
“pEso0 T 5 M
1
“PE =0 O)E[l[S > 0]p]

:/j“

463 Thus when reweighting with the (random) number of additions, one need to also take into account
s64 the P(s > 0) term to obtain an unbiased estimate.

a5 My : This setting corresponds to o' = E[E} A K|. We have

S
M =B S v ils)

S| =
1[5 > 0]
=E[S———=—
S =g M
_E[S1[S > 0]]
~ E[9]
s66 Thus reweighting the sum with E[s] allows us to obtain an unbiased estimate Ma = p. O
a7 Lemma 11. Let {Y},~¢ a collection of independent random variables such that E[Y,] = p,

a8 Var(Y?) = Var(Y) < oo. Let S be a positive random variable independent from the collection
a9 {Y9%} >0, and with expected value E[S] = m. Consider M, = E| 1[5>0) 25:1 Y1, and My =

SP(5>0)
470 E[HEEO] quzl Y. We compute the variance :

{menzP@ﬁxwms>ma—P$>o»+WNmM“?%>

V&I‘(Mg) _ u? Var(S) + Var(Y)]

E[S]? E[S]

471

472 Proof. My: This setting corresponds to o = E[E} A K]. We have

S
Var(My) = = BI(Y YO —)

473 The cross products reduce to 0 in expectation, hence

Var(Ms) — E[lsP]E[]E[(S(Yq — W)|S]+ p2(S — m)?]
_ E[;}z (BIS]Var(Y) + p2 Var(S))

14

474

475

476

477
478

479
480

481
482

484
485

486

487

488

491
492

M;: This setting corresponds to a* = P(E} > 0)(E; A K) or QuUAFL (Zakerinia et al., 2022)) when
the same number of local epochs is done by clients. First note that E[M|S] = p I]i((ii%)) . We have

Var(Mi) = E[E[(My — E[M1]5])?|S]] + E[(E[M:]s] — E[M])?]
S

= WE[(% Xq:(Y“ — w)1[S > 0))%] + E[(u1(S > 0) — uP(S > 0))?]

= WE[%(SVM(Y)MS > 0])%] + ﬁ/ﬂﬂi[(l(é’ > 0) — P(5 > 0))?]
= ﬁ Var(Y)]E[]l[S; O 4 P(Sl> G ELL(S > 0) ~ P(S > 0))

_ P(Sl>0)2Var(Y)E[]1[SS> o P(S1> G PS> 0)(1 - P(S > 0)).

O

Last, but not least, we will make use of a result from |[Koloskova et al.|(2022) to optimize learning
rates and obtain sharp complexity bounds:

Lemma 12. Assume Al|to AH|and consider problem (1)). If the output of an optimization algorithm

70

with step size n) has an expected error upper bounded by FEsyiRs bn + en?, and if) satisfies the

. . 1 . 1 .
constraints n < mm((b(zfgrl))2, (e(%il))3, é) for some non-negative values ry,b, d, e, then the

number of communication rounds required to reach € accuracy is lower bounded by

36br 1579 /e 3dr
U 0;[+ 0

62 €2 €

Proof. Consider 11 a positive variable such that

.
Ur < ——o— + by + en?

—n(T+1)

for any positive step size verifying 7 < min((; t T D)%, (e(To)% , é) Then |Koloskova et al.{(2022)
shows the following inequality:

dT’O

b’l"o n
T+1

T+1

Wl
—~

)E +e

A

P < 2(

In order to reach an e precision, we bound each term by £, and deduce the following lower bound

36br 15rg+/e 3dr
>0 ‘;\[Jr 0,

62 €2 €

T

B.2 Useful Lemmas

A key result of our analysis is the upper bound on the change (in expected value) of the potential
function ®,. Recall that ®, is defined by equation:

n
Oy = [lwy — el + > lwf — el
=1

In the next lemma, we show that ®, exhibits a contractive property, which allows us to bound its
value through the execution of the optimization algorithm.

15

493

494

495

496

497

498

499

500

501

502

B.2.1 Proof of Lemmalf2l

Proof. Consider the following quantities:

e = (wt +sz> /(n+1)
i=1

1 pi
Gy = —mﬂ Z hiv1

1€St 41
i _ 1 Ti i _ 1 T .
where hi | = B(ET, 50 (B, AK) hi,qorhi, 4 = E[EL,, AK] hi, 1. And recall the updates rules:
1 i 1
Wit = 531 (wt + 2 iesin wi) + 51 Ger,
wi zwé;fori e S
w} =wj_;;fori ¢ S;.
With these definitions, we get
s+1 1 .
1 = Wiy + —— wy = g + Gyyq -
Ht+1 nt 1 t+1 I igsz t Mt t+1
t+1

We can now compute the difference of potential:

: 2
Q1 — P = Z <||wt+1 - ,ut+1||2 - ||w,'§ - Mt”) + [lwi 1 — Mt+1||2 — Jlwg — /lt||2
1€St41

+ > (Ilwd = el = flwk =)
¢St

We can rewrite this equation into a more convenient form:

. . 2
o= = (s1) [lwrer = e P= D =gl P~ fwe—pae[P+ D7 (\ wi— p = Graa| |
1€St41 1€Stq1

(6)

Step 1. First, notice that:

. 2 . 2 .
> (et = = Gea|” = lwi = ul*) = D2 (NGl = 20wi = s Giy))
¢St 1 ¢St 41
= (n—)G ? -2 < > (wh—), Gt+1> - (D
¢S4

Step 2. Next, we compute the first term of Equation (6):

2

(5 + 1) e = pesa]* = (s + 1) TG~ G

’ (wy — pe) + Ziest“(wg —) n41

s+ 1
4 2
(we — pe) + 2 ies,,, (Wi — pe) , n+1
=(s+1) . +€1 i +2((wp —) + Z (wy — pae), mGtJrl = G
i€5t+1
(n—s)?
+ HilHGtHHQ-

We apply Young’s inequality ({(z, y) < B||z||? + 1/(483)||ly||*) and Jensen inequality to get:

<(wt —)+ D (wf—), ;H_th+1>

1€Siq1

a(n+1) 5 a(n+1) , s n+1 5
< 8T)y, — BTN fwj - G
S Tor lwe — puel|” + s 1 l|wi — pell” + T [Gesall

16

i
Wy — Ut

;

)

s03 Applying Lemmal[7] we get:

. 2
(51 1) (we = pie) + D ies,,, (Wi — ie)
s+ 1
. 1 . 1) .
= Y0 lwp =l | o=l = —— > wi—wiP - —— > [w; —w]|?
, s+1 s+1
ZESt+1 ZESt+1 1,]631,4,1

s04 Combining the results above, we get:

4 1 ,
(s +) [lwepr — pega | < Jlwr — puel® + Z |[wi — Mzt”2 - Z [wp —we|?

1€S41 s+1 1€St41
2a(n +1) 5 2a(n+1) i 9 (n—s)? n+1 9
it St — it — G
22T = g4 22 S g gl (S +) Gl
1€St41
-2 <(wt —) + Z (wi —) , Gt+1> .
1€St41
s05 Using simple algebra, this relation can be rewritten as :
2a(n+1
e R e L
s+1
2a(n +1) ; 9 n+1 (n—s)? 9
14— ;- G
+< L) Do i =l + (= +) Gl

1€Si41

, 1 ,
—2<(wt—ut)+ Z (wé—ﬂt)7Gt+1> - [y —we|.

1€St41 s+1
(3)

iESt+1
s06 Step 3. We combine the results above to get bound ;.1 — ®;. Plugging (7) into (6), (8), and using

507 (see (@))
(we—p)+ Y (wi—p)+ Y (wj—m)=0,

1€Si11 i€5t+1

508 we get that

2a(n + 1) 2 2a(n+1) ; 9 n+l (n—s)? 9
Dppq — Oy < gy — TN k- - G
t+1 ESTUT lwe — pe ™ + ST 1 lwi = pell* + | (n—s) + %0 + st 1 |Gl
1€St41
1 i 2
- Y el
1€St4+1

s00 Step 4. We now apply Lemma D] to take expectations in the inequality above. We have:

n
. S .
E)Pl =Y ZE[|w! — w?].
X, k] > ZEllut - el
510 Moreover, we have:

G l® < ﬁvﬁ S il

1€Si11

s11 Therefore, also by Lemmal9] we have:

52 " <02
E[[|Gus1]?] < WHQEE[HMHH J-

17

s12 Step 5. Now we derive the final inequality. We have:

E[®,,1] — E[@,] <22+ 1) o (ZEIth e+

- os+1
n n7$2 82 -
+ (s it 02 >n<n+1> o DBl

s n '
o E i 2.

513 We can apply Lemma [§] to the above inequality’s last line with a; = w! fori = 1,...,n, and
514 Gpi1 = Wy, and b = wy:

E ||lw —

ZEHwt wil* = (n+ 2)Ejw; — MtH2+2E||wt el
=1

515 This allows us to simplify:
2a(n+1) s(n
s+1 n(s

2)
1)

2a(n+1)s s = ; 9
_ Ellw —
Jr< (s+1)n n(s—i—l)); e = g
n+1l (n—s)? 9
i T) S sl

; and define r = 1 (&) to simply as following:

E[@1] — E[@,] < (*)E o — e

_ 1
si6 Weleta = eEsy) 2(n+1)(s+1)

E[® 1] — E[®)] < — kE|[w, — u||* — 5> ElJw) —]|

i=1

+ <(n —8)+2(n+1)*+ (2181) > n(ns—l— 1)2772 ZE[HMHHQ]

517 We now introduce ®; on the right-hand side of the inequality above:

i) - B < - wBled + (0 -9+ 2+ 02+ O) e S B P

518 We reorganize the terms to make the final statement:

n

E[@:+1] < (1= R)E[@] + 350 Y E[lh, |,

i=1
519 [
520 B.2.2 Bound expected local gradient Variance

s21 In the next lemma we show that an analogous version of AB|holds in expectation.

522 Lemma 13. Assume AEI Lett > 1 be a time step, q a local step, and i a client. We have:

{17} ql°] < E[llhg o[I*] + 0.

523 Proof. We refer the reader to the filtrations (F;)
s24 conditional expectation, we have:

([o) = B [B [1B} 0|* | Fiua-n)] -

(ta)el defined in (3). By the tower property of

18

525

527

528

529
530
531
532

533

535
536

537

538
539

540

541

542

543

We denote by h;q the gradient of f; at w!_; — ZZ;% Uﬁi,s- By construction, E [?Livq ’]:(t,q—l)] =
hi .- By A3l we conclude that:

E[E [o | Fgn)] | < Blo + Ihi %) = BllAg ,)12) + o
[

In the following we define w; = wi_y — S27_, nhi ,. This is the model of client i, at time step ¢

and at local step g. Therefore, h 4 1s a stochastic gradient of f; computed at the point wt _1. The
next lemma sets an upper bound on the gradients of quantlzed weights for each client. We show that
such quantities can be upper bounded by an expression containing the true gradient at the "average
model" p;. For any agent 4, and time step ¢ > 0, define the quantity:

. i 2
B = ﬁ + 16L°E [[wj — pe|” + SE |V fi (o) ©
Lemma 14. Assume A3} and that the learning rate 0 satisfies 1 < 7 K2 Under the assumptions of
LemmalI3] then, for any agent i, time step t > 0 and local step q, the following inequality holds:

Ellhi41,4/°] < By (10)

Proof. We will prove the result by induction on ¢. Initially, we show inequalities that are necessary
for both the base case ¢ = 1 and for the general case.

; 2
[||ht+1 q |=E vai (wzszrl,qfl) H
We introduce the gradient on the virtual point z;:

-l
(Vfi (wé - Znhi+1,s> - Vi (Mt)) + Vi ()

s=1

2
[vai(wz—i-l,q—l)HQ

2

qg—1
<2E|Vf; (wé - 77hfs+1,s> — Vi ()| + 2BV fi (o)l
s=1
-1 2
<2L7E ||wi — Y nhiyy, — || + 2B (Vi ()]
s=1

q 1

2
< AL?E |[w] — || + 402 L +2E |V fi (ua)lI”

t+1,s

Applying this result with ¢ = 1 shows that (T0) holds. For ¢ 2 1, we proceed by induction. First, we
apply Lemma 13}

g—1
BV ik o) < 4% - g+ 0722 = 1) 3 (B 0,7 + %) + 2B 19)P
s=1

Using the induction hypothesis, we have:
i 2 i 2 i 2
E(|Vfi(wii1q- || < 4L°E[Jwi — || +40*L?(q — 1)* (B} + 0®) + 2BV fi () [I”
Now we use that n < ﬁ and ¢ < K.

E|[Vfiwir g)| < AL%E] — pue|* + g (Bi +0%) + 2B [V fi ()|

16K2
<ALZE i — pl]* + L + 2B [V Fi ()P 4+ 2
>~ t 4K2 4
Finally, we get:
2 2 Bi
EHh +1qH <8L EHwt ,UtH 2K2 +4E||sz(llt)“ +7
It then suffices to see that the last term above is upper bounded by B;. O

19

544

545

546
547

548
549
550

551
552

553

554

555

556

557

558

559

In Lemma we have found a way to bound h! +1,4- The goal of the next lemma is to use this result

to find an upper bound for the stochastic gradients h! Fl,q-

Corollary 15. Under the assumptions of Lemmal[I4] for any local step q, agent i, and step t > 0, the
following holds:

Ellhiy14l* < (0% + By) -
The next lemma gives an upper bound on the difference of the gradient at the average model p; and

the expected value of the updates computed by the clients. In particular, the next lemma shows how
well the hi ., , approximate the true gradients V f; (ue). Forany i € {1,...,n} and t > 0, define

Ci = 4L’ K02 + 20L°E ||w! — ue||* + 16 L2 K2E |V f; (110)] -

Lemma 16. Assume the learning rate 7 satisfies n < ﬁ Under the assumptions of Corollary

foranyie{l,...,n},t >0andq € {1,...,K}, it holds that :

E ||V i (1) = hiyy ||” < Ci.

Proof.
B[V (1) = i | = B[V Fi () = Vi (w1,00)
< L7E | — wiy g
We can now decompose the client drift as:
q 2
Ellpe — wiyy g 1| =E | —wi + > nhiyy
s=1 :)
<2E ||w§ - /‘tH2 +27°E Zﬁiﬂ,s
qs:l
< 28 [— |+ 2020 3 [

s=1
By using Corollary [T3] we get
i i 2 i
Ellpe — wt+1,q—1||2 <2E Hwt - NtH +20°K*(0® + B}),
where B is defined in (9). Combining the two bounds, we get:
i 2 i 2 i
E||Vfi () = higrg||” < 2L°E ||wf — pe||” + 2L*n° K*(0® + B)).
Expanding the above inequality:
i 2 i 2
E([Vfi (1) = b g|” < 2L°E [[w} — pu|
2
o .
+ 2B K (0% + Ty + 16L%E [[wf — pul|” + SB[V £i (1))
<ALPPPK?0% + 20L°E |[w! — ju||” + 1622 K2E |V f; (1)]
As claimed. O

Lemma 17. Under assumptions of Lemmal[I6] we have

E[[V £ (u)]%]

1 +C} —E[(V f(ue), V fi(1e))]-

E(Vf (1), —hiyy,) <

20

s60 Proof. We may manipulate the equation above to get:
E(Vf (), ~his) =E(VF (1) Vi () = i) —E(Vf (o), Vi (ne) -

set Using Young’s inequality together with Lemma [[6] we can wupper bound
se2 K <Vf (/’(‘t) 7vfl (/J't) - h%+17q> by

E|Vf (1)l 2 _ E|VS (uo)l”
; <

B[94 () ~ B .

s63 This concludes the proof. O

+ Ci.

se4 The next lemma incorporates the idea behind gradient descent. We find an upper bound for the
s65 expected value of the inner product between the true gradients V f(1;) and the client updates —h? 11

s66 In particular, we seek to show that, in expectation —Ei 1 is a descent direction for the function f.
s67 In other words, that the updates proposed by the clients contribute to getting y; closer to a local
568 Mminimum.

se9 Lemma 18. Assume A4 We denote by E} 11 the effective number of locals steps done by a client ¢

570 while being called by the central server. We clip to K and consider the random variable E} 1 ANK.
st Under assumptions of Lemmal(I6] and for any time step t > 0, we have:

- 3

Z]wa (pe) s fah;H) < 20L2E [®,] 4 4nL*n*K?(0? + 4G*) 4+ n (16L2n2K2B2 - 4> E (VS ().
=1

572 for

al = {P(E;H > 0B ANK
E[Ei,, AK].

573 Proof. Initially, we introduce indicator random variables in order to work with the E_ | terms. We
574 also introduce Z° the following random variable as :

0ifEj,, <1
Z' = SV f (), = T hegrg) if L < By < K
(VI () =5 22 hesrqif By > K.

575 We first claim that E(V f (1) , hi 1 o) = E(V f (111) , hii11). This result follows from the following
576 algebraic manipulations. First, notice that:

E(VF (1) i) = BAVS () Rir g = hirq) + BV S (1) i).
577 Now, we recall thatE[(Vf (11t) , h t11.q — M) Fe+1,9-1)] = 0. Therefore:

<Vf (Mt) t+1q t+1,q> [[<Vf (Ut) t+1,q hi+1,q>|f(t+1,tI*1)]] =0.

s7s Now notice that E} , is independent of the random variables V f (1) and %; 41,4~ Therefore:

§E<Vf(m), t+1> ZEZl

ZE [Ei > KNV f(), th+lq

n K i 7
=y e 2 M2 B MO g),

at

E;HAK

n]l t >
:ZE[+1 Z (V f(pe) t+1q>]
q

21

579 We now apply Lemma|[I7]to obtain the following:
El AK
1+, 1B, > 17 1
E<Vf <m>,—aiht+1> S D M (VA (DR [

ot
q

i 1/ 2
cptBa =l s~ BV, o - giew). 9 10u))

q

s We can make use of Lemma [10 with o/ =P(E},, > 0)Ej,, NK or o' = E[E{,; A K], and
81 S =FEl ANK, Y, =E[(Vf(u),—hi,,)|Ei] to achieve the following:

S0 00~ giter) =3 LI) w09 00, 2 1)

i=1

fi(w)
n

S B (s)~) < Oy +ZC¢
i=1

583 Finally, we compute:

ss2 Now we use that >_" | = f(w), for any vector w € R%.

>Ci= Y (AP K2 0% 4+ 2017 [[wf — pu|* + 16132 KE |V ; ())
=1 =1
=4nL’*K?0” +20L° > E|jw} — we||” + 161202 K2 ZE IV (o)|1? -
=1 =1
ss4 We can then use assumption A%}

3 Ci < 4nL*n’K%0” 4 20L°E (B, + 160 L%’ K> <G2 + B?E |V (1) HQ) .
=1

s85 In conclusion, we get the following upper bound for > | E <V I (), —%Ei +1>:
20L%E [®;] + 4nL*n* K?(0? + 4G?) +n (16L2172K2B2 - i) E|Vf (o)l
586 O

ss7 B.3 Bound Sum of expected local gradient variance

sss8 The next lemma gives a bound on the expected update computed by clients at time step ¢. The result
s89 is useful, for example, in setting an upper bound on how much the average model 1; changes between
s90 time steps. The proof follows a similar reasoning as the proof of the previous lemma.

sot Lemma 19. Assume AB|and AH4| Under assumptions of Lemmal[l4} and for any step t, we have that:

1 - 1 1 1(Ei,, > 0) 1
E : : hP | < o? , + , et 16 L°E[® -
zi: [”P(z«:;+1 > 0)Ei, ANK el } =7 Zi:(KQP(E;H >0) | P(El,, >0) | Bl ANK D+ g m?X(P(Eg+1 >0

1
e
B(EL, > 0)

P2 2 1 E[(EY, A K)?] 2 E[(E} 4 A K)?]
ZE { E[EL, /\K] YRl } = Z BB, AK] | K?E[E, ng]) T LOL EL®] max(E[E{,, AK]|)

E[(Ej 1, A K)?]
+ 8nmax(— ——————>—
i E[E, AK]

+8nmax(VBR[|V £ (1) ||?] +8nmlax(

1
P(E;, >0)

E[(Eii A K)?]

VBV £ ()|} + 8 max(—r® ==

)G2.

22

se2 Proof. Foro' =P(E},, > 0)Ej,; A K or o’ = E[E] ; A K], we have:

Ej AK

ZVar Z it) +ZHE Calll?.

n

>

=1

t+1

593 Recall that for any ¢ € {1, ..., K'}, the random Varlables Et 41 and ht +1,4 are independent. For clarity

s94 we reuse the notation where ht+1 B +1>0)(Et+1AK) ht+1 or ht+1 7[}3;:1/\[(] hi . Therefore
595 we can apply Lemma.w1th S=Ej ANKandY, = ht+1,q:
7 ii B[R, I i i Var(hi,,) mr 1(EL, ,>0)
[HW}LMIIQ] < B[I1* + ﬁ((Biv1 > 001 = P(Ei > 0)) + s sopEl g ar |
i Var(hi IE[RE 1]I Var(E; NE)
El| i | 1< NBRE IR + Yoiona) o IEes IVt

se6 We now use Corollary [I3]to get:

7 2 1 a +Bz HE[hH_l q}H]l[Et.+1>0]
{HP(E +1>0)E1 AKht-H”] < HE[t+1]H P(E; ,>0) + P(E;, ,>0)? 3 Ei AK
Var(Ef+1/\K)) UZJFBl HE[h;Jqu]HQ

t4+1
E |l al?] < BRI+ SEfentes 5[5 1K)

s97 Hence we can use Lemmawith S=EANKandY, = E; +1,4 to simplify as following:

El FialP] < B0 1, 1P srarssy + prasp L E [
P(Et+1>0)Et+1/\K t+1 t+1,q P(Ej+1>0) P(E} ,>0)? Ei AK
i 9 Var(Et+1/\K) o?+Bj— ||IE[t+1, 1%

E |y 2] < BT 1201+ Srfienda) + =gl

see We refer the reader to the filtrations (F(;,q)) defined in (5). Now we can express the expected

(tig)el
s99 value of hi +1,4 (as p following the notations from Lemma , and upper bound its square norm by
600 Lemma

el = IELE |l g | Feeqn |12

<E[IE [Fi1q | Fiea] I
< Bl 41,0
< B}

601 We can insert this bound in the above inequations:

P(E,,>0)— E[I[Et+1 >0]}

NS 24 g 1[E}, ;>0
E (| prar—sbm—m b] < Bi a1 . by
IlP(EZ+1>O)E;+1/\K t+1H P(Et+1>0)2 . + P(E;, ,>0)? Ei AK
B} AK)?|-E[El, | AK] o4 B}
E il] < Bz E[(t+1 t+1 + i b
”JE[EMAK] t+1|| = E[Ei K] E[El AK]
602 This simplifies as:
H 711 ||2 Bi 4 o2 1[E;,, >0]
P(E;+1>0)Et+1/\K t+1 = P(Et+1>0) P(Et+1>0)2 Bl AK
]E H] ||:| Bz]E[(Et+1/\K)] 0’2
E[EZ+1AK] hia tE[EL AK]T T E[EL,AK]

603 Expanding B} and summing from i to n, we get:

23

1 1 1 (Ei,, > 0) 1
E : R 12| < o? :] 16L°E[®, _—
; [”P(E;+1 > 0)ElL, AK ll } 7 Z K2P(E‘+1 >0) P(E,, > 0) [Bl AK D+ []maX(P(EgH >0

+82mjax 0)) IV £ilpo) %]
Bl >
i 12 9 1 E[(E; A K)?] 9 E[(E{, AK)?]
Z]E { E[Ei, /\K] ht+1” } Y Z E[E,, A K] + K2E[Elti+1 /\K]) + 16L°E[®,] m?X(W)
Eg+1 A K)?] 2
+Sij W)E[Ilvf(m)ll J-

0+ Remark 20. Here we loose a lot: we have upper bounded the term . m lwi — pe]* <

605 > maxz(m) |lwi — pe||?. But still, our bounds stay better than Zakerinia et al.| (2022)’s
606 ones.

607 In order to complete the proof, we combine assumption A4 together with the above inequalities

1 1 1 1(Ei,, > 0) 1
E : : i1 < o? + : i + 16 L°E[® S
Zi: [”P(E;H > 0)Ei, ANK el } 7 Z K?P(Ei,, >0) ' P(El,, >0) [Bl ANK) (@] ”“?”X(P(Eg+1 >0

+ max() (8nBZE[| V £ (1) |2] + &nG?)

1
P(E{, >0)

P2 2 1 E[(E, A K)? 2 E[(E} 4 A K)?]
Z]E { /\K] YRl } = Z EEL AK] KQIE[EZH g]) T LOL EL®] max(E[Eg‘i AK])

E[(Ei A K)?]

E[(Ei A K)?] 2
8 —_— - .
+ 8n max(E[E,, AK))

UREL, MK JB?E[|Vf (12)||?] + 8n max(

608]

609 B.4 Bound the sum (over time) of expected potential

1 .
et0 Lemma 21. Assume that n < 505T maxl(L SRS Under the assumptions
P(E’+1>0) 20sL maxi(i
LB 1 AK]

6

of Lemmas [2|and[I9) and for any time step t we have:

1 s a1 1 1 1(Ej., >0) 1 2
E[®p44] < (1—5”>E[‘I’t]+35 n (Z(sz(y L >0) +P(E7 1 > 0)2 E[E} J;/\K])+8maX(M)G>

1
2
+24B%s%p max(m)ﬂz”vf (1) ||
612
1 1 1 E[(EL, A K)?] E[(E{1 A K)?)
B0 < (1 5,)@+ 3st (DIy S <o 1o R L 1 Y
+ 24B2s%n? maX(wﬂE IV () 1?

i E[Ei AK]

24

613 Proof. We first use Lemma 2}

E (@] < (1—R)E[®,] +3 n2ZE |

B[1

614, with o’ = P(E;_H > 0)(Ej . AK)ora' =E[E], | A K]. Now we expand the quantity above
615 using the inequality in Lemma|T9}

E[®,1] < (1—r)E[®]+ 3%72 <02 Zn: a' + b(16 L°E[®,] + SnB>E[||V f (u:)|1?]) + 8nG2)

n
< (1 - (M) ; 488§Lzbn2) B (0] +32 (0" D+ 80y + HESUPE NS ()
616 With ;
a'.b = mEpE s T P(Ez:1>0)2E[ﬂ§5E,ttlA?)]’maxi(m)
a',b= E[E::mm + i[z(rﬁ%ﬁi);’maxi(%[%:ygﬁ)'

617 To complete, we use 7 < 205Lb

1 2o 2lx~ i 2 2.2 2 2
E @] < (1— Em)E[(I)t] +3s°n (0’ Ezi:a + 8bG* | +24Bs*n bE ||V f (pe)]|” .
618 O

619 In the next lemma, we bound the cumulative sum of potential functions.

620 Lemma 22. Let T be a positive integer. Under the assumptions of Lemma|21] the following inequality
621 holds:
T

1 2
E[®,] < 120085 max(5 S EIV/ ()]
2 Bl o, s o) 2 BV

1 1 1(Ei,, > 0) 1
15Ts%n? [o2 : E[—— L 8 - H)G?).
Tt (Z KZP(Ei,, >0) | P(E,, > 0) [Bl AK =+ nmaX(P(E;H =0y
622
E[(E{, AK)?]

T
E[®] < 120nB?s? max(:
; IE[E;Jrl A K]

2T71 2
D> B[V ()l
t=0

E[(E:, A K)? E[(Ei, , N K)?
l E;H ANE] T K?E[EL, A K] VEEL, AK]

623 Proof. From Lemma[21] we get that there exist «, 8 not depending on ¢ such that:

E (@] < (1 - 5171) E (@] + oE |V £ (uo)|]* + 5.

624 Therefore:

TE_IIE O <T1((L) B0+ a1 () +)

t=0 t=0
T—1
3(1)21@ |+ T8+a S E|VS (u)].
t=0
625 Rearranging the terms in the sum we obtain the following:
T-1
(1—5) @) +fZE | +E[r] <TA+a 3 E[VS (u)]?.
t=0

25

626 From this inequality, we get:

T-1
Z]E ®,] <5n (Tﬂ+aZEIIVf (1)l)

t=0 t=0
627 Expanding on the values of «, 3 obtained by Lemma[21] we get the desired result:

T-1

ZE <5nT3—n (2Za +8an2> +120nB2s°bn* Y "RV (1)]*

t=0

628 O

629 B.5 Bound the change in the average model

630 The next lemma upper bounds the expected change in the average model ;.

631 Lemma 23. For any time step t > 0,

B |41 — puel* < QZ]EHh all*
632 Proof. Recall that
Hi+1 — n + 1 Z ht+1
1€St11

633 Therefore we may compute an upper bound:

2

2
n
b1 — Mzt||2 = 7(114_ 1)2 § ht+1
165t+1

— 7?,+12 Z ’h+1H

1€St41

e3¢ We may then apply Lemmal9]to get the desired result:
2 o
E [— mel|” < Z]EHh +1||
635 O

636 We now give another upper bound on how the average model y; changes at time step ¢.

637 Lemma 24. Under the assumptions of Lemmas[I9and 23] and for any step t:

1 1 1(EL,, > 0) 16 L2%s2n? 1
E e S’ ‘ 41 E[®, _—
H,UJt-i-l Nt” = (n+ 1 2 Z KQP(Ez_H > 0) P(EZ-H > 0)2 [EZ+1 ANK D n(n+ 1)2 []maX(P(Ez_H > 0))

8s2B2n? 1 852G?n? 1
== 1 — E[||V N+ —L Y2)
CESIE maX(P(EZﬂ L A FESIER S T

EHM _ ||2 S 77 U zn:]E[(E}H /\K)Z] 16[’25 77 E[q)]maX(E[(Eterl—/\K)Q])

t+1 n(n + 1)2 A AK] KRB, AK] T n(n+ 12T BIEL AK]

852 B2 E[(Ei L AK)) o, 82GPE E[(Ej, AK)?]
= = 1 — e E - .
CESVER Ay SR A LR TR ATy SR

26

e38 Proof. For this proof, we will combine the inequality obtained from Lemma [23]to the one from
630 Lemma[T9] This will be enough to obtain the desired result.

2,2

Ellppe41 — Mt”2 < E :m ”h +1H2
i=1

s40 Simplifying the above quantity, we get the desired inequality:

EHMtﬂ - Mt||2 = ?J_;l 2 KQP(Et_H N 0) (Ezi N O)QE[ﬂgili;)D 1((3762—5 1) E[‘I’]maX(m)
e mgx(lmmnw(mnﬂ Tk
Bl il < S S GrE g+ KA KD s TP R)
e mg»x(IW)E[nwwm T i
641 O

s42 B.6 Convergence result

ess In this section, we use the lemmas proved so far to demonstrate Theorem 3] Following the proof, we
644 establish the learning rate 7 that results in the best overall rate of convergence.

645 Proof. Using L-smoothness, we have:
L
J () < f () + (Y (pe) 5 o1 — pe) + b) st — pell® (1)
e46 First we look at the term (V f (u¢) , g1 — pe). Recall that:

_ n ii
I Z hiiq

1€St41
647 by Lemma[J] we have:
Bt (i1 —] = — nJr 1 Z £+1
and subsequently
Et (Vf (pe) s 1 — oy (Vo (), =hisa) -
i=1
s4s Hence, we can rewrite (T1) as:
. L)
Be [f (1)l < f (o) + Z)Et (Vf (), —hiyr) + S Ee llpers — g™

649 Next, we remove the condltlomng w1th the tower law of expectation:

n

E[f (e+1)] SE[f (pe)] + Z %E <Vf (11t) 5 _Bi+1> + %E l[pee4+1 — Mt||2~
i=1

50 We now define some notation to simplify the computations. By Lemma|[I8] there exist a1, az, ag not
651 depending on ¢ such that

STE(VS () —hisr) € aE (@] + aE VS () * +as.

=1

27

652

653

654

655

656

657

659
660

661

662

663

Similarly, by Lemma[24] there exist b1, bo, b3 not depending on ¢ such that:
E [lper1 = uell® < BiE 4] + BB |V f (1e)* + b

Defining ¢; = a; + bié, we have

sn
n(n+1)

E [f (+1)] = E[f ()] SGE[®] + E [V f (ue)]” + c5.
Summing the above inequality fort = 0,1, ...,7 — 1 we get that:

T—1 T—1
E[f (ur)] = f(po) <1 Y E[®]+ca D E|VF ()] + esT.
t=0 t=0
By Lemma@ there exist dq, do independent of 7" such that:
T T-1
SOE[®:] < di 3BV ()| + Tds.
t=0 t=0
We then get:
T—1
E[f (ur)] = f(po) < (crdi +c2) D BRIV ()|* + T(erds + c3).
t=0

We now assume that c;d; + co < 0. Later in the proof, we will show that this is true for small enough
7. Using the fact that f(ur) > f« and rearranging the terms, we get:

T-1
1 Z 2 f (o) — fx cida + c3
— < .
T =0 E ||Vf (Mt)” - T(*Cldl — 62) + 7Cld1 — C2

Of course, now we expand each of these terms. Refer to Lemma|[I8] Lemma[24] and Lemma 22]for
the specific values of the defined quantities a;, b;, and d;. We have:

sn L
= —b
“ n(n+1)a1+2 !
_o0z2_5" 16s*n°L°b L
nn+1) nn+1)2 2
4L%sn
=——(1) + 2snLb) .
Tt 12 (51 1)+ 2L
We recall here the definition from Lemma 2]
i 1 1 (B, ,>0) 1
b = TEp(Er >0 T PRS0 Bl Bk D B s
iy 1 E[(E} 1 AK)?] E[(B{ 1 AK)?]
a’,b= BB, AK] KzE[E1§+1/\K]7maXi(]E[Eg;ll/\K])-
By using < -5 we get:
2
o < 24L"sn .
n(n+1)
Therefore:
24L%sn
di < ——"L120nB?s%*m?
Cll*n(n—i—l) nomson
< 2880L2%s%n3 B?b
n+1 '
Moreover:
SN L
= — —b
2 n(n+1)a2+2 2

sn 9 27252 9 L (8s*n*bB?
N (162p2K2B2 - 2 Sl (el e
oty (n (o 1)1 (T
3) 4Ls*n*bB?

S
= 16L°2K?B? — =
(n+1) (n 1 (n+1)2

28

665 By using n < we get:

QOszKLs

o 2880
1= 2000(n + 1) LBTK

666

< SN 16 3 " 4

c _°

> = n+1\400s262B2 4) ' 400(n + 1)2LbB2K?
—n

< — — .
SSmyn ah

667 Therefore we conclude that —co — ¢1dy > 2(n +1) , which is greater than 0. Now we compute:

24L%sn 2 9 2% ;
<—r 11 ! 2
c1ds T 1) (5s°n° | o Ea + 8nbG
360L%%n3 [51~
<"1 |%= L4 8bG? | .
- (n+1) 7 n;a *

ese And additionally:

_ Mmoo
nn+1)

_ . sm 2 27-2 2 L s*n*o? 852G22
_n(n+1)(4nL *K?(0% +4G?)) + (Z ot

L
Cc3 = as + 5()3

669 Thus

AL K2y z": 360L2 S i) g2
(n+1) 2n (n + n(n + 1)
(16L2n2K23n ALs%y 2880bL2s3) o
(n+1) (Tl+1)2 (n+1)

c3 + cidy < (

670 And therefore:

c3 + cids 9 9159 Lsn - i 720L%s%n -
— = << |8L*n°K _
—cld1—02_< K Jrn(n—l—l)Zi:a Z

L
+ <32L2n2K2 TR 5600bL252n2) >,
(n+1)
671 Finally:
T-1

1 2 f(po) — [+

= E <2 l)———

7 2 BV ol <2)M

n

Lsn . T20L%s%n
8L2 2K2 %
+ (g + n(n+1) Z:a Z

8L
+ (322K + b+ 5600bL2s%? | G2
(n+1)

672

673 In particular for stochastic reweighting:

29

1 = 2 f(/JfO) _f*
T ; EIVf (ue)ll” <2(n+ 1)T73n

n

Lsn 1 1 1(E}l,, >0)
8L*n°K* : : E[—*L 2
+ (R Z(K2P(E;+1 ~0) P(E,, > 02 [Bl AK D)o

%

720125212 & 1 1 1(EL, >0
+ (ns 77 (t+1)])) 0_2

(KZP(E;+1 >0) P(EL,, > 0) [E AK

%

L 1
+ (32L2772K2+ BLSD_ ax() + 5600L2s%n> max()) G2.

1
(n+1) i "P(E,>0) i P(El,>0)

674 And particular for expectation reweighting:

T-1

1 2 f(,LLO) B f*
— < SN JF
T 2 E[Vf (u)l” <2(n+1) Tsn

o (srzpxe o L0 - (-1 E[(F}, A K)?) " T20L%5%1 1]E[(Eill/\K)Q]) 2

n(n+1) &' E[E; , ANK] = K?E[E}, AK] n —~'E[Ej,, ANK] = K?E[E],, NK]
8Lsn E[(El, |, A K)?] E[(Ei, , A K)?]
2L2 2K2 tf‘rl L2 2.2 tti-l 2'
+<3 R Gy e E[E!,, A K])+ 5600L7s™n" max(E[E!,, A K] V)¢

30

675

677
678

679

680

682
683
684
685
686
687
688
689
690
691
692
693

694

695
696
697
698
699

701
702
703
704
705
706
707
708

709
710
71
712

713
714

C Detailed simulation environment

From Algorithm [I] one must note that local weights are reset with the central model only when
being contacted by the central server. Hence initially we have wj = wo, but at time ¢ we may have
wi # wy, see Figure@

LR —
wi
t=1 t=2

Figure 4: Example of asynchronous updates with n = 3 nodes and selection size s = 2. Att = 0, all
clients are initialized withe the same value. At time ¢ = 1, clients {1, 3} are selected, and at time
t = 2, clients {2,3}. Attime ¢t = 2, client 2 is reporting updates computed on outdated parameter.

C.1 Implementation of concurrent works

In Section [5| we have simulated experiments and run the code for the concurrent approaches FedAvg,
QuAFL, and FedBuff. FedAvg is a standard synchronous method. At the beginning of each round,
the central node s selects clients uniformly at random and broadcast its current model. Each of these
clients take the central server value and then performs exactly K local steps, and then sends the
resulting model progress back to the server. The server then computes the average of the s received
models and updates its model. In this synchronous structure, the server must wait in each round for
the slowest client to complete its update. QuAFL is an asynchronous method that randomly selects s
clients at each server invocation. The server then replaces its model with a convex combination of the
received models and its current model. Also, the s receiving clients replace their local model with a
convex combination between their current model and the model of the receiving server. In FedBuff,
clients compute local training asynchronously as well, with the help of a buffer. Once the buffer is
filled with Z different client updates, the server averages the buffer updates and performs a gradient
step on the computed average. Then the buffer is reset to zero and the available clients get the server
model as a new starting point.

C.2 Discussion on simulated runtime

We based our simulations mainly on the code developed by Nguyen et al.|(2022): we assume a server
and n clients, each of which initially has a model copy. We assume that, at each time step ¢ (for the
central server), a batch of s clients are sampled at random without replacement. For the client 7, the
inter-arrival time of two successive requests are therefore independent and distributed according to
a geometric distributions of parameter s/n. The time elapsed from the last renewal is distributed
according to the stationary distribution of the age process (assuming that the renewal is stationary),
which is also distributed according to a geometric random variable with the same parameter s/n.
We assume that the clients have different computational speeds. For this purpose E is distributed
according to a geometrical distribution of parameter \': E} ~ Geom(\?). The parameter A\’ is 1/2
for fast clients and 1/16 for slow clients; the expected running time E[E}] is 2 and 16, respectively.
The training dataset is distributed among the clients so that each of them has access to an equal portion
of the training data (whether it is IID or non-IIID). We track the performance of each algorithm by
evaluating the server’s model against an unseen validation dataset. We measure the loss and accuracy
of the model in terms of simulation time, server steps, and total local steps taken by clients.

To adequately capture the time spent on the server side for computations and orchestration of
centralized learning, two quantities are implemented: the server waiting time (the time the server
waits between two consecutive calls) and the server interaction time (the time the server takes to
send and receive the required data). In all experiments, they are set to 4 and 3, respectively.

For each global step, the FedAvg runtime is the sum of the server interaction time (see above) and the
local step runtime of the slowest selected client times the number of maximum epochs K (we wait

31

715
716
7
718
719
720
721

722

723
724

726
727
728
729
730

until all clients have computed all their local epochs in this synchronous setting). For QuAFL and
FAVAS, the duration of a global step is simply the sum of the server interaction time and the server
waiting time. For FedBuff, the runtime is the sum of the server interaction time and the time spent
feeding the buffer of size Z. The waiting time for feeding the buffer depends on the respective local
runtimes of the slow and fast clients, as well as on the ratio between slow and fast clients: in the
code, we reset a counter at the beginning of each global step and read the runtime when the Z*" local
update arrives.

C.3 Detailed results

Below we provide further insight into the experiments described in Section[5] We present figures for
loss, variance (Y-, ||wi — w||?), but also for accuracy (evaluated on the held-out test set on the
server side) in terms of time, but also in terms of total local steps and total server steps.

We find that FAVAS and other asynchronous methods, when time rather than the number of server
steps FAVAS - and more generally asynchronous methods - can achieve significant speedups on
these metrics compared to FedAvg. This is due to asynchronous communication allowing rounds to
complete faster without always having to wait for slower nodes to complete their local computations.
Although this behaviour is simulated, we believe it reflects the practical potential of FAVAS.

—e— FedAvg —e— FedAvg

—#- FedBuff —#- FedBuff
400

2.5

—&— QUuAFL
2.0 FAVAS
Y 300
%) c
V15 ©
o =
| &5 200
1.0 >
100
0.5
0
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Time Time
0.8 0.8
z o —o— FedA
eaAV/
Qo6 g o6 9
— —
=] =]
3 3
0.4 0.4
< <
—e— FedAvg
—#- FedBuff
0.2 —e— QUAFL 0.2
—+— FAVAS
0 10000 20000 30000 40000 0 100 200 300 400 500 600 700
Local steps Server steps
—8— FedAvg
0.8 200 —#— FedBuff
—e— QUAFL
—— FAVAS
> 0]
0 06 —e— FedAvg O 300
© —=— FedBuff £
= —e— QUAFL =
O 200
O 0.4 —+— FAVAS ©
< >
100
0.2
0
0 1000 2000 3000 4000 5000 0 10000 20000 30000 40000
Time Local steps

Figure 5: Validation loss/accuracy and variance on the MNIST dataset with a non-iid split in between
n = 100 total nodes. In this particular experiment, one ninth of the clients are defined as fast.

32

45 —e— FedAvg 60 —e— FedAvg
—— FedBuff uff
a0 —e— QUAFL 50
: —+ FAVAS
940
w0 35 c
3 © 30
— —
3.0 ©
> 20
2.5
10
2.0 o
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Time Time
0.30 0.30
0.25 0.25
> >
O 0.20 0 0.20
© ©
— —
3 g
o
g o1s g o1s
< <
—o— FedAvg —e— FedAvg
0.10 —m— FedBuff 0.10 —m— FedBuff
—o— QUAFL —— QUAFL
0.05 —+— FAVAS 0.05 —+— FAVAS
0 50000 100000 150000 200000 250000 300000 350000 0 250 500 750 1000 1250 1500 1750
Local steps Server steps
0.30
60 —8— FedAvg
—#— FedBuff
0.25 50 —e— QUAFL
- —+— FAVAS
go20 g 4o
c
5 8 30
g oas o
< > 20
—8— FedAvg
0.10 —@- FedBuff 10
—e— QUAFL
0.05 —+— FAVAS o
0 2000 4000 6000 8000 10000 0 50000 100000 150000 200000 250000 300000 350000
Time Local steps

Figure 6: Validation loss/accuracy and variance on the CIFAR-10 dataset with a non-iid split in
between n = 100 total nodes.

731 We refer to FAVAS[QNN] when training a neural network with low bit precision arithmetic. We ran the
732 codeElfrom LUQ (Chmiel et al.,[2021) and adapted it to our datasets and the FL framework. During
733 FAVAS[QNN] training, 3-bits quantization for weights and activation are used, 4 bits quantization for
734 neural gradients is used.

0.30 _e— FAVAS[32bits] (s = 20)
—m— FAVAS[32bits] (s = 50)

025 —+ FAVAS[QNN] (s=20)
FAVAS[QNN] (s = 50)

- '
9 V.
g : M ’
S 0.20
Q
<

0.15

0.10 r

0 2000 4000 6000 8000 10000
Time

Figure 7: Validation accuracy on the CIFAR-10 dataset with a non-iid split in between n = 100
total nodes. The amount s of selected clients at each round is varied. FAVAS[QNN] is the quantized
version of FAVAS[32bits].

3https://openreview.net/forum?id=clw Yez4n8e8

33

735
736
737
738
739

In Figure [/| we analyse the effects of quantization and the influence of the number of randomly
selected clients s on the convergence behaviour. As expected, we find that higher s improve the
performance of FAVAS. Quantizing the neural network degrades the convergence behaviour of the
algorithm, but, even if the weights and activation functions are highly quantized - as in the scenario
we are considering-, the results are close to their full-precision counterpart.

34

	Introduction
	Related Works
	Algorithm
	Analysis
	Numerical Results
	Conclusion
	Environmental footprint
	Proofs of sec:analysis
	Preliminaries
	Useful Lemmas
	Proof of lem:boundpotential
	Bound expected local gradient Variance

	Bound Sum of expected local gradient variance
	Bound the sum (over time) of expected potential
	Bound the change in the average model
	Convergence result

	Detailed simulation environment
	Implementation of concurrent works
	Discussion on simulated runtime
	Detailed results

