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ABSTRACT

Schrödinger bridges (SBs) provide an elegant framework for modeling the temporal
evolution of populations in physical, chemical, or biological systems. Such natural
processes are commonly subject to changes in population size over time due
to the emergence of new species or birth and death events. However, existing
neural parameterizations of SBs such as diffusion Schrödinger bridges (DSBs)
are restricted to settings in which the endpoints of the stochastic process are both
probability measures and assume conservation of mass constraints. To address this
limitation, we introduce unbalanced DSBs which model the temporal evolution of
marginals with arbitrary finite mass. This is achieved by deriving the time reversal
of stochastic differential equations with killing and birth terms. We introduce
two novel algorithmic approaches that incorporate a scalable objective function
designed for training imbalanced DSBs. Additionally, we showcase their robustness
through challenging applications, including predicting diverse molecular single-cell
responses to cancer drugs and simulating the emergence and dissemination of novel
viral variants.

1 INTRODUCTION

Modeling the evolution of probability distributions is a foundational task that finds wide-ranging
applications in diverse fields, including the natural sciences (Bunne et al., 2021; Schiebinger et al.,
2019), signal processing (Kolouri et al., 2017), and economics (Galichon, 2018). In these domains,
observations are often limited to discrete time points, making it challenging to track the trajectories
of individual elements over time.

To address this challenge, the Schrödinger bridge, also known as dynamic entropic optimal transport
(Santambrogio, 2015; Villani, 2009; Vargas et al., 2021b), has recently emerged as a powerful tool
for reconstructing population dynamics from periodic snapshots (De Bortoli et al., 2021; Chen
et al., 2021). The key insight is that Schrödinger bridge can be efficiently solved using the so-called
diffusion Schrödinger bridge (DSB) framework , which consists of iteratively applying score matching
techniques inspired by diffusion models (Song et al., 2021b). This close connection with diffusion
modeling, a technique renowned for its remarkable success in fields such as image and language
processing, has greatly enhanced the practical utility of DSBs.

Despite its impressive successes, one major limitation of the SB approaches is their inherent assump-
tion of mass conservation. While valid in many scenarios, this assumption fails to account for birth
and death phenomena critical in biological and medical applications (see Fig. 1 for an illustration).
For example, assessing cellular responses to cancer drugs must account for cell death, leading to
unequal cell counts before and after treatment. Similarly, tracking the dynamics of infectious diseases
necessitates considering virus proliferation and death.

Motivated by these applications, our paper aims to extend the DSB framework to accommodate
distributions with unequal mass. Specifically, when given two measures µ0 and µ1 such that
µ0(Rd) ̸= µ1(Rd), our goal is to find a dynamics µt of non-probability measures that interpolates
between µ0 and µ1. However, it turns out that existing DSB methods cannot be straightforwardly
applied in this unbalanced setting due to the following challenges:

• Theoretically, handling unbalanced Schrödinger bridge corresponds to extending the DSB frame-
work from Rd to its one-point compactification Rd ∪ {∞}, where ∞ acts as a “coffin state”.
Achieving this extension requires non-trivial adaptation of the DSB framework using the generator
theory.
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Figure 1: Unbalanced Schrödinger bridge. The time evolution of a cell population encompasses
alterations in transcriptomic profiles as well as natural and externally-induced death and birth events.

• Empirically, much of the strength of DSB stems from the score matching framework. However,
in the unbalanced setting, score matching alone turns out to be insufficient. Instead, an additional
density estimation procedure is required, introducing considerable computational complexity.

Our Approach and Contributions. To address the above challenges, we exploit the insightful
perspective of time-reversal within the context of score matching. Specifically, we first recall that
score matching can be seen as time-reversing stochastic differential equations (SDEs) on Rd (Song
et al., 2021b), a fundamental concept that also underpins the DSB schemes. The centerpiece of our
framework is to generalize this procedure to derive the time-reversal formulas for SDEs on Rd∪{∞}.
A crucial outcome of our theory is that for an SDE with death (diffusions with jumps into the coffin
state∞), its time-reversal is another SDE with birth (diffusions with jumps out of the coffin state∞).
Conversely, we prove that the time-reversal of an SDE with birth is another SDE with death. This
duality has the important implication that, to numerically solve unbalanced Schrödinger bridge, it
suffices to design algorithms for time-reversing SDEs with birth and death, respectively. Armed with
this insight, we then design scalable algorithms to address the unbalanced DSBs problems.

In summary, our contributions encompass:

1. We derive the time-reversal of diffusions with death and show they correspond to diffusions with
birth. Similarly, we show that time-reversing diffusions with birth yields diffusions with death.

2. We leverage these formulas and associated loss functions to propose a framework for solving the
DSB on Rd ∪ {∞}. Furthermore, we design scalable algorithms to approximately tackle these
unbalanced DSBs problems with both deaths and births.

3. We assess the performance of our algorithms on various tasks, with a particular focus on enhancing
the modeling of cellular responses to cancer drugs. Notably, our experiments demonstrate a
significant impact of including information on deaths and births occurring at intermediate times.

2 BACKGROUND

Diffusion Schrödinger bridge. The Schrödinger bridge (SB) problem refers to the following
KL-minimization problem with constrained marginals at the both the initial and final time points:

PSB := argmin{KL(P|P0) : P0 = µ0, PT = µ1}, (1)

where µ0, µ1 are probability measures and P0 is a reference probability path measure, i.e. a probability
measure on the space of continuous functions C([0, T ],Rd). A conceptual algorithm for solving (1)
is the iterative proportional fitting (IPF) iterations (Sinkhorn and Knopp, 1967; Knight, 2008; Peyré
and Cuturi, 2019; Cuturi and Doucet, 2014) which define processes (Pn)n∈N via

P2n+1 = argmin{KL(P|P2n) : PT = µ1}, P2n+2 = argmin{KL(P|P2n+1) : P0 = µ0}. (2)

Under mild assumptions, it can be shown that limn→+∞ Pn = PSB.

While conceptually appealing, the IPF algorithm is nonetheless not practically implementable since
it operates on path measures. To address this limitation and numerically approximate solutions
to (1), De Bortoli et al. (2021) introduced the diffusion Schrödinger bridge (DSB) framework,
which is rooted in the following key observation: Assuming that Pn is associated with the SDE
dXt = ft(Xt)dt+ dBt, then Pn+1 is associated with the time-reversal (Haussmann and Pardoux,
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1986; Anderson, 1982; Cattiaux et al., 2021) of this SDE, initialized at µ1. More precisely, we have
(YT−t)t∈[0,T ] ∼ Pn+1 with

dYt = {−fT−t(Yt) +∇ log pT−t(Yt)}dt+ dBt, Y0 ∼ µ1

where pt is the density of Pn
t and (Bt)t≥0 a d-dimensional Brownian motion. The quantity∇ log pt

is called the Stein score and can be estimated using score-matching techniques (Hyvärinen and Dayan,
2005; Vincent, 2011) and the powerful diffusion models (Song et al., 2021b; Ho et al., 2020).

Unbalanced Schrödinger bridge and optimal transport. This paper focuses on solving the
unbalanced Schrödinger bridge problem, which arises when the initial and terminal measures do
not have the same total mass, meaning µ0(Rd) ̸= µ1(Rd) in (1). Additionally, P0 is a reference
non-probability path measure that might not have a total mass of 1 at each time point.

There are existing works that address the unbalanced SB and related unbalanced optimal transport
(OT) problems. Some approaches relax the classical OT formulation by introducing “soft” marginal
constraints instead of hard ones (Chizat et al., 2018; Liero et al., 2018; Yang and Uhler, 2019;
Kondratyev et al., 2016). Other methods extend finite measures to measures with the same mass
by incorporating a “coffin” state and performing optimal transport on an extended space (Pele
and Werman, 2009; Caffarelli and McCann, 2010; Gramfort et al., 2015; Ekeland, 2010). Finally,
some theoretical properties of the solutions of unbalanced SB, such as asymptotic convergence or
connection to stochastic optimal control, are established in (Chen et al., 2022).

To the best of our knowledge, our work is the first to derive the time-reversal formula for the
unbalanced SB problem, which is crucial for establishing a connection to diffusion models and
thereby taking advantage of their empirical performance.

3 TIME-REVERSAL OF BIRTH AND DEATH PROCESSES

To numerically address the unbalanced Schrödinger bridge problem, it is crucial to derive formulas
for the IPF procedure which can be easily discretized. In particular, following the framework of
De Bortoli et al. (2021), we need to derive time-reversal formulas. In this section, we present a
succinct overview of the core concepts and leave a thorough discussion to Appendices A to D.

Diffusion processes with killing. A diffusion process with drift b(·) and killing rate k(·) can be
intuitively understood in terms of its SDE representation:

Xt+dt =

{
∞, with probability k(Xt)dt
Xt + b(Xt)dt+ dBt, with probability 1− k(Xt)dt,

(3)

where∞ represents the coffin state after a particle is killed. In this coffin state, a particle ceases to
move further: Xt+s =∞ for all s ≥ 0 if Xt =∞.

Despite intuitively appealing, (3) is mathematically ill-defined and hence not suitable for developing
a rigorous framework. Instead, we opt for the generator framework as follows. Denote the one-point
compactification of Rd by R̂d = Rd ∪ {∞}. For a smooth function f on R̂d, we define an operator
K̂ as

K̂(f)(x) =
[
⟨b(x),∇f(x)⟩+ 1

2∆f(x)− k(x)(f(x)− f(∞))
]
1Rd(x). (4)

It can be shown that (4) is the infinitesimal generator associated with (3), i.e., K̂(f)(x) =
limt→0(1/t)(E[f(Xt) | X0 = x] − f(x)) for a process (Xt)t≥0 which is a diffusion with killing
rate k(·) on R̂d. To get a sense of why the generator is a useful notion, one can informally replace
f(·) with 1y(·) for an arbitrary y ∈ R̂d, y ̸= x and note that the previous expression simplifies to
K̂(f)(x) = limt→0(1/t)P(Xt = y|X0 = x). Therefore, the knowledge of K̂(f) on all functions f
completely characterizes the infinitesimal change of the probability transition kernel of the diffusion.
A rigorous treatment of such processes is provided in Proposition C.6.

Time-reversal of diffusions with killing and birth. We are now ready to derive our main result: a
time-reversal formula for diffusion processes with killing. Let (Xt)t∈[0,T ] be the diffusion process
with killing rate k, defined by the generator (4), and (Yt)t∈[0,T ] := (XT−t)t∈[0,T ] be its time reversal.
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Proposition 3.1 (Time reversal; informal). Under mild assumptions, the generator B̂ of the time-
reversed process (Yt)t∈[0,T ] is given for any sufficiently smooth function f and any x ∈ R̂d by

B̂(f)(t, x) = [⟨−b(x) +∇ log pT−t(x),∇f(x)⟩+ 1
2∆f(x)] 1Rd(x) (5)

+
∫
Rd(pT−t(x̃)/ST−t)k(x̃)(f(x̃)− f(∞))dx̃ 1∞(x).

Here, pt is the probability density of Xt and St := P[Xt =∞].

The key terms appearing in (5) are highlighted in blue. Note that, if there is no killing in Xt,
i.e., k(x) ≡ 0, then B̂(f)(t, x) reduces to the well-known time-reversal formula for Euclidean
diffusions (Haussmann and Pardoux, 1986; Cattiaux et al., 2021). In the presence of killing, instead,
Proposition 3.1 leads to the important observation that the time-reversal of a diffusion process with
killing is a diffusion process with birth: Since (5) traces the behavior of the process (3) backward
in time, it appears as though a particle “revives” from the coffin state ∞, and this revival occurs
at a certain birth rate denoted by qt(x). Subsequently, the particle proceeds along the reverse SDE
without ever re-entering the coffin state. Importantly, Proposition 3.1 furnishes an explicit formula
for the birth rate: qt(x) = k(x)pt(x)/St.

Analogously, we can derive the time reversal of a diffusion process with birth in a similar fashion to
that of Proposition 3.1: Consider a diffusion process given by (5), i.e., with drift b(·) and birth rate
qt(x) := k(x)pt(x)/St. Then, under mild assumptions, one can show that the generator K̂ associated
with the time-reversed diffusion with birth in (5) can be expressed as

K̂(f)(t, x) = (⟨−b(x) +∇ log pT−t(x),∇f(x)⟩+ 1
2∆f(x)) 1Rd(x) (6)

− (ST−t/pT−t(x))qT−t(x)(f(x)− f(∞)) 1Rd(x)

for any sufficiently smooth function f and x ∈ R̂d. The key terms in (6) are highlighted in red.
Comparing (6) with (4), we conclude that the time-reversal of a diffusion with birth rate qt(x) is a
diffusion with killing rate kt(x) := Stqt(x)/pt(x).

4 UNBALANCED ITERATIVE PROPORTIONAL FITTING

Equipped with the notion of time reversal, we are now ready to derive an IPF scheme for marginals
with arbitrary mass. Our approach begins by deriving the optimality conditions for the unbalanced
SB, which will serve as the basis for unveiling the corresponding IPF scheme.

Unbalanced Schrödinger bridge: Optimality conditions. For simplicity, we assume that the
target measures µ0, µ1 satisfy µ0(Rd) ≥ µ1(Rd) and their restrictions to Rd have smooth densities
p0, p1 w.r.t. the Lebesgue measure. We start by characterizing the optimality condition of the solution
to the unbalanced SB objective in (1). To this end, we will need the following extension of the
Schrödinger equations to unbalanced marginals (Chen et al., 2022): Let the process with infinitesimal
generator K̂0 defined in (4) be our prior measure P0. Unlike in Section 2, we consider PSB and P0 to
be path measures on the extended space R̂d. To state the solution to (1) in this case, we define the
functions (φ, φ̂,Ψ, Ψ̂) which, for any t ∈ [0, T ] and x ∈ Rd, satisfy:
∂tφt(x) = −⟨b(x),∇φt(x)⟩ − 1

2∆φt(x) + k(x)φt(x)− k(x)Ψt, ∂tΨt = 0, (7)

∂tφ̂t(x) = −div(bφ̂t)(x) +
1
2∆φ̂t(x)− k(x)φ̂t(x), ∂tΨ̂t =

∫
Rd k(x)φ̂t(x)dx,

together with the boundary conditions:

φ0φ̂0 = p0, φ1φ̂1 = p1 and Ψ0Ψ̂0 = 0, Ψ1Ψ̂1 = µ0(Rd)− µ1(Rd).

To improve readability, we highlight the control terms (φ,Ψ) of the process with killing in red and
those of the process with birth in blue. The proof of the following result is given in Appendix C.

Proposition 4.1. Under mild conditions, there exists a unique solution PSB to (1) on R̂d. The paths
(Xt)t∈[0,T ] ∼ PSB are associated with the generator K̂SB given, for any smooth f , t ∈ [0, T ] and
x ∈ R̂d, by

K̂SB
t (f)(t, x) =

[
⟨b(x) +∇ logφt(x),∇f(x)⟩+ 1

2∆f(x)− (Ψt/φt(x))k(x)(f(x)− f(∞))
]
1Rd(x).
(8)

A similar result can be derived for the birth process (XT−t)t∈[0,T ].
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Proposition 4.1 reveals that, when the reference is a killing process, the solution PSB is also a killing
process. In particular, (8) implies that the difference between its generator and the one of the reference
depends only on (φ,Ψ). Analogously, the time reversal of PSB is a birth process which only depends
on (φ̂, Ψ̂).

Unbalanced Schrödinger bridge: Iterative proportional fitting. We are now ready to describe
the unbalanced IPF scheme which serves as the foundation for our proposed algorithms. We consider
the sequence (Pn)n∈N of measures on R̂d, given by (2), and recall that P0 is associated with a
diffusion with killing. For any n ∈ N, we have that: (a) P2n+1 is a diffusion with birth, given by the
time-reversal of P2n, initialized at µ1; (b) P2n+2 is a diffusion with killing, given by the time-reversal
of P2n+1, initialized at µ0. In order to extend DSBs to unbalanced problems, we need to estimate
the parameters appearing in (5) and (6). Contrary to (De Bortoli et al., 2021), it is not sufficient to
estimate solely the drift of the diffusion, since we also need to update the killing/birth rate. The exact
update formulas is given in the following result.

Proposition 4.2. Under mild assumptions, there exist (φn, φ̂n,Ψn, Ψ̂n)n∈N such that, for any n ∈ N,
P2n is initialized at P2n

0 = µ0 and associated with K̂n given for any t ∈ [0, T ] and x ∈ R̂d by

K̂n
t (f)(t, x) =

[
⟨b(x) +∇ logφn

t (x),∇f(x)⟩+ 1
2∆f(x)− k(x)(Ψ

n
t /φ

n
t (x))(f(x)− f(∞))

]
1Rd(x).

Similarly, P2n+1 is initialized at P2n+1
T = µ1 and associated with B̂n+1 given by

B̂n+1
t (f)(t, x) = (⟨−b(x) +∇ log φ̂n+1

T−t(x),∇f(x)⟩+
1
2∆f(x))1Rd(x) (9)

+
∫
Rd(φ̂

n+1
T−t(x̃)/Ψ̂

n+1
T−t)k(x̃)(f(x̃)− f(∞))dx̃1∞(x).

Furthermore, we have that for, any n ∈ N, t ∈ [0, T ] and x ∈ Rd,

logφn
t (x) + log φ̂n+1

t (x) = log p2nt (x), Ψn
t Ψ̂

n+1
t = 1−

∫
Rd p

2n
t (x)dx,

logφn+1
t (x) + log φ̂n+1

t (x) = log p2n+1
t (x), Ψn+1

t Ψ̂n+1
t = 1−

∫
Rd p

2n+1
t (x)dx, (10)

where pnt is the density w.r.t. the Lebesgue measure of Pn
t restricted to Rd.

The crucial takeaway from Proposition 4.2 is that the unbalanced IPF iterations demand updates to
the functions (φn, φ̂n,Ψn, Ψ̂n)n∈N. As indicated by (10), these updates in turns require to estimate
the density (pnt )n∈N. This is in contrast to the balanced setting where only the score ∇ log pnt is
required.

Sampling from diffusion with killing or birth. Finally, whether it be to approximate the quantity
(φn, φ̂n,Ψn, Ψ̂n)n∈N or to sample from the (approximate) unbalanced Schrödinger bridge, we need
to discretize birth and death dynamics. We start by discussing how to sample from a diffusion with
killing of the form (4). Our approach is based on the Lie-Trotter-Kato formula (Ethier and Kurtz,
2009, Corollary 6.7, p.33). Since K̂, given by (4), can be decomposed in K̂cont and K̂disc such that

K̂cont(f)(x) = ⟨b(x),∇f(x)⟩+ 1
2∆f(x), K̂disc(f)(x) = −k(x)(f(x)− f(∞)),

we alternate between sampling according to K̂cont and to K̂disc, where the latter describes a pure
killing process. For small-enough step-sizes, Ethier and Kurtz (2009, Corollary 6.7, p.33) asserts
that this amounts to sampling according to K̂. We discretize the diffusion process using the standard
Euler-Maruyama method and use coin flipping for K̂disc (see Appendix D for details).

Sampling diffusion with birth is, however, more problematic. We can still decompose B̂ from (5) into
B̂cont and B̂disc with

B̂cont(f)(x) = ⟨b(x),∇f(x)⟩+ 1
2∆f(x), B̂disc(f)(∞) =

∫
Rd q(x̃)(f(x̃)− f(∞))dx̃,

but B̂disc is a pure birth process, which is more difficult to sample from. We achieve the task
by considering time intervals of size γ > 0 and assuming that the birth rate can be written as
q(x̃) = ℓ(x̃)p(x̃), where

∫
Rd p(x̃)dx̃ = 1. We can then sample X̂ ∼ p and then let X = X̂ with

probability ℓ(X̂)γ and X =∞ otherwise, in which case the birth is rejected.
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When executing our IPF scheme, the form of B̂n+1
disc , given by (9), is

B̂n+1
disc (f)(t,∞) =

∫
Rd (φ̂

n+1
T−t(x̃)/Ψ̂

n+1
T−t)k(x̃)(f(x̃)− f(∞))dx̃

=
∫
Rd p

2n
T−t(x̃)k(x̃)/(φ

n
T−t(x)Ψ̂

n+1
T−t)(f(x̃)− f(∞))dx̃,

Figure 2: Shadow trajectory sampling.

where we obtained the second equality using (10). We
therefore have that ℓ(x̃) = k(x̃)/(φn

T−t(x)Ψ̂
n+1
T−t) and

p(x̃) = p2nT−t(x̃). To sample backward paths P2n+1, we
first sample a forward trajectory (Xt)t∈[0,T ] ∼ P2n. If
the particle is at∞ at time t, then we sample a Bernoulli
variable with parameter γk(XT−t)/(φ

n
T−t(XT−t)Ψ̂

n+1
T−t).

The particle is born if this random variable is equal to one.
In that case, we set Yt+γ = XT−t (and Yt+γ =∞ other-
wise). After birth, backward trajectories evolve according
to the continuous diffusion in Rd described by B̂cont. We
call this method shadow trajectory sampling and illustrate
it in Fig. 2 while providing the algorithm in Appendix D.

5 UNBALANCED DIFFUSION SCHRÖDINGER BRIDGE WITH TEMPORAL
DIFFERENCE LOSS

Equipped with Proposition 4.2 and the sampling strategies presented in the previous paragraph, we are
now ready to describe our numerical implementation of (2). We parameterize logφn

t , log φ̂
n
t with the

two networks ft,θn and f̂t,θ̂n , respectively. Note that, contrary to the classical diffusion Schrödinger
bridge setting (De Bortoli et al., 2021; Chen et al., 2021), we need to estimate logφn

t , log φ̂
n
t and not

only∇ logφn
t ,∇ log φ̂n

t .

Estimating logφn and log φ̂n. To learn f̂t,θ̂n+1 , we first sample from P2n using ft,θn and Ψn
t ,

which are assumed to be known. Once this is done, we compute a loss on f̂t,θ̂n+1 combining the mean-

matching (MM) loss (De Bortoli et al., 2021) (which is a loss on ∇f̂t,θ̂) and a temporal difference

(TD) loss (Liu et al., 2022) (which is a loss on f̂t,θ̂). The MM loss was designed to compute iterates in
classical DSB while the TD loss was introduced in Liu et al. (2022) in order to compute generalized
Schrödinger bridges. The TD loss can be seen as a regularizer to the MM loss. Indeed, at equilibrium,
minimizers f̂t,θ̂⋆ of the MM loss satisfy f̂t,θ̂⋆ = log φ̂⋆

t + ct, where ct only depends on the time
t. In Appendix F, we provide further details on how the MM and TD losses can be adapted to
the unbalanced setting. So far we have described how to update f̂t,θn+1 given ft,θn and Ψn

t . The
update of Ψ̂n+1

t , instead, leverages the closed-form expression Ψ̂n+1
t = (1 −

∫
Rd p

2n
t (x)dx)/Ψn

t ,
which follows from (10). Ψ̂n+1

t can, in fact, be computed on the fly, by approximating
∫
Rd p

2n
t (x)dx

with the proportion of live particles at time t in the forward process. Once we have estimated
(f̂t,θ̂n+1 , Ψ̂n+1) we can estimate (ft,θn+1 ,Ψn+1

t ) in a similar fashion.

Updating Ψn. We know from (7) that at Ψn
t does not depend on t.1 Using this observation, we

consider a correction strategy which projects Ψt on constant functions. As a consequence of (7), we
have for any n ∈ N,

Ψn = (µ0(Rd)− µ1(Rd))/
∫ 1

0

∫
Rd k(x̃)φ̂

n
t (x̃)dx̃. (11)

We propose a numerical approximation of (11) in Appendix F.

Algorithm. We are now ready to introduce our numerical approximation of Unbalanced IPF, termed
Unbalanced Diffusion Schrödinger Bridge with Temporal Difference (UDSB-TD) and described in
Algorithm 1. The procedures UPDATE-PSI, SAMPLE-FORWARD and SAMPLE-BACKWARD are given

1This is because the system (7) is still valid for the iterates (φn, φ̂n,Ψn, Ψ̂n)n∈N.
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in Appendix F. While our algorithm resembles the one of Liu et al. (2022), we highlight some key
differences: (a) In Liu et al. (2022), the forward and backward processes do not incorporate killing
and/or birth; (b) as a consequence, it is not possible to update the killing and birth rates to match a
desired mass constraint. It can, in fact, be shown that the formulation of Liu et al. (2022) corresponds
to the reweighted approach in Chen et al. (2022), which is not equivalent to the unbalanced SB.

Algorithm 1 UDSB-TD training

Input: θ, θ̂, µ0, µ1

Output: θ, θ̂
1: for epoch n ∈ {0, ..., N} do
2: ψ ← UPDATE-PSI(θ, θ̂, ψ) ▷ Update death rate
3: (Yt)t∈[0,T ] ← SAMPLE-BACKWARD(θ, θ̂, ψ) ▷ Sample from birth process
4: while reuse paths do
5: LMM(θ)← LMM((Yt)t∈[0,T ]; θ), LTD(θ)← LTD((Yt)t∈[0,T ]; θ) ▷ Compute loss
6: Update θ using ∇θ(LMM + LTD) ▷ Train forward potential
7: (Xt)t∈[0,T ] ← SAMPLE-FORWARD(θ, θ̂, ψ) ▷ Sample from kill process
8: while reuse paths do
9: LMM(θ̂)← LMM((Xt)t∈[0,T ]; θ̂), LTD(θ̂)← LTD((Xt)t∈[0,T ]; θ̂)

10: Update θ̂ using ∇θ̂(LMM + LTD) ▷ Train backward potential

Limitations of UDSB-TD. Although theoretically grounded, UDSB-TD has some limitations.
Like in Liu et al. (2022), it needs estimates of logφn

t , log φ̂
n
t , and not only of∇ logφn

t ,∇ log φ̂n
t , in

order to update Ψ̂ and Ψ. While the TD loss allows for that, it is less stable than the MM loss and,
more importantly, requires estimates of ρ0, ρ1 which might not be available in practice. Furthermore,
the formula (11) used to update Ψ might be numerically unstable, especially in high dimensions.

Heuristic estimation of Ψ. To circumvent these limitations, we introduce another algorithm
(UDSB-F) that exhibits a better behavior w.r.t. the dimension of the problem and does not require the
estimation of logφn

t , log φ̂
n
t . While we do not prove the theoretical validity of this new procedure, we

verify empirically in Appendix G that its results are consistent with UDSB-TD in small dimensions.
Following (8), we know that, at equilibrium, the update on the killing rate is given by x 7→ Ψt/φt(x).
Therefore, we propose to approximate this ratio by x 7→ gζ,t(x), where gζ is learnable. Rewriting
(11) at equilibrium, we have∫ 1

0

∫
Rd k(x)(Ψt/φt(x))pt(x)dx = µ0(Rd)− µ1(Rd).

This suggests considering the loss L(ζ) =
∫ 1

0
E[k(Xt)gζ,t(Xt)]dt− µ0(Rd) + µ1(Rd). We again

highlight that minimizing this loss does not ensure that gζ,t is the optimal update. However, using
this loss we remark that we no longer need to estimate logφn

t , log φ̂
n
t . Therefore, we can drop the

TD loss and make the algorithm more scalable by not requiring estimates of ρ0, ρ1. The algorithm
performing the revised update of the killing rate is presented fully in Appendix F.

6 EXPERIMENTS

In this section, we assess the performance of our UDSB solver in two tasks: the reconstruction of
simple dynamics in the plane and the modeling of cellular responses to a cancer drug. We defer
a thorough comparison of the two schemes discussed in Section 4 (UDSB-TD and UDSB-F) to
Appendix G and henceforth utilize UDSB-F algorithm due to its enhanced stability and wider
applicability.

Synthetic dynamics. We first consider the toy dataset displayed in Fig. 3a, consisting of 3 groups of
points that are known to move along the horizontal axis. Standard SBs easily reconstruct the dynamics
whenever representatives of all groups appear in observed marginals. However, some clusters may
not appear in the empirical distribution. Under-representation could be, for instance, attributable to
the exceedingly small number of samples considered or be related to other experimental factors. We
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Intermediate time (24h) Final time (48h)

Methods MMD ↓ Wε ↓ MMD ↓ Wε ↓
Chen et al. (2021) 3.25e-2 (0.03e-2) 7.11 (0.02) 1.87e-2 (0.05e-2) 6.26 (0.02)
Ours (no deaths/births) 2.45e-2 (0.06e-2) 6.80 (0.09) 1.17e-2 (0.03e-2) 5.66 (0.10)
Ours 2.25e-2 (0.05e-2) 6.68 (0.08) 1.13e-2 (0.07e-2) 5.52 (0.09)

Table 1: Cellular dynamics prediction results. We compare our method against a baseline, a
classical SB solver, by measuring the quality of the predicted statuses of cells both at the end of the
experiment and at an intermediate time. We use two distributional metrics (MMD, Wε) and report
averages and standard deviations (in parentheses) over 10 runs. Note that, when disabling the death
mechanism, our method coincides with Liu et al. (2022).

represent two of these cases: one group does not appear in the end marginal in Fig. 3b, while two are
missing in those of Fig. 3e (top-right and middle-left). In both cases, standard SBs fail to capture the
correct dynamics, since they generate diagonal trajectories (Fig. 3c, 3f). Orphan particles, which start
at the top-left, are in fact forced to reach their closest points in the final marginal, i.e., the middle
cluster on the right. This is the product of the assumption placed by SBs that all particles move
continuously in the state space. It is not possible to encode the knowledge that a (known) fraction of
particles should leave (or enter) the system and that some particles may be extraneous.

Unbalanced SBs provide instead a natural way of identifying regions containing particles that should
likely not be considered when learning the diffusion, or ones in which new particles should appear.
They consist of death (and birth) priors, which we draw here as gray rectangles. A death zone is,
for instance, placed close to the orphan marginal in Fig. 3b, while a birth zone stands beside the
central cluster on the right of Fig. 3e, since that group of particles does not have a counterpart in
the initial marginal. UDSBs then learn trajectories between incomplete marginals, by only using
live particles. The statuses of particles are determined by incrementally adjusting the death (and
birth) priors to match a predefined amount of mass loss. For example, we consider three different
amounts of mass remaining at time t1 (Fig. 3h) and compute UDSB trajectories for each of them
(Fig. 3d). In all cases, our algorithm computes correct paths for live particles while ensuring that
the number of deaths matches the mass constraint (Fig. 3h).

Figure 3: Synthetic datasets. (a) Initial (blue) and final (red) empirical distributions, consisting
of 3 groups of points moving horizontally. When some groups are missing in observations (b, e,
dashed), standard SBs fail to learn the correct dynamics (c, f). By introducing death and birth priors
(gray rectangles), unbalanced SBs recover, instead, the true evolution law (d, g). They learn valid
interpolations (d1-3) between incomplete marginals which also reproduce the (arbitrary) mass loss
observed at the end (h, circles).

Cellular dynamics. Unbalanced SBs have a natural application in the field of cellular biology,
where the appearance or disappearance of mass has the physical meaning of cell birth or death. We

8
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Figure 4: Single-cell response to a cancer drug. (a) Cell states (projected along their first two principal
components) are measured at the beginning (blue) and at the end (red). The predictions computed by
UDSB-F (c) closely match the one of a standard SB solver (b) but also account for changes in cell
population observed at intermediate times (d). The dynamics learned by our unbalanced SB solver
(e) define the evolution of cell states but also describe death and birth events (black and white dots).
Ellipses identify the 3σ region around the mean of the observed population at each timepoint.

examine the dataset collected by Lübeck et al. (2022), which tracks the time evolution of single-cell
markers of melanoma cells undergoing treatment with several cancer drugs. Cell statuses are recorded
at 3 different times and their evolution can be approximated by standard SBs as a continuous diffusion
in their (50-dimensional) feature space. However, this model ignores that consecutive measurements
capture different cell populations, owing to the death of some cells –caused either by natural or drug-
induced reasons– and to the birth of new ones. Trajectories of dying cells are therefore artificially
steered to match the final marginal while the presence of newborn cells cannot be properly taken into
account. By allowing for jumps in the trajectories of cell statuses, unbalanced SBs overcome, instead,
both limitations and more accurately reproduce the measurements. They can, in fact, kill cells with
statuses that are dissimilar to the ones found in subsequent measurements while also generating new
cells close to observed ones.

We consider a treatment (the drug mix Trametinib-Erlotinib) that makes the observed cell population
first grow and then shrink over time (dots in Fig. 4d), hence clearly requiring the modeling of cell
deaths and births. We plot the temporal evolution of cell trajectories computed by UDSB-F in
Fig. 4e. Colored ellipses represent statuses less than 3 standard deviations away from empirical
means. Deaths, represented by black dots, allow removing some of the cells that are far away from
observed statuses, while birth (white dots) help introduce new cells located in the densest parts of
the state-space. UDSB-F ensures that the number and temporal distribution of deaths/births match
observations at both timepoints (Fig. 4d). It learns a standard SB on live particles, which produces
better quality predictions of the end marginal (Table 1, 48h) compared to the (balanced) SB solver
by Chen et al. (2021). More importantly, the reconstruction quality of the intermediate marginal
(Table 1), which is not seen during training, also improves. Interestingly, if we sample trajectories
from UDSB-F but disregard deaths and births, the quality of the predictions deteriorates pointing to
the role of the coffin state in improving the quality of learned dynamics.

In cases where cell births are not observed or their number is negligible, we can compute UDSBs
using the more theoretically-sound version of our algorithm:UDSB-TD. In the appendix, we use one
such case, i.e., treatment with drug Ulixertinib, which involves a substantial (>40%) decrease in cell
count, to compare the performances of UDSB-TD and UDSB-F.

7 CONCLUSION

In conclusion, this work addresses data transport in the challenging unbalanced setting, essential
for accurately tracking population changes in biology applications. Our key contribution extends
the IPF procedure for modeling dynamics with time-varying mass information, using time-reversal
formulas for diffusions with killing and birth terms. We present efficient algorithms, applied to tasks
like modeling cellular responses to cancer drugs and simulating virus spread.

Furthermore, our work establishes connections between the SB formulation and other fields, opening
research avenues, including mean-field stochastic games and connections with stochastic optimal
control and Wasserstein geometry, deepening the theoretical understanding of SB problems on
non-Euclidean spaces.
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APPENDIX

In these appendices, we give more details on the stochastic processes we investigate, better describe
their links with the Schrödinger bridge problem, and present additional experiments. Notations are
defined in Appendix A. In Appendix B, we prove the existence of diffusions with killing under
mild assumptions, by using general theoretical results from Ethier and Kurtz (2009). We then prove
time-reversal formulas (Appendix C). Discretization schemes of diffusions with killing, as well as
the link with their time reversal, are discussed in Appendix D. Appendix E recalls related literature
and compares it to this work. Appendix F examines instead the implementation of UDSB-TD and
supplies additional details on the more scalable heuristic estimation of Ψ, which we use in UDSB-F.
Finally, Appendix G includes additional experiments and details datasets, prior processes, models,
hyper-parameters, and evaluation metrics.

A NOTATION

We denote Ck
b (Rd,R) the set of functions which are k differentiable and bounded. Similarly, we

denote Ck
b (Rd,R) the set of functions which are k differentiable and compactly supported. The

set Ck
0(Rd,R) denotes the functions which are k differentiable and vanish when ∥x∥ → +∞. For

any A ⊂ Rd, we denote cl(A) its closure. Similarly, we denote int(A) its interior. Finally, we
define ∂A = cl(A) ∩ int(A)c, the topological boundary of A. We denote by B̄(a ; r) the closed ball
with center a ∈ Rd and radius r > 0. We denote by B(a ; r) the associated open ball. We denote
R̂d = Rd ∪ {∞}, the one-point compactification of Rd. We refer to Kelley (2017) for details on
this construction. We simply note that f ∈ C(R̂d), if f ∈ C(Rd) and f − f(∞) ∈ C0(Rd) and that
f ∈ Ck(R̂d) for any k ∈ N if the restriction of f to Rd is in Ck(Rd) and f ∈ C(R̂d). We recall that
in our context, {∞} will play the role of a cemetery state. The space of right continuous with left limit
functions on (0,+∞] with valued in E where E is a topological space is denoted D((0,+∞],E), we
refer to Ethier and Kurtz (2009, p.116) for more details on the topology of this space. For a measure
µ on a measurable space E and f a measurable function on E such that

∫
E
|f |(x)dµ(x) < +∞, we

denote µ(f) =
∫
E
f(x)dµ(x).

Next, we define a solution of the martingale problem associated with A, in the sense of Ethier and
Kurtz (2009). We only consider the case where the solutions are right continuous. We assume that
E is a metric space and let A ⊂ F(E) × F(E), where F(E) is the space of real-valued measurable
functions on E. A E-valued right continuous stochastic process (Xt)t≥0 is a solution of the martingale
associated with A if for any (f, g) ∈ A, (f(Xt)−

∫ t

0
g(Xs)ds)t≥0 is a martingale with respect to

its own filtration. In layman terms, in the case where A is a function, this means that f(Xt) can be
written as

f(Xt) =
∫ t

0
A(f)(Xs)ds+Mt,

where (Mt)t≥0 is a martingale. The notion of solution of a martingale problem is associated with
the notion of weak solution to a Stochastic Differential Equation (SDE). We refer to Stroock and
Varadhan (1997) for an extensive study of SDEs from the point of view of martingale problems.

B EXISTENCE OF DIFFUSIONS WITH KILLING

In this section, we prove the existence of killed diffusions using the theory of infinitesimal generators.
We will leverage general results from (Ethier and Kurtz, 2009). We begin by introducing the
infinitesimal generator we are going to study. Let A : C2

b(Rd,R) → Cc(Rd,R) be given for any
f ∈ C2

c(Rd,R) and x ∈ Rd by

A(f)(x) = 1
2∆f(x) + ⟨b(x),∇f(x)⟩ − k(x)f(x), (12)

with b ∈ C(Rd,Rd) called the drift function and k ∈ C(Rd,R+) called the killing rate. The regularity
assumptions are summarized in the following hypothesis.

Assumption B.1. b ∈ C(Rd,Rd) and k ∈ C(Rd,R+).
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Contrary to a classical diffusion associated with a Itô Stochastic Differential Equation (SDE), (12)
incorporates a zero order term x 7→ −k(x)f(x). The fact that k is non-negative is key to the rest of
our study. Before stating our main result, we begin by stating a maximum principle for A.

B.1 A Maximum Principle. In order to apply (Ethier and Kurtz, 2009, Theorem 5.4), we need to
ensure that A satisfies a maximum principle. Such results are ubiquitous in the analysis of Partial
Differential Equations (PDEs). In what follows, we use an extension of the Hopf maximum principle,
see (Protter and Weinberger, 2012, Theorem 5). For completeness, we provide the proof of this
well-known result in our setting following Protter and Weinberger (2012). We start with the following
lemma.
Lemma B.2. Assume Assumption B.1. Let U ⊂ Rd be an open set and f ∈ C2(cl(U),R). Assume
that for any x ∈ U, we have A(f)(x) > 0. Assume that there exists x0 ∈ cl(U) such that
f(x0) = sup{f(x) : x ∈ cl(U)}. Then x0 ∈ ∂U.

Proof. First, assume that x0 ∈ U. Then, we have ∇f(x0) = 0 and ∇2f(x0) ≺ 0 and therefore,
∆f(x0) ≤ 0. Since k ∈ C(Rd,R+), we get that A(f)(x0) ≤ 0, which is a contradiction. Hence
x0 ∈ ∂U.

This lemma is also called the weak maximum principle. Equipped with Lemma B.2, we are now
ready to prove the main result of this section (Protter and Weinberger, 2012, Theorem 6).
Proposition B.3. Assume Assumption B.1. Let U ⊂ Rd be an open bounded connected set and
f ∈ C2(cl(U),R). Assume that for any x ∈ U, A(f)(x) ≥ 0. Assume that there exists x0 ∈ U such
that f(x0) = sup{f(x) : x ∈ cl(U)}. Then f is constant on U.

Proof. In this proof, we are going to proceed by contradiction. We construct a function and a domain
which contradicts Lemma B.2. First, we start by identifying an open set in U such that at least one
element of the boundary is a maximizer of f and every element in the interior of the open set is not a
maximizer.

Let x0 ∈ U such that f(x0) = M = sup{f(x) : x ∈ cl(U)} and x1 ∈ U such that f(x1) < M .
Since U is connected, there exists γ ∈ C([0, 1],U) such that γ(0) = x0 and γ(1) = x1. Since
γ([0, 1]) is compact and Uc is closed, there exists δ > 0 such that for any t ∈ [0, 1] and x ̸∈ U,
∥γ(t) − x∥ > δ. Denote t0 = sup{f(γ(t)) = M : t ∈ [0, 1]}. Note that {f(γ(t)) = M :
t ∈ [0, 1]} is not empty since 0 ∈ {f(γ(t)) = M : t ∈ [0, 1]}. Let t⋆ ∈ (t0, 1] such that
∥γ(t⋆)− γ(t0)∥ ≤ δ/2. In what follows, we denote x⋆ = γ(t⋆).

Next, we define R ∈ C([0, δ/2],R) given for any s ∈ [0, δ/2] by R(s) = sup{f(x⋆ + sz) : ∥z∥ ≤
1}, we emphasize that B̄(x⋆ ; δ/2) ⊂ U and therefore R is well-defined. Since γ(t0) ∈ B̄(x⋆ ; δ/2)
and f(γ(t0)) =M , we have R(δ/2) =M . Note that R is non-decreasing and denote s⋆ = inf{s ∈
[0, δ/2] : R(s) =M}. By continuity, there exists x1 ∈ U such that ∥x1−x⋆∥ = s⋆ and f(x1) =M .
In addition, by definition of s⋆, for any x ∈ B(x⋆ ; s⋆), f(x) < M .

In the rest of the proof, we first present the easier case, where we assume that there exists a unique
x1 ∈ U such that ∥x1 − x⋆∥ = s⋆ and f(x1) = M . The general case will require one more
construction. Let r1 = s⋆/2 and note that B̄(x1 ; r1) ⊂ U. The set V = B(x1 ; r1) is the open set on
which we are going to apply Lemma B.2. We are now going to define a function f̃ ∈ C2(cl(V),R)
such that (a) for any x ∈ V, A(f̃)(x) > 0. (b) f̃ admits a maximizer in V. This will contradict
Lemma B.2. For any α > 0, we introduce the following auxiliary function wα ∈ C2(B(x⋆ ; δ),R)
given for any x ∈ B(x⋆ ; δ) by

wα(x) = exp[−α∥x− x⋆∥2/2]− exp[−α(s⋆)2/2].
Since V ⊂ B(x⋆ ; δ) we have that wα is well-defined on V. In addition, using this result and the fact
that for any x ∈ V, ∥x− x⋆∥ ≥ ∥x1 − x⋆∥ − ∥x1 − x∥ ≥ s⋆/2 we have for any x ∈ V and α > 0

A(wα)(x) ≥ exp[−α∥x− x⋆∥2/2](α2∥x− x⋆∥2 + α(d− C∥x− x⋆∥)− C)
≥ exp[−α∥x− x⋆∥2/2](α2(s⋆)2/4 + α(d− Cδ/2)− C).

where C = sup{∥b(x)∥ + k(x) : x ∈ cl(U)}. Hence, there exists α0 > 0 such that for any
x ∈ V, A(wα0

)(x) > 0. In addition, for any x ∈ ∂V, if ∥x − x⋆∥ ≤ s⋆, we have wα0
(x) ≤

1− exp[−α(s⋆)2/2]. If ∥x− x⋆∥ > s⋆, then wα0(x) < 0.
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We let ξ = inf{f(x) : x ∈ ∂V ∩ B̄(x⋆ ; s⋆)}. If x ∈ B(x⋆ ; s⋆) then f(x) < M . Similarly, because
we have assume that there exists a unique x1 ∈ U such that ∥x1 − x⋆∥ = s⋆ and f(x1) = M and
x1 ̸∈ ∂V, we have that if x ∈ ∂B(x⋆ ; s⋆) ∩ ∂V, f(x) < M . Hence, ξ < M . Let ε > 0 such that
ξ+ε(1−exp[−α(s⋆)2/2]) < M and we get that for any x ∈ B̄(x⋆ ; s⋆)∩∂V, f(x)+εwα0

(x) < M .
In addition, for any x ∈ ∂V∩B̄(x⋆ ; s⋆)c, we have f(x)+εwα0

(x) ≤M−εwα0
(x) < M . Therefore,

we get that for any x ∈ ∂V, f(x) + εwα0
(x) < M . In addition, f(x1) + εwα0

(x1) = M , since
wα0(x1) = 0. In addition, we have that for any x ∈ V,A(f+εwα0)(x) > 0. We have a contradiction
with Lemma B.2 upon letting f̃ = f + εwα0

. As emphasize above, we cannot conclude since we
made the additional assumption that x1 was the unique element such that ∥x1 − x⋆∥ = s⋆ and
f(x1) =M .

In the rest of the proof, we treat the general case which requires one more construction. Let s̃ = s⋆/2
and consider x̃ ∈ [x⋆, x1] such that ∥x̃−x1∥ = s⋆/2. The ball B(x̃ ; s̃) is going to replace B(x⋆ ; s⋆)
in the proof above. Next, we consider r1 = s̃/2 and note that B̄(x1 ; r1) ⊂ U. The set V = B(x1 ; r1)
is the open set on which we are going to apply Lemma B.2. We are now going to define a function
f̃ ∈ C2(cl(V),R) such that (a) for any x ∈ V, A(f̃)(x) > 0. (b) f̃ admits a maximizer in V.
This will contradict Lemma B.2. For any α > 0, we introduce the following auxiliary function
wα ∈ C2(B(x̃ ; δ),R) given for any x ∈ B(x̃ ; δ) by

wα(x) = exp[−α∥x− x̃∥2/2]− exp[−αs̃2/2],

Since V ⊂ B(x̃ ; δ) we have that wα is well-defined on V. In addition, using this result and the fact
that for any x ∈ V, ∥x− x̃∥ ≥ ∥x1 − x̃∥ − ∥x1 − x∥ ≥ s̃/2 we have for any x ∈ V and α > 0

A(wα)(x) ≥ exp[−α∥x− x̃∥2/2](α2∥x− x̃∥2 + α(d− C∥x− x̃∥)− C)
≥ exp[−α∥x− x̃∥2/2](α2(s̃)2/4 + α(d− Cδ/2)− C).

where C = sup{∥b(x)∥+ k(x) : x ∈ cl(U)}. Hence, there exists α0 > 0 such that for any x ∈ V,
A(wα0

)(x) > 0. In addition, for any x ∈ ∂V, if ∥x−x̃∥ ≤ s̃, we havewα0
(x) ≤ 1−exp[−α(s̃)2/2].

If ∥x− x̃∥ > s̃, then wα0
(x) < 0.

We let ξ = inf{f(x) : x ∈ ∂V ∩ B̄(x̃ ; s̃)}. If x ∈ B̄(x̃ ; s̃) and x ̸= x1 then f(x) < M .
Hence, ξ < M . Let ε > 0 such that ξ + ε(1 − exp[−α(s̃)2/2]) < M and we get that for
any x ∈ B̄(x̃ ; s̃) ∩ ∂V, f(x) + εwα0

(x) < M . In addition, for any x ∈ ∂V ∩ B̄(x̃ ; s̃)c, we have
f(x)+εwα0

(x) ≤M−εwα0
(x) < M . Therefore, we get that for any x ∈ ∂V, f(x)+εwα0

(x) < M .
In addition, f(x1) + εwα0

(x1) =M , since wα0
(x1) = 0. In addition, we have that for any x ∈ V,

A(f + εwα0)(x) > 0. We have a contradiction with Lemma B.2 upon letting f̃ = f + εwα0 , which
concludes the proof.

In Proposition B.3, we prove a maximum principle for the elliptic infinitesimal generator (12). In
order to define the backward Kolmogorov equation associated with the process, we need to consider
the parabolic infinitesimal generator instead, given for any f ∈ C2

c((0,+∞) × Rd,R) and t > 0,
x ∈ Rd by

A(f)(x) = ∂tf(t, x) +
1
2∆f(t, x) + ⟨b(t, x),∇f(t, x)⟩ − k(x)f(t, x). (13)

It can be shown that the generator (13) also satisfies a strong version of the maximum principle
(Nirenberg, 1953).

B.2 Infinitesimal Generator. Using Proposition B.3, we are ready to define diffusion processes
with killing. The notion of solution to a martingale problem are recalled in Appendix A. We also
denote Â, the extension of A given in (12) to the one point compactification R̂d and defined as
follows: for any f ∈ C(R̂d) and x ∈ Rd, we have

Â(f)(x) = A(f − f(∞))(x), Â(f)(∞) = 0. (14)

The first equation can be rewritten for any f ∈ C(R̂d) and x ∈ Rd

A(f)(x) = 1
2∆f(x) + ⟨b(x),∇f(x)⟩ − k(x)(f(x)− f(∞)). (15)

We have the following theorem.
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Theorem B.4. Assume Assumption B.1. For any probability measure ν on R̂d exists (Xt)t≥0 ∈
D((0,+∞], R̂d) solution to the martingale problem associated with Â with initial condition ν.

Proof. The space Rd is locally compact and separable. The generator A is a linear operator and
C2

c(Rd,R) is dense in Cc(Rd,R). In addition, using Proposition B.3, we have that A satisfies the
positive maximum principle. We conclude the proof upon applying (Ethier and Kurtz, 2009, Theorem
5.4, p.199).

Using (Ethier and Kurtz, 2009, Section 4, p.182) it is also possible to show the uniqueness (in some
sense) of the process under mild assumptions.

C TIME REVERSAL OF DIFFUSIONS WITH KILLING

Now that we have established the existence of a killed diffusion in Appendix B, we study its time-
reversal. The main goal of this section is to identify its associated infinitesimal generator. Before
stating these results, we provide some results on the extended generator (15). In particular, we derive
the associated forward and backward Kolmogorov equations.

C.1 Feynman-Kac Semigroups. We start by giving a useful representation of killed diffusions
using Feynman-Kac semigroups. We will consider the following assumptions.
Assumption C.1. b ∈ C(Rd,R), k is bounded and there exists L ≥ 0 such that for any x, y ∈ Rd,
∥b(x)− b(y)∥ ≤ L∥x− y∥.
Assumption C.2. For every f ∈ C(Rd,R) and T > 0, there exists v ∈ C([0, T ] × Rd,R) and
v ∈ C1,2((0, T ]× Rd,R) such that for any t ∈ (0, T ] and x ∈ Rd, we have A(v)(t, x) = 0 with A
given by (13) and v(0, x) = f(x). In addition, there exist C ≥ 0 and m ∈ [0, 1/(2Td)] such that for
any x ∈ Rd, sup{∥v(t, x)∥ : t ∈ [0, T ]} ≤ C exp[m∥x∥2].

Note that conditions on the existence and regularity of solutions to the parabolic equation A(v) = 0
and A given by (13) have been established in the literature under various assumptions on the
coefficients of A, see (Friedman, 2012) or (Dynkin and Dynkin, 1965, Theorem 13.16). The
following theorem is called the Feynman-Kac representation theorem and draws an explicit link
between SDEs and PDEs. It can be seen as a generalization of the backward Kolmogorov equation,
see (Karatzas et al., 1991, Theorem 7.6).
Proposition C.3 (Feynman-Kac formula). Assume Assumption B.1, Assumption C.1 and Assump-
tion C.2. For any f ∈ C(Rd,R) and T > 0, there exists a unique solution v ∈ C([0, T ] × Rd,R)
and v ∈ C1,2((0, T ]× Rd,R) to A(v) = 0. In addition, we have that for any t ∈ [0, T ] and x ∈ Rd

v(t, x) = E[f(XT ) exp[−
∫ T

t
k(X0

s)ds]], (16)

where (Xt)t≥0 is the unique (strong) solution to dX0
s = b(X0

s)ds+dBs, X0
t = x and (Bs)s≥0 is a

d-dimensional Brownian motion.

The Feynman-Kac formula in Proposition C.3 will be used to establish a backward Kolmogorov
equation for killed diffusions. We conclude this section by giving an explicit form of the semigroup
of killed diffusions under assumptions on the killing rate. More precisely, we are going to show that
these diffusions can be seen as a reweighting of the original unconstrained diffusions. To do so, we
need to precise the notion of semigroup. We start with the notion of Markov kernel.
Definition C.4. Let E,F be metric spaces. K : E×B(F)→ [0, 1] is called a Markov kernel if for any
x ∈ E, K(x, ·) is a probability measure and for any A ∈ B(F) we have that K(·,A) is measurable.

We are now ready to define the notion of semigroup. We refer to (Ethier and Kurtz, 2009, Chapter 4)
for a discussion.
Definition C.5. Let (Pt)t≥0 be a collection of Markov kernels with E = F such that for any x ∈ E,
P0(x, ·) = δx and for any s, t ≥ 0, x ∈ E and A ∈ B(E) we have

Pt+s(x,A) =
∫
E
Pt(y,A)Ps(x,dy).

A semigroup on E is said to be strongly continuous on C0(E) if for any f ∈ C0(E), limt→0 Pt(f) = f
uniformly and Pt(f) ∈ C0(E).
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The notion of semigroup is intrinsically linked with the one of infinitesimal generator. In particular,
we define the generator associated with a semigroup (Pt)t≥0 as

A(f) = lim
t→0

(Pt(f)− f)/t.

The domain of A, denoted D(A), is the space of functions for which the limit is well-defined. This
definition of the generator justifies the notation “Pt = etA”.

In Theorem B.4, we have shown the existence of (Markov) killed diffusions based on mild assumptions
on the generator. The next result goes further and gives an explicit representation of the associated
semigroup. The following proposition is adapted from (Sznitman, 1998, Theorem 1.1).
Proposition C.6. Assume Assumption B.1 and Assumption C.1. Let (X0

t )t≥0 be the unique (strong)
solution to dX0

t = b(X0
t )dt+ dBt and define (Pt)t≥0 such that for any t ≥ 0 and f ∈ C0(Rd)

Pt(f) = E[f(X0
t ) exp[−

∫ t

0
k(X0

s)ds]]. (17)

Then (Pt)t≥0 can be extended into a strongly continuous semigroup on R̂d. We have that (Pt)t≥0
admits a generator Â with C2

c(Rd) ⊂ D(Â) and Â given by (14). In addition, we have the following
perturbation formulas for any t ≥ 0, x ∈ Rd and f ∈ C0(Rd):

Pt(x, f) = P0
t (x, f)−

∫ t

0
P0
s(x, kPt−s(f))ds, (18)

= P0
t (x, f)−

∫ t

0
Ps(x, kP

0
t−s(f))ds,

where (P0
t )t≥0 is the semigroup associated with (X0

t )t≥0. Finally, there exists a Markov process
(Xt)t≥0 on R̂d associated with the R̂d extension of (Pt)t≥0.

Proof. We first begin by proving (18). We have for any t ≥ 0

exp[−
∫ t

0
k(X0

s)ds] = 1−
∫ t

0
k(X0

s) exp[−
∫ t

s
k(X0

u)du]ds

= 1−
∫ t

0
k(X0

s) exp[−
∫ s

0
k(X0

u)du]ds.

Hence, for any t ≥ 0, x ∈ Rd and f ∈ C0(Rd), we have

Pt(x, f) = E[f(X0
t )]−

∫ t

0
E[f(X0

t )k(X
0
s) exp[−

∫ t

s
k(X0

u)du]]ds

= E[f(X0
t )]−

∫ t

0
E[k(X0

s)E[f(X̃0
t−s) exp[−

∫ t−s
0

k(X̃0
u)du] | X̃0

0 = X0
s]]ds

= E[f(X0
t )]−

∫ t

0
E[k(X0

s)Pt−s(X
0
s, f)]ds,

which concludes the proof of (18). Since k ∈ Cb(Rd,R), we have for any f ∈ C0(Rd) and x ∈ Rd,
(s, t) ∈ Ps(x, kP

0
t−s(f)) which is continuous and therefore we get that for any f ∈ C0(Rd) and

x ∈ Rd

limt→0
1
t

∫ t

0
P0
s(x, kPt−s(f)) = k(x)f(x). (19)

We extend (Pt)t≥0 to R̂d by denoting for any f ∈ C(R̂d), x ∈ Rd and t ≥ 0

P̂t(x, f) = Pt(x, f) + f(∞)(1− exp[−
∫ t

0
k(X0

s)ds]).

In addition, we let Pt(∞, f) = f(∞). Note that (P̂t)t≥0 defines a strongly continuous semigroup
on R̂d. Using (19) and the fact that C2

c(Rd) ⊂ D(A0), where A0 is the generator associated with
(X0

t )t≥0, we get that the generator of (P̂t)t≥0 is given for any f ∈ C2
c(Rd) and x ∈ Rd by

A(f)(x) = A0(f)(x)− k(x)f(x).

We conclude the proof upon using (Ethier and Kurtz, 2009, Theorem 1.1, p.157).

For an introduction to killed diffusions we refer to (Oksendal, 2013), see also (Karlin and Taylor,
1981; Blumenthal and Getoor, 2007).

Let us comment on the form of (17) in Proposition C.6. Formally speaking, this formula indicates that
in order to integrate a function f with respect to the killed diffusion we can consider an integration
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w.r.t. to the unconstrained diffusion (X0
t )t≥0 with a loss of mass given by the exponential term

exp[−
∫ t

0
k(X0

s)ds]. Consider the limit case where k = +∞ on some domain A and k = 0 otherwise.
Then (17) becomes Pt(f) = E[f(X0

t )1t<τA ], where τA = inf{s ≥ 0 : Xs ∈ A}.
Equipped with the notion of Feynman-Kac semigroup, we can rewrite (16) in Proposition C.3 as
v(t, x) = PT−t(x, f). This remark is at the basis of the backward Kolmogorov formula for killed
diffusions.

C.2 Forward and Backward Kolmogorov Equations. In order to derive the time-reversal of a
stochastic process it is useful to define its time-reversal (Haussmann and Pardoux, 1986). In what
follows, we denote (Xt)t≥0, the killed diffusion, i.e., the process associated with (Pt)t≥0.
Proposition C.7. Assume Assumption B.1, Assumption C.1 and Assumption C.2. Let (Xt)t≥0 be
given by Proposition C.6. Then, for any f ∈ C0(Rd), T, t ≥ 0 with T ≥ t and x ∈ Rd

∂tPt(x, f) = A(Pt(·, f))(x), ∂tPT−t(x, f) = −A(PT−t(·, f))(x), (20)

with A given by (15).

The first part of (20) is referred to as the forward Kolmogorov equation while the second part is referred
to as the backward Kolmogorov equation. The proof is a direct consequence of Proposition C.6. Note
that under Assumption C.2 we have additional regularity assumptions on (t, x) 7→ PT−t(x, f) and
therefore its evolution can be made explicit using the expression of A.

C.3 Reversal of the Fokker-Planck Equation. In this paragraph, we provide a heuristic derivation
of the time-reversal of the killed diffusion process. Under mild assumptions, we get that Pt admits a
density w.r.t the Lebesgue measure denoted pt for any t > 0. Note that

∫
Rd pt(x)dx ≤ 1. In addition,

we have that
∂tpt(x) = −div(b(t, ·)pt)(x) + 1

2∆pt(x)− k(x)pt(x).
Note that the right-hand side of the previous equation can formally be identified with the dual operator
A⋆. Now, considering the time-reversal of the previous equation, we get

∂tpT−t(x) = −div({−b(t, ·) +∇ log pT−t}pT−t)(x) + 1
2∆pT−t(x) + k(x)pT−t(x).

Note that the non-negative term k(x)pt(x) is turned into a non-positive term −k(x)pT−t(x). This
suggests that the death behavior of the forward process is turned into a birth behavior for the backward
process. We will make this statement precise in the next paragraph. This is in contrast with common
results which state that if the forward process is in a certain class then so is the backward process. For
instance, in the case of a reflected forward process, the backward is also reflected (Lou and Ermon,
2023; Fishman et al., 2023).

C.4 Time Reversal of Diffusion With Births. In the previous paragraph, we provided the time-
reversal of the dual generator in order to derive the backward evolution of the density pt. In this
section, we follow the approach of Haussmann and Pardoux (1986) to derive a pathwise time-reversal.
Doing so we will directly obtain the time-reversal of the generator (and not its dual). We start by
recalling the expression of the extended infinitesimal generator, (14). For any f ∈ C2(R̂d) and
x ∈ R̂d we have

Â(f)(x) = [⟨b(x),∇f(x)⟩+ 1
2∆f(x)− k(x)(f(x)− f(∞))]1Rd(x).

In what follows, we let (Xt)t≥0 given by Proposition C.6. We denote St = P[Xt ∈ Rd] for any
t ≥ 0. We will also make the following assumption.
Assumption C.8. For any t ≥ 0, the measure µt on Rd given for any f ∈ Cc(Rd) by µt[f ] =
E[f(Xt)1Rd(Xt)] admits a density pt w.r.t. the Lebesgue measure. In addition (t, x) 7→ pt(x) ∈
C∞b ((0,+∞)× Rd, (0,+∞)). Finally, we assume that St < 1 for any t > 0.

The following lemma is central to establish our result.
Lemma C.9. Assume Assumption B.1, Assumption C.1 and Assumption C.8. Then for any t > 0,
h : Rd × {∞} → R and g : {∞} → R measurable and bounded, we have

E[1Rd(Xt)h(Xt,∞)g(∞)] = E[1∞(Xt)
∫
Rd h(x,Xt)pt(x)dx/(1− St)g(Xt)].
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Proof. Let t > 0, h : Rd × {∞} → R and g : {∞} → R measurable and bounded. First, we have

E[1Rd(Xt)h(Xt,∞)g(∞)] =
∫
Rd h(x,∞)g(∞)pt(x)dx

= E[1∞(Xt)
∫
Rd h(x,Xt)g(Xt)pt(x)dx]/(1− St),

which concludes the proof.

Based on this lemma, we are now ready to state the our time-reversal result, extending the approach of
Haussmann and Pardoux (1986). We make the following assumption, which ensures that integration
by part is valid in our setting.

Assumption C.10. For any f, g ∈ C2(R̂d) we have

E[1Rd(Xt)⟨∇f(Xt),∇g(Xt)⟩] = −E[1Rd(Xt)g(Xt)(∆f(Xt) + ⟨∇ log pt(Xt),∇f(Xt)⟩)].

We emphasize that Assumption C.10 finds sufficient condition on the parameters of the unconstrained
diffusion such that this integration by part formula is true in the unconstrained setting. We leave the
extension of such results to the killed case for future work. We are now ready to state our time-reversal
formula.
Proposition C.11. Assume Assumption B.1, Assumption C.1, Assumption C.8 and Assumption C.10.
Let (Xt)t≥0 given by Proposition C.6, T > 0 and consider (Yt)t∈[0,T ] = (XT−t)t∈[0,T ]. Then
(Yt)t∈[0,T ] is solution to the martingale problem associated with R̂, where for any f ∈ C2(R̂d),
t ∈ (0, T ) and x ∈ R̂d we have

R(f)(t, x) = [⟨−b(x) +∇ log pT−t(x),∇f(x)⟩+ 1
2∆f(x)]1Rd(x)

+
∫
Rd pT−t(x̃)k(x̃)(f(x̃)− f(∞))dx̃/(1− ST−t)1∞(x). (21)

Proof. Let f, g ∈ C2(R̂d). We are going to show that for any s, t ∈ [0, T ] with t ≥ s

E[(f(Yt)− f(Ys))g(Ys)] = E[g(Ys)
∫ t

s
R(f)(u,Yu)du].

This is equivalent to show that for any s, t ∈ [0, T ] with t ≥ s

E[(f(Xt)− f(Xs))g(Xt)] = E[−g(Xt)
∫ t

s
R(f)(u,Xu)du].

Let s, t ∈ [0, T ], with t ≥ s. In what follows, we denote for any u ∈ [0, t] and x ∈ R̂d, g(u, x) =
E[g(Xt) |Xu = x]. Using Proposition C.7, we have that for any u ∈ [0, t] and x ∈ R̂d, ∂ug(u, x) +
Â(g)(u, x) = 0, i.e. g satisfies the backward Kolmogorov equation. For any u ∈ [0, t] and x ∈ R̂d,
we have

Â(fg)(u, x) = ∂ug(u, x)f(x) + (⟨b(x),∇g(u, x)⟩+ 1
2∆g(u, x))f(x)1Rd(x)

+ (⟨b(x),∇f(x)⟩+ 1
2∆f(x))g(u, x)1Rd(x) + 1Rd(x)⟨∇f(x),∇g(u, x)⟩

+ 1Rd(f(x)g(u, x)− f(∞)g(u,∞))

= ∂ug(u, x)f(x) + Â(g)(u, x)f(x) + 1Rd(x)(f(x)− f(∞))g(u,∞)

+ (⟨b(x),∇f(x)⟩+ 1
2∆f(x))g(u, x)1Rd(x) + 1Rd(x)⟨∇f(x),∇g(u, x)⟩

= (⟨b(x),∇f(x)⟩+ 1
2∆f(x))g(u, x)1Rd(x) + 1Rd(x)⟨∇f(x),∇g(u, x)⟩

+ 1Rd(x)(f(x)− f(∞))g(u,∞). (22)

Using Assumption C.10, we have that for any u ∈ [0, t]

E[1Rd(Xu)⟨∇f(Xu),∇g(u,Xu)⟩]
= −E[1Rd(Xu)g(u,Xu)(∆f(Xu) + ⟨∇ log pu(Xu),∇f(Xu)⟩)]. (23)

In addition, using Lemma C.9, we have that for any u ∈ [0, t]

E[1Rd(Xu)h(Xu,∞)g(u,∞)] = E[1∞(Xu)
∫
Rd h(x,Xu)pu(x)dx/(1− Su)g(u,Xu)]. (24)

Combining (22), (23) and (24), we get that

E[Â(fg)(u,Xu)] = −R(f)(u,Xu)g(u,Xu).
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In addition, we have

E[(f(Xt)− f(Xs))g(Xt)] = E[g(t,Xt)f(Xt)− f(Xs)g(s,Xs)]

= E[
∫ t

s
A(fg)(u,Xu)du]

= −E[
∫ t

s
R(f)(u,Xu)g(u,Xu)du] = −E[g(Xt)

∫ t

s
R(f)(u,Xu)du],

which concludes the proof.

Proposition C.11 shows that the time-reversal of a diffusion with killing is a diffusion with the
birth. The update can be split into two parts. First, the drift of the diffusion is turned into (t, x) 7→
−b(x) +∇ log pT−t(x). This is in accordance with classical time-reversal results for unconstrained
diffusions. The main novelty of Proposition C.11 resides in the change of the killing procedure to a
birth procedure. The killing rate x 7→ k(x) is turned into a birth density (t, x) 7→ k(x)pt(x)/1− St.
This birth density means that, in the time-reversal process, we give birth to a particle near x if
k(x)pt(x) is large. This means that two could conditions must be met for a particle to have a high
likelihood to be born (a) the killing rate must be large, i.e. birth can only occur at places where
particles died in the original process. (b) the density pt must be large, i.e. birth can only occur at
places which are visited by the original process.

C.5 Time Reversal of Diffusions with Births. In the Schrödinger bridge setting, we iterate on the
time-reversal procedure. This means that we need to consider the time-reversal of a birth process. In
this section, we provide the heuristics to derive such a time-reversal. We assume that there exists a
birth process (Xt)t≥0 taking values in R̂d such that (Xt)t≥0 is Markov and solution to the martingale
problem associated with Â where for any f ∈ C2(R̂d) and x ∈ R̂d we have

Â(f)(x) = (⟨b(x),∇f(x)⟩+ 1
2∆f(x))1Rd(x) +

∫
Rd(f(x̃)− f(∞))q(x̃)1∞(x).

Similarly to the previous section, we consider Assumption C.8 and therefore, we have the existence
(and regularity) of a density pt. Under similar assumptions to Proposition C.11, we have that its
time-reversal is also the solution to a martingale problem with generator R̂ given for any f ∈ C2(R̂d),
t ∈ [0, T ] and x ∈ R̂d by

R̂(f)(t, x) = (⟨−b(x) +∇ log pT−t(x),∇f(x)⟩+ 1
2∆f(x))1Rd(x)

− (1− ST−t)q(x)/pT−t(x)(f(x)− f(∞))1Rd(x). (25)

Therefore, the time-reversal of a diffusion process with birth is a diffusion process with death.
Similarly to Proposition C.11, the drift is updated as in the unconstrained case, i.e., x 7→ b(x) is
replaced by (t, x) 7→ −b(x) + ∇ log pT−t(x). The birth measure x 7→ q(x) is changed into the
killing rate (t, x) 7→ (1− ST−t)q(x)/pT−t(x).

Entropic time-reversal with jumps. In fact (21) and (25) can be inferred from the results of
Conforti and Léonard (2022). In this work, the authors consider a pure jump process, i.e., no
diffusion, with jumps in Rd. In that case the infinitesimal generator A is given for any f ∈ C2

c(Rd)
and x ∈ Rd

A(f)(x) = ⟨b(x),∇f(x)⟩+
∫
Rd(f(y)− f(x))J(x, dy),

where J is a Markov kernel. Under mild entropic assumptions, the authors prove that the time-reversal
is also a process with pure jumps associated with the infinitesimal generator R is given for any
f ∈ C2

c(Rd), x ∈ Rd and t ∈ [0, T ] by

R(f)(x) = −⟨b(x),∇f(x)⟩+
∫
Rd(f(y)− f(x))R(x, dy),

where R is a Markov kernel such that for any f ∈ C2
c(Rd × Rd)∫

Rd

∫
Rd f(x, y)pt(x)J(x, dy)dx =

∫
Rd

∫
Rd f(x, y)pt(y)R(y,dx)dy.

This equation is sometimes called the flux equation, see (Conforti and Léonard, 2022, Equation (1.1)).
Our setting is different in that we also consider a diffusive part, i.e. there is an additional term 1

2∆f

in our generator and our generator is defined on the extended space R̂d in order to properly account
for the killing and birth processes.
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However, assuming that we can extend the flux equation to our setting, we have in the case of a death
process J(x, dy) = k(x)δ∞(dy). Hence, we have that

R(x, dy)(1− St)δ∞(x) = J(y,dx)pt(y),
and therefore R(x, dy) = k(y)pt(y)/(1− St)δ∞(y), which is the update we have in (21). Similarly,
in the case of a birth process J(x,dy) = δ∞(x)q(y)dy. Hence, we have that

R(x, dy)pt(x)δ∞(x) = J(y,dx)(1− St),

and therefore R(x, dy) = q(x)(1− St)/pt(x)δ∞(y), which is the update we have in (25). Finally,
we emphasize that obtaining a ratio of the form pt(x)/P(Xt = ∞) is similar to what has been
obtained in the case of discrete state-space time-reversal, see (Campbell et al., 2022; Benton et al.,
2022) for instance.

C.6 Duality. While the formulas in (7) may initially appear intricate and somewhat asymmetric,
they are in fact nothing but a pair of forward and backward Kolmogorov equations on R̂d: Define
χ, χ̂ : [0, T ]× R̂d → R as

χt(∞) = Ψt, χt(x) = φt(x) and χ̂t(∞) = Ψ̂t, χ̂t(x) = φ̂t(x).

Below, we show that, if K̂0,⋆ denotes the dual of K̂0, then (7) is equivalent to

∂tχt = −K̂0χt, ∂tχ̂t = K̂0,⋆χ̂t.

This means that (7) is in fact a system of dual equations, even though appearing non-symmetric at
first sight. This insight allows us to draw connections to existing research, such as the works by Liu
et al. (2022).

Define χ, χ̂ : [0, T ]× R̂d → R, for any t ∈ [0, T ] and x ∈ R̂d, as

χt(∞) = Ψt, χt(x) = φt(x) and χ̂t(∞) = Ψ̂t, χ̂t(x) = φ̂t(x).

Recall the formula of a generator with killing:

(K̂0f)(x) :=

(
⟨b(x),∇f(x)⟩+ 1

2
∆f(x)− k(x) (f(x)− f(∞))

)
1Rd(x).

Then it is evident that the equations governing Ψt and φt(x) can be rewritten as:

∂tχt = −K̂0χt

which is the usual Kolmogorov backward equation. On the other hand, we will show below that
equations governing Ψ̂t and φ̂t(x) can be interpreted as the Kolmogorov forward equation. To this
end, for any two functions f, g : R̂d → R, define the usual L2-inner product as:

⟨g, f⟩ :=
∫
Rd

f(x)g(x)dx+ f(∞) · g(∞).

For any operator K, its dual K⋆ with respect to ⟨·, ·⟩ is defined as the operator satisfying the relation:
∀f, g, ⟨g,Kf⟩ = ⟨K⋆g, f⟩.

Using the standard integration by part formulas, we get

⟨g, K̂0f⟩ =
∫
Rd

g(x)

(
⟨b(x),∇f(x)⟩+ 1

2
∆f(x)− k(x) (f(x)− f(∞))

)
dx

=

∫
Rd

(
⟨g(x)b(x),∇f(x)⟩+ 1

2
g(x)∆f(x)− k(x)g(x)f(x) + k(x)g(x)f(∞)

)
dx

=

∫
Rd

(
−div

(
b(x)g(x)

)
+

1

2
∆g(x)− k(x)g(x)

)
f(x)dx+

(∫
Rd

k(x)g(x)dx

)
· f(∞)

=: ⟨K̂0,⋆g, f⟩
where the dual of K̂0 is given by

(K̂0,⋆g)(x) :=

(
−div

(
b(x)g(x)

)
+

1

2
∆g(x)− k(x)g(x)

)
1Rd +

(∫
Rd

k(x)g(x)dx

)
1∞.

With these definitions, it holds that χ̂ satisfies the Forward Kolmogorov equation: (7) is equivalent to

∂tχ̂t = K̂0,⋆χ̂t.
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D UNBALANCED IPF

In this section, we state the SDEs describing the evolution of log-potentials logφ and log φ̂ along
backward and forward trajectories of the optimal solution to the unbalanced SB problem. We then
further comment on the sampling strategies used for birth processes. We provide formulas which
generalize the prior process (3) to diffusions with arbitrary (scalar) diffusivity σ : [0, 1]→ R+.

D.1 SDEs for Log-Potentials. To simplify the notation, in this and subsequent sections, we denote
the Neural Networks parametrizing logφ and log φ̂ as Y θ and Ŷ θ̂, and their score as:

Zθ(t, xt) = σ∇xY
θ(i, xt)

Ẑ θ̂(t, xt) = σ∇xŶ
θ̂(i, xt)

Forward Dynamics When accounting for time-varying diffusivity, the SDE part of the forward
diffusion process (3) reads:

d
→
Xt = (b+ σZθ) dt+ σ dWt (26)

Along paths (
→
Xt)t, the log-potentials evolve as:

dYt =
(

1
2 ∥Zt∥2 + kt

(
1− Ψ

expYt

))
dt+ ⟨Zt, dWt⟩

dŶt =

(
1
2

∥∥∥Ẑt

∥∥∥2 +∇x · (−b+ σẐt) +
〈
Ẑt, Zt

〉
− kt

)
dt+

〈
Ẑt, dWt

〉 (27)

Backward Dynamics The time-reversal of (26) is:

d
←
Xt = (b− σẐ θ̂) dt+ σ dWt (28)

The log-potentials along (
←
Xt)t follow, instead, the SDEs:

dYs =
(

1
2 ∥Zs∥2 + σ∇x · Zs +

〈
Zs, Ẑs

〉
+ ks

(
Ψ

expYs
− 1
))

ds+ ⟨Zs, dWs⟩

dŶs =

(
∇x · b+ 1

2

∥∥∥Ẑs

∥∥∥2 + ks

)
ds+

〈
Ẑs, dWs

〉 (29)

D.2 Discretization of Diffusions with Killing and Birth. In Algorithm 2, we need to sample
both from the forward (function SAMPLE-FORWARD) and backward dynamics (function SAMPLE-
BACKWARD). We discretize Eqs. (26) and (28) using the standard Euler-Maruyama discretization
(i ∈ {0, I} is the discrete time index):

∆
→
Xi = (b+ σZθ)∆t+ σ∆Wi

and
∆
←
Xi = (b− σẐ θ̂)∆t+ σ∆Wi

The quantities ∆Ŷ and ∆Y are obtained analogously by discretizing Eqs. (27.2) and (29.1).

Transitions to and from the coffin state are, instead, simulated using the technique of shadow paths.
The exact mechanism is provided in Algorithm 2.

E RELATED WORK

Unbalanced optimal transport. We start by briefly recalling two different approaches to unbal-
anced OT. First, the hard marginal constraints can be relaxed and replaced by soft ones. We refer
to Chizat et al. (2018); Liero et al. (2018); Yang and Uhler (2019); Kondratyev et al. (2016) and
the references therein. Second, the measures of interest can be extended to satisfy the conservation
of mass constraint. This is usually done by adding a coffin state {∞}. After this operation, it
is possible to apply standard (although defined on this extended space) tools from OT (Pele and
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Werman, 2009; Caffarelli and McCann, 2010; Gramfort et al., 2015; Ekeland, 2010). These works
also include entropic relaxations of the OT objective. Moving to the dynamic and static formulations
of unbalanced Schrödinger bridges, Chen et al. (2022) have obtained the main properties of the
Schrödinger Bridge in the unbalanced setting. To the best of our knowledge, our study of the iterates
of the Iterate Proportional Fitting procedure is new.

Diffusion models. The time reversal of the continuous part of the dynamics has been investigated
in Anderson (1982); Haussmann and Pardoux (1986); Cattiaux et al. (2021). It is at the basis of
diffusion models (Ho et al., 2020; Song et al., 2021a). Such approaches represent the state-of-the-art
generative models in many domains, from text-to-image generation (Saharia et al., 2022) to protein
modeling (Watson et al., 2022). To the best of our knowledge, no existing diffusion model includes
birth and death mechanisms in the forward and backward processes. Hence, the results we obtain are
also new from a diffusion model perspective. We highlight that the updates we obtain on the birth and
death rates resemble closely the update obtained for the time-reversal of discrete state-space diffusion
models such as Shi et al. (2023). We refer to Benton et al. (2022) for a treatment of general diffusion
models through the lens of the infinitesimal generator. An alternative approach to our derivations
would have been to use these results to establish (i) a variational lower-bound defining a loss function,
(ii) a time-reversal formula. We leave such a study for future work.

Diffusion Schrödinger bridges and extensions. The Diffusion Schrödinger Bridge (DSB) (De Bor-
toli et al., 2021; Vargas et al., 2021b; Chen et al., 2021) is a new paradigm to solve transport problems
efficiently in high dimensions. It relies on the advent of diffusion models. Several extensions of DSBs
have been proposed. Closest to our work is Liu et al. (2022), which studies a generalized version of
the SB problem. In that case, an extra functional is added to the quadratic control corresponding to
the Schrödinger bridge. Even though the updated equations share some similarities with ours, we
highlight some key differences: (i) there is an extra term in the Partial Differential Equation system
we consider, which can be identified with the fact that we consider death, (ii) the dynamics in Liu et al.
(2022) do not include birth and death mechanisms. As a result, the obtained procedure corresponds
to a numerical scheme for Chen et al. (2022, Section 5), which describes a reweighted SB. While
the reweighted approach can also account for the loss of mass, it does not update the particles in
a meaningful way from a transport point of view, since the death and birth rate are never updated.
Theoretical properties of the solutions to Schrödinger bridge problems are investigated in Chen et al.
(2022). Finally, we highlight that recent approaches (Somnath et al., 2023; Liu et al., 2023; Shi et al.,
2023) introduce new schemes to solve SBs based on the ideas developed in Lipman et al. (2022).

F ALGORITHMIC DETAILS

In this section, we clarify the design of our algorithm UDSB-F, which we introduce to mitigate the
issues of UDSB-TD. We present an approximation to the computation of the posterior killing rate
which is conducive to stability and scalability. We highlight the changes to the training and sampling
procedures that this approximation entails and how it allows us to tackle forward dynamics with both
killing and births.

F.1 Estimating Extremal values of Log-Potentials. Sampling procedures in Algorithm 2 itera-
tively compute the values of Y and Ŷ by starting from one extreme (either Ŷ0 or YI ) and then adding
(or subtracting) the increments ∆Y and ∆Ŷ at each time-step. The computation of Ŷ0 or YI , however,
requires some care. These extreme values can be approximated by:

Ŷ0 = log
µ0

φ0
≈ logµ0 − Y θ

0

YI = log
µ1

φ̂I
≈ logµ1 − Ŷ θ̂

I ,

but to evaluate these expressions we need access to the log-densities logµ0 and logµ1. Obviously,
we should not rely on the availability of exact, closed-form expressions, since that would make our
algorithm not applicable to empirical data. We, therefore, resort to coarse approximations computed
once before starting the training. We can, for instance, fit Bayesian Gaussian Mixture models but
different solutions may be preferable when working with specific types of data.
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We note that the need for estimates of marginal densities is a burdensome requirement, which is not
placed by solvers of balanced SBs and its removal motivates our algorithm UDSB-F.

Lastly, we remark that when sampling from the backward time direction (as in Sample-Backward),
we should account for births (rather than deaths) since, as described in Proposition 3.1, the time-
reversal of a death process is a birth process. The sampling mechanism employed in the algorithm
is that of Shadow Trajectories (see Section 4) with a rate equal to Ψ k(i,Xi)

R expY θ(i,Xi)
∆t. This can be

obtained by setting γ = ∆t and recalling the identity ΨtΨ̂t = 1−
∫
pt(x)dx. The only discrepancy

between our implementation and birth sampling in Section 4 is that we do not sample reverse-time
trajectories, to define the birth locations of shadow particles. This simplifies training, during which
we need to sample trajectories in one direction in order to update the drift pertaining to the other
direction: The advantage consists in not using the networks we are learning to sample paths.

Algorithm 2 UDSB-TD sampling (death forward process)

Input: drift b, diffusivity σ, initial mass M0, final mass M1, killing function k

1: function SAMPLE-FORWARD(Y θ, Ŷ θ̂,Ψ)
2: Sample position X0 ∼ µ0

3: A0 ← 1 ▷ The particle is initially alive
4: Ŷ0 ← COMPUTE-INITIAL-Y-HAT(Y θ, Ŷ θ̂)
5: for step i in {1, ..., I} do
6: Xi ← Xi−1 +∆

→
Xi

7: Ŷi ← Ŷi−1 +∆Ŷi
8: if Ai−1 = 1 then ▷ The particle is alive
9: Flip coin D ∼ Bernoulli

(
1−Ψ k(i,Xi)

expY θ(i,Xi)
∆t
)

10: Ai+1 ← D ▷ Store particle’s fate
11: return (Xi, Ŷi, Ai)i
12:
13: function SAMPLE-BACKWARD(Y θ, Ŷ θ̂,Ψ)
14: Sample position XI ∼ µ1

15: Sample status AI ∼ Bernoulli
(
min

(
1, M1

M0

))
▷ Is the particle alive at k = K?

16: YI ← COMPUTE-INITIAL-Y(Y θ, Ŷ θ̂)
17: for step i in {I − 1, ..., 0} do
18: Xi ← Xi+1 −∆

←
Xi

19: Yi ← Yi+1 −∆Yi
20: if Ai+1 = 0 then ▷ The particle is dead
21: R← Fraction of dead particles at time i+ 1:
22: Flip coin D ∼ Bernoulli

(
Ψ k(i,Xi)

R expY θ(i,Xi)
∆t
)

23: Ai ← D ▷ Store particle’s fate
24: return (Xi, Yi, Ai)i

F.2 Training Objectives. In this section, we explicitly state the training objectives used by UDSB-
TD.

F.2.1 MM LOSSES

Mean-Matching Objective. It is easy to adapt the mean-matching objective (De Bortoli et al., 2021)
to UDSBs since it is computed from paths of live particles –which follow a standard diffusion process–
and is therefore clearly independent from deaths. We use the following first-order approximation (in
∆t) of its original expression (b̃ represents indifferently any forward or backward drift):

Lmm ≈ ∆t
∑
i

EXi

[∥∥∥(Xi+1 −Xi)− b̃∆t
∥∥∥2] .
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When evaluated on forward (
→
Xi)i and backward (

←
Xi)i paths, this loss becomes:

Lmm((
←
Xi)i; θ) = ∆t

∑
i

∥∥∥∥(←Xi+1 −
←
Xi

)
− (b+ σ2∇xY

θ)∆t

∥∥∥∥2
Lmm((

→
Xi)i; θ̂) = ∆t

∑
i

∥∥∥∥(→Xi+1 −
→
Xi

)
− (b− σ2∇xŶ

θ̂)∆t

∥∥∥∥2 .
Minimizing these quantities allows, in our case, to learn the forward/backward trajectories of particles
that do not jump to the coffin state. However, it is not sufficient to fully characterize the magnitude
of Y θ and Ŷ θ̂, since only their gradients appear in it. Lmm is in fact invariant to constant shifts: i.e.,
there is no difference between Y θ and (Y θ − c) during training.

Divergence Objective. An alternative LMM candidate is given by the divergence-based objective
Ldiv by Vargas et al. (2021a), which also appear in Chen et al. (2021). Its original formulation in the
context of balanced SBs depends only on the scores Z and Ẑ. Surprisingly, the same is not true for
USBs since this objective is affected by the presence of deaths. We extend it to the unbalanced case
by recalling (Liu et al., 2022) that Ldiv can be also expressed as:

Ldiv(θ) = E
Xs∼

←
X

[∫ 1

0

(
dY θ

s (Xs) + dŶ θ̂
s (Xs)

)]
Ldiv(θ̂) = E

Xt∼
→
X

[∫ 1

0

(
dY θ

t (Xt) + dŶ θ̂
t (Xt)

)]
,

where the first expectation runs over the backward dynamics (from N ) while the second uses the
forward dynamics (from Q). The terms related to jumps that appear in the differentials of Ŷ and Y
(Eqs. 27 and 29) do not completely cancel out when summed (i.e., the term kΨ from dY remains).
The objective Ldiv(θ), computed as the sum of the equations in (29), is therefore:

Ldiv(θ) =

∫ 1

0

E
Xs∼

←
X

[
1

2

∥∥Zθ
s (Xs)

∥∥2 + σ∇x · Zθ
s (Xs) +

〈
Zθ
s (Xs), Ẑ

θ̂
s (Xs)

〉
− kΨ

eY
θ
s (Xs)

]
ds,

in which the term in blue is unique to USBs. Note that this new death-related term depends on the
parameter that is being optimized (θ) and cannot, therefore, be ignored when training the network Y θ.
The same term also appears in the objective Ldiv(θ̂), which is obtained by summing the differentials
in (27):

Ldiv(θ̂) =

∫ 1

0

E
Xt∼

→
X

[
1

2

∥∥∥Ẑ θ̂
t (Xt)

∥∥∥2 + σ∇x · Ẑ θ̂
t (Xt) +

〈
Ẑ θ̂
t (Xt), Z

θ
t (Xt)

〉
− kΨ

eY
θ
1−t(Xt)

]
dt.

In this case, however, the blue quantity is irrelevant since it does not depend on θ̂. By discretizing the
two expressions for Ldiv and removing unnecessary terms we obtain the losses:

Ldiv

(
(
←
Xi)i; θ

)
= ∆t

∑
i

(
1

2

∥∥∥∥Zθ
i (
←
Xi)

∥∥∥∥2 + σ∇x · Zθ
i (
←
Xi)

+

〈
Zθ
i (
←
Xi), Ẑ

θ̂
i (
←
Xi)

〉
− kΨ

eY
θ
i (
←
Xi)

)

Ldiv

(
(
→
Xi)i; θ̂

)
= ∆t

∑
i

(
1

2

∥∥∥∥Ẑ θ̂
i (
→
Xi)

∥∥∥∥2 + σ∇x · Ẑ θ̂
i (
→
Xi) +

〈
Ẑ θ̂
i (
→
Xi), Z

θ
i (
→
Xi)

〉)
.

(30)

Choosing the MM loss. Either one of the losses Lmm and Ldiv presented above can be used as LMM
in Algorithm 1. However, the choice determines the type of admissible reference drifts –which must
be linear if the mean-matching loss Lmm is selected– and the computational cost of training –which is
higher for Ldiv due to the computation of the divergence.
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F.2.2 TD LOSS

While sufficient to ensure that ∇xY
θ and ∇xŶ

θ̂ point “in the right direction”, LMM objectives
described in the previous section do not constrain the magnitude of Ŷ θ̂ (which always appears as
Ẑ θ̂ = σ∇Ŷ θ̂). Furthermore, the only objective (Ldiv(θ)) which depends on the magnitude of Y θ is
likely insufficient to learn it in practice: the blue term in (30) disappears when the prior killing rate is
0 or when Ψ becomes exceedingly small, leading to a very weak signal on Y θ. This motivates our
quest for a second type of loss (LTD) which allows learning the magnitudes of Y θ and Ŷ θ̂.

We adopt the TD loss introduced by Liu et al. (2022). Its expressions for both networks are given by:

LTD (θ) =

∫ 1

0

E
Xs∼

←
X

[
|Y θ

s (Xs)− Ys|
]
ds

LTD

(
θ̂
)
=

∫ 1

0

E
Xt∼

→
X

[
|Ŷ θ̂

t (Xt)− Ŷt|
]
dt,

where (Ys)s is computed using (29) and (Ŷt)t using (27). In words, the TD loss measures the L1
distance between the values of Y and Ŷ –which we compute on paths from N and Q respectively–
and the output of neural networks Y θ and Ŷ θ̂.

F.3 Computing Ψ. The previous section describes the losses designed to optimize Y θ and Ŷ θ̂

and we now describe how to update Ψ, which is the third quantity estimated by UDSB-TD (being
required to compute the posterior killing rate Ψk/φ). Its value is refreshed at the beginning of every
training epoch (line 2 of Algorithm 1) by UPDATE-PSI(). Ψ can be computed from the closed-form
expression:

Ψ =

(∫
X
µ0 dx−

∫
X
µ1 dx

)(∫ 1

0

dt

∫
d

dx kφ̂(t, x)

)−1
(31)

which directly follows from the Schrödinger Problem [Chen Unbalanced]. We use the following two
approximations.

Approximation 1 From (31), by multiplying and dividing by φ inside the integral and then applying
the decomposition φtφ̂t = pt, we obtain:

Ψ = (m0 −m1)

(∫ 1

0

dt

∫
d

dx
k

φ
φ̂φ(t, x)

)−1
= (m0 −m1)

(∫ 1

0

dt EXt

[
k

φ
(t,Xt)

])−1
≈ (m0 −m1)

(∑
i

∆t

N

∑
n

k(i∆t,Xn
i )

expY θ(i∆t,Xn
i )

)−1
,

In theory, this estimator of Ψ is non-biased only when the HJB equation is satisfied, i.e., when
the TD loss is minimized, since only then φtφ̂t = pt holds. We however argue that this does not
disrupt training. In particular, we empirically found that it is helpful to introduce a warm-up period
in training, during which only the MM loss is optimized and Ψ is set to 0. This can be intuitively
explained by noting that, at the beginning, trajectories will likely visit the wrong parts of the space,
i.e., regions that in reality have almost zero density (i.e., φφ̂ ≈ 0). Minimizing the TD loss over such
paths would therefore yield very bad results. At a later stage, instead, trajectories are supposed to be
approximately correct. We are therefore gradually able to reintroduce the TD loss, which (as seen in
the proof of Liu et al. (2022, Prop. 4)) ensures the respect of HJB, and also update Ψ.

Approximation 2 To derive a second heuristic which uses the network Ŷ θ̂ rather than Y θ, we
replace integrals over Rd in (31) with sums along paths (Xi)i:

Ψ ≈ (m0 −m1)

(∑
i

∆t
∑
n

k(i∆t,Xn
i ) exp Ŷ

θ̂(i∆t,Xn
i )

)−1
.
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In the above formula, the superscript n indexes members of the batch. We stress that this approxima-
tion is biased and may suffer from high variance, but we include it here only because of its practical
interest in some situations.

F.4 Revising the Update of Ψ. The above formulas to update Ψ are heavily dependent on good
guesses of Y θ and Ŷ θ̂, since they both appear inside exponential terms. In practice, however, reliable
estimates may not always be available, for several reasons. First, the user-defined approximations of
Y and Ŷ at the extremes may not be good, especially with high dimensional state spaces and complex
data distributions. Second, even if learned approximations of log-potentials φ and φ̂ improve by the
end of training, they can still be inadequate at the beginning.

Unreliable values of Y θ and Ŷ θ̂ hamper convergence, making it slower or, in the worst case,
precluding it. We, therefore, re-parametrize the posterior killing rate k⋆ = kΨ/φ with the help of an
additional neural network gζ as:

k⋆ ≈ k(t, x)gζt (x).

We learn gζ using a novel loss, called Ferryman loss, which we present next.

The Ferryman loss. At equilibrium, the amount of mass that reaches the coffin state∞ is given by:∫ 1

0

∫
Rd

k⋆(t, x)pt(x) dx dt

and should be equal to the difference of mass observed at the marginals µ0(Rd) − µ1(Rd). By
matching these two expressions, we get the loss:

L(ζ) =
∫ 1

0

E [k(Xt)gζ,t(Xt)] dt− µ1(Rd) + µ0(Rd), (32)

where the expectation runs over paths. We stress that this loss does not guarantee the convergence of
kgζ to the optimal form of posterior killing rate kΨ/φ but achieves good-enough results in practice.

The loss function (32) tries to capture a mass constraint at the extremes, i.e., for t = 0 and t = 1.
However, we can extend it to the more general case in which the size of the population mt is also
known at several intermediate times ti, i ∈ I . This increases the amount of information that USBs
are able to incorporate and allows learning better dynamics in many real-world applications.

We call (Xt)t a trajectory and define binary random variables At which specify the status of the
particle, by taking the value 1 when Xt ̸=∞. For the set of mass measurements mt, it should hold
that P (At = 1) = EAt [At] = mt. This constraint is, however, ill-suited to be directly optimized,
since At is a discrete value and we should back-propagate through the expected value. We, therefore,
replace it with the quantity E(Xt,At)

[
kζ(t,Xt)1{At = 1}

]
. Furthermore, we relax the requirement

that the prior process is a death-only diffusion and consider a prior birth function q, together with the
usual killing function k.

The loss function used to train gζ then becomes:

LF (ζ) = E(Xt,At)

[∑
i∈I

∣∣∣∣∫ ti

0

(
(1−At) qg

ζ(t)−Atkg
ζ(t)

)
dt− mti −m0

M

∣∣∣∣
]
, (33)

where the dependency of k, q and gζ on Xt is hidden and M = maximti is a normalization
constant. In words, LF computes a soft count of deaths and births at each timestep t, by summing
the probabilities of sampled particles to transition from/to the coffin state. Clearly, these transition
probabilities depend on the status At of each particle since, e.g., only alive particles can die. For each
time interval [0, ti], LF ensures that the approximated change of mass stays close to the observed
variation (mti −m0)/M .

To use (33) during training, we should also prevent the value of gζ from exploding. In our experiments,
we, therefore, use a regularized version of this loss, which we illustrate next.
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Discretizing the Ferryman loss. The loss (33) may be unstable in practice because gζ can grow
without bounds. This would translate, upon discretization, into invalid transition probabilities k∆t to
the coffin state, i.e., probabilities bigger than 1. We, therefore, modify the loss to prevent this. We
define the following quantities:

k→∞(xn) = P (Xn+1 =∞|Xn = xn) = kgζ(n, xn)∆t

q←∞(xn) = P (Xn+1 = xn|Xn =∞) = qgζ(n, xn+1)∆t,

where (xn)n is a sampled trajectory and which are, respectively, the conditional probabilities of death
(k→∞) and birth (q←∞) given the position at step n. The revised Ferryman loss can then be written
as:

LF (ζ) = E(Xt,At)

[∑
i∈I

∣∣∣∣∣
ni∑
n=0

((1−An) ⌈q←∞(Xn)⌋ −An⌈k→∞(Xn)⌋)−
mni
−m0

M

∣∣∣∣∣+
+

ni∑
n=0

∣∣∣q←∞(Xn)− ⌈q←∞(Xn)⌋
∣∣∣+ ni∑

n=0

∣∣∣k→∞(Xn)− ⌈k→∞(Xn)⌋
∣∣∣], (34)

where ⌈x⌋ denotes clipping of x to the unit interval. (34) differs in two ways from (33): (i) it uses
clipped transition probabilities in the first sum and (ii) contains two regularization terms, which
penalize values of q←∞ and k→∞ bigger than 1.

F.5 A Revised Algorithm. We detail the revised training procedure of UDSB-F in Algorithm 3.
The associated sampling procedures are given in Algorithm 4 in the specific case of a death-only
forward process, to allow a direct comparison with the original sampling in Algorithm 2.

Algorithm 3 UDSB-F training

Input: Zθ, Ẑ θ̂, gζ

Output: θ, θ̂, ζ

1: for epoch e ∈ {0, ..., E} do
2: (

←
Xi, Ai)i ← SAMPLE-BACKWARD-F(Zθ, Ẑ θ̂, gζ)

3: while reuse paths do

4: LMM(θ)← LMM

(
(
←
Xi); θ

)
5: Update θ using ∇θLMM ▷ Train forward score

6: (
→
Xi, Ai)i ← SAMPLE-FORWARD-F(Zθ, Ẑ θ̂, gζ)

7: while reuse paths do

8: LMM(θ̂)← LMM

(
(
→
Xi); θ̂

)
9: Update θ̂ using ∇θ̂LMM ▷ Train backward score

10: LF (ζ)← LF

(
(
→
Xi, Ai); ζ

)
11: Update ζ using ∇ζLF ▷ Train transition function
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Algorithm 4 UDSB-F sampling (death-only prior)

Input: drift b, diffusivity σ, initial mass M0, final mass M1, killing function k

1: function SAMPLE-FORWARD-F(Zθ, Ẑ θ̂, gζ)
2: Sample position X0 ∼ µ0

3: A0 ← 1 ▷ The particle is initially alive
4: for step i in {1, ..., I} do
5: Xi ← Xi−1 +∆

→
Xi

6: if Ai−1 = 1 then ▷ The particle is alive
7: Flip coin D ∼ Bernoulli

(
1− k(i,Xi)g

ζ(i)∆t
)

8: Ai+1 ← D ▷ Store particle’s fate
9: return (Xi, Ai)i

10:
11: function SAMPLE-BACKWARD-F(Zθ, Ẑ θ̂, gζ)
12: Sample position XI ∼ µ1

13: Sample status AI ∼ Bernoulli
(
min

(
1, M1

M0

))
▷ Is the particle alive at k = K?

14: for step i in {I − 1, ..., 0} do
15: Xi ← Xi+1 −∆

←
Xi

16: if Ai+1 = 0 then ▷ The particle is dead
17: Flip coin D ∼ Bernoulli

(
k(i,Xi)g

ζ(i)∆t
)

18: Ai ← D ▷ Store particle’s fate
19: return (Xi, Ai)i

G EXPERIMENTS

In this section, we provide further details on the model architecture, training parameters, and metrics
used. We also discuss two sets of additional experiments: The first (§G.1) compares the performances
of the two unbalanced Schrödinger bridge (USB) solvers which we in Section 4. The second (§G.4)
involves modeling the emergence of the Delta variant during the COVID pandemic.

G.1 Comparison between UDSB-TD and UDSB-T. We aim to test the ability of our two solvers,
UDSB-TD and UDSB-F, to compute valid SBs while respecting arbitrary mass constraints. To this
end, we run both algorithms on the 2-dimensional toy data displayed in Fig. 5a and then on a second
dataset involving cellular dynamics.

Toy dataset. Points are initially drawn from a mixture of (i) a uniform distribution (left, blue
segment) and (ii) an isotropic Gaussian (center). Their final distribution is instead uniform and
supported on two segments (right, in red). Given the constraints on their endpoints, particles –which
follow a Brownian prior– should travel from left to right. In the process, however, they cross the area
marked with a rectangle in the picture. It denotes a region of the state space in which deaths can
occur, i.e., a region in which k is non-zero.

We test our SB solvers under multiple mass scenarios, by specifying four different amounts of live
particles at the end (Fig. 5b). We picture the trajectories found by UDSB-TD in Fig. 5c, and those
computed by UDSB-F in Fig. 5d. We observe that, in both cases, the paths constitute valid SBs, i.e.,
correctly match the marginals. Furthermore, the predicted end distributions are similar in quality in
all scenarios (Table 2), and no algorithm consistently achieves better scores.

The trajectories computed by UDSB-TD and UDSB-F are nevertheless not identical. In particular,
differences emerge when comparing the positions of deaths (black dots), which are concentrated
around the top and bottom ends of the killing region in Fig. 5c, while appearing more uniform in Fig.
5d. This discrepancy is a direct consequence of different ways of computing Ψ.

UDSB-TD updates Ψ using formulas that depend on log-potentials (logφ and log φ̂) which, as
discussed in §F.4, are usually not well-approximated at the beginning. Inaccurate values of potentials
lead, in the initial phase of training, to excessive deaths and therefore push the trajectories away from
the death region, i.e., drive particles above or below the rectangle. When the estimates of logφ and
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Figure 5: Comparison between UDSB-TD and UDSB-F. (a) Points, initially distributed according
to the blue marginal, move towards the red one. In doing so, they cross a region with non-zero
killing probability (gray rectangle). Assuming 4 different amounts of end mass (1-4), we use (c)
UDSB-TD and (d) UDSB-F to compute particle paths. (b) The algorithms find similar, but not
identical, trajectories, which respect the end mass constraints in all cases. However, the predicted
amounts of live particles at intermediate times differ, owing to the different updates of Ψ used: deaths
are clustered by UDSB-TD at the top and bottom of the killing zone and appear, instead, more
uniformly distributed in (d).

Algorithm Comparison
MMD ↓ Wε ↓

Final mass UDSB-TD UDSB-F UDSB-TD UDSB-F

45% 8.92e-3 12.60e-3 1.33 1.70
56% 9.42e-3 6.74e-3 1.61 1.28
67% 3.28e-3 5.65e-3 1.14 1.08
78% 5.78e-3 6.58e-3 1.52 1.28
89% 5.43e-3 8.03e-3 0.96 1.53
100% 1.74e-3 5.96e-3 1.24 1.06

Table 2: Prediction quality on toy dataset. MMD and Wasserstein distance between the predicted
end marginal and the ground truth. The two algorithms UDSB-TD and UDSB-F perform
comparably, with the former often achieving better MMD scores and the latter faring better with Wε.

log φ̂ gradually improve, the algorithm readjusts the trajectories to reach the desired amounts of parti-
cle deaths. However, the initial steering persists for the particles starting closer to the death zone (cen-
tral blue points in Fig. 5a) since their trajectories underwent the most significant distortion. Thanks
to the improved stability of the Ferryman loss, instead, the trajectories computed by UDSB-F evolve
more gradually during training, and particles are therefore free to cross the killing zone (and die).

Cellular dynamics. We then proceed to compare our algorithms on a real-world dataset involving
the treatment of tumor cells with Ulixertinib. Unlike the drug considered in §6, Ulixertinib does not
induce measurable cell proliferation and its action on tumor cells is, therefore, best modeled by a
death-only (forward) diffusion We measure the quality of predicted cell statuses both at intermediate
and final times and report our findings in Table 3. As expected, UDSB-F performs better than
UDSB-TD, given its improved stability on higher-dimensional data. Furthermore, we also tried
disabling the killing mechanism and observed a decrease in the performance of both algorithms,
further stressing the benefits of unbalanced SBs.
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Intermediate time (24h) Final time (48h)

Method MMD ↓ Wε ↓ MMD ↓ Wε ↓
Chen et al. (2021) 7.06e-2 (0.04e-2) 7.99 (0.01) 1.61e-2 (0.02e-2) 6.03 (0.04)
UDSB-TD (Ours) 5.34e-2 (0.14e-2) 7.53 (0.08) 1.64e-2 (0.11e-2) 5.64 (0.09)
UDSB-F (Ours) 4.93e-2 (0.19e-2) 7.07 (0.16) 1.03e-2 (0.05e-2) 5.49 (0.18)

Table 3: Death-only cellular dynamic prediction results. MMD and Wasserstein distance between
the predicted intermediate/end marginals and the ground truth. UDSB-TD and UDSB-F both
generally outperform the baseline, with the latter achieving the best score on both metrics.

G.2 Models and Training for Toy Datasets. This section contains details about the experiments
that involve synthetically generated datasets since all models used in experiments on low-dimensional
datasets share similar architectures and training procedures.

The architecture of networks fθ and f̂ θ̂ consists of:

• x_encoder: a 3-layer MLP, with 32-dimension wide hidden layers, which takes points in the
state space as input;

• t_encoder: a 3-layer MLP, with 32 hidden dimensions, which takes the sinusoidal embedding
(over 16 dimensions) of the time t as input;

• net: a 3-layer MLP, with 32-dimension wide hidden layers, which receives the concatenation of
the outputs of the two previous modules as input and outputs the score.

All the above networks use the SiLU activation function.

We parametrize gζ with a 5-layer MLP with 64 hidden dimensions and Leaky-ReLU as non-
linearity.

We run 15 iterations of our unbalanced IPF algorithm and update weights using the ADAMW optimizer
with gradient clipping. We set the initial learning rate to 1e-3 for f and f̂ , and to 1e-2 for q.

G.3 Cell Drug Response. We further comment on the pre-processing of the cell evolution dataset
and provide details on the model architecture and training procedure.

G.3.1 DATASET

We start with the dataset collected by Bunne et al. (2021), which captures the temporal evolution of
melanoma cells treated with a mix of the cancer drugs Trametinib and Erlotinib. The drug is given
at time t = 0, and the first measurement, which happens at time t = 8h, examines a population
of 2452 cells. Each cell is characterized by 78 features which are a combination of morphological
features derived from microscopy (such as cell shapes) and detailed information on the abundance
and location of proteins —obtained via the powerful Iterative Indirect Immunofluorescence Imaging
(4i) technique (Bunne et al., 2021)– and which we refer to as intensity features. Intensity features can
be, in turn, categorized as measuring either the sum or average intensity. We remove the 28 features
belonging to the former group and are, therefore, left with a 50-dimensional state space. We split the
dataset into training and test sets according to an 80/20 split.

Two subsequent measurements of cells in the population take place at times t = 24h and t = 48h.
Each captures a different population, owing to cell death and birth. In particular (see Fig. 4d), the
population is found to have grown by 35% after 24h while shrinking down to 75% of its original size
at time t = 48h.

To compute the unbalanced DSB in Fig. 4e, we assume a Brownian prior motion of cells in the
feature space. Furthermore, we consider a prior killing rate proportional to the distance from the
first-order spline interpolation (g) of the empirical means of the train set. More precisely, this killing
function penalizes cell statuses that deviate substantially (> 2σ) from g in more than 20% of features.
The birth rate is, instead, proportional to a Gaussian Kernel Density Estimation (KDE) computed on
the train set.
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Method MSE ↓
Spline interpolation (past) 3.07e-1
Spline interpolation (endpoints) 1.60e-1
SIR model 2.54e-1
UDSB-F 1.12e-1

Table 4: Prediction quality on COVID dataset. MSE between the predicted and observed presence
of Delta variant cases in Europe. UDSB-F beats the baselines consisting of a SIR infection model
and of two cubic spline interpolations, using respectively the first 4 measurements (past), and the first
and last 2 (endpoints).

G.3.2 MODEL AND TRAINING

TThe algorithm UDSB-F requires 3 networks: fθ and f̂ θ̂ and gζ .

The architecture of the first two consists of:

• x_encoder: a 3-layer MLP, with 300-dimension wide hidden layers, which takes the cell status
x as input;

• t_encoder: a 3-layer MLP, with 32 hidden dimensions, which takes the sinusoidal embedding
(over 16 dimensions) of the time t as input;

• net: a 3-layer MLP, with 300-dimension wide hidden layers, which receives the concatenation of
the outputs of the two previous modules as input and outputs the score.

All the above networks use the SiLU activation function.

To parametrize gζ , instead, we use a 5-layer MLP with 64 hidden dimensions and Leaky-ReLU as
non-linearity.

We run 10 iterations of our unbalanced IPF algorithm and update weights using the ADAMW optimizer
with gradient clipping. We set the initial learning rate to 1e-3 for f and f̂ , and to 1e-2 for q. We use a
batch size of 512.

G.4 COVID Variants Spread. To further test unbalanced SBs on real-world phenomena, we
model the global evolution of the COVID pandemic over a 4-month period. We aim to reconstruct
how multiple COVID variants propagate across countries between April 5, 2021, and August 9, 2021.
We choose this time window because it encompasses the appearance and quick spread of the Delta
variant, at the expense of the once-dominant Alpha variant.

It is important to emphasize that our task focuses on reconstructing the historical trajectory of the
pandemic based on its known initial and final statuses. This differs from the more common practice
(Cao and Liu, 2021; Nixon et al., 2022) of predicting how viruses spread solely based on present
epidemiological data. Although our approach may not be directly applicable to guiding policies and
public health responses during an ongoing outbreak, it can nonetheless provide valuable insights into
the transmission and mutation of a pathogen, when its evolution at intermediate times is not known.

Results. By running our algorithm UDSB-F on two snapshots of the COVID pandemic, we are
able to model it at intermediate times. We can reconstruct the change in variant prevalence both in
time and space. We can, for instance, successfully model the proliferation of cases of Delta variant in
Europe: Fig. 6g plots the predictions for each variant against the ground truth, which is only known
by our algorithm at the initial and final times. Remarkably, UDSB-F reconstructs the spread of the
Delta variant better than the baselines (Fig. 6h) and achieves the smallest Mean Square Error (MSE)
with respect to the observations (Table 4). Besides offering variant counts for each continent, our
predictions also provide time-resolved density estimates of COVID cases for each country (Fig. 6j).

We now provide further details regarding the dataset and how we represent the location and variant of
COVID cases.
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Figure 6: COVID evolution experiment. We model variants spreading across countries, by diffusing
over a state space X endowed with location- and variant-dependent information. We represent (i)
the location of COVID cases, by leveraging the notion of effective distance between countries. It is
based on (b) the number of flights that connect airports (a) in different countries. We compute (e)
effective distances as the product of (c) flight distances DF and (d) geographic distances: for the sake
of clarity, we only plot pairwise between the 21 countries with the highest number of COVID cases
in 2021. (f) We encode different COVID variants by means of low-dimensional representations of
their spike proteins obtained from Protein Language Models. (g) By running UDSB-F on X , we
can recover the evolution of COVID variants in Europe more accurately than the baselines (h). (j)
Furthermore, we approximately reconstruct the geographic distribution of cases around the globe at
intermediate times.

G.4.1 DATASET

We start from bi-weekly records2 of sequenced viral samples around the world. They provide the
number of cases linked to different COVID variants which are found in each country on a given day.
We only consider samples belonging to the 4 most prevalent variants in our time range, i.e., Alpha,
Beta, Gamma, and Delta, and represent all the other variant with a fifth category, named others. Each

2Dataset available at: https://www.kaggle.com/datasets/gpreda/covid19-variants
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of the datapoints referring to the period between 2021-04-05 and 2021-08-09 therefore contains the
following entries:

• location: country for which the variants information is provided;
• date: the date of the measurement;
• [variant]: fraction of sequences belonging to the given variant;
• num_sequences: number of sequences processed in the country.

When training our model, we only use the first and last measurements and leave the other ones for
testing.

We represent COVID cases that spread among countries as vectors cT = (xT ;vT ) ∈ X , in which
the first block of coordinates (x) describes the geographic location of the virus and the second one
(v) identifies its variant. The use of standard SBs would require that points move continuously in
X . While we can choose both kinds of embedding to make this assumption approximately true, it is
hard to strictly enforce it. This issue emphasizes the need for USBs, which accounts for jumps in the
diffusion. In this case, jumps allow (i) new variants to appear in locations where they were initially
not present and (ii) local outbreaks to suddenly disappear.

Location embedding. To (approximately) respect the continuity hypothesis, we cannot directly use
country coordinates to encode the location x of viruses. In fact, COVID cases do not preferentially
propagate to neighboring countries, and using this representation would then render SBs a poor fit to
model such dynamics. We, therefore, set to leverage the intuition that the virus tends to spread among
countries that are either (i) close to each other or (ii) well-connected, especially via air transportation.

Inspired by the approach pioneered by Brockmann and Helbing (2013), we compute an effective
distance between countries, which better represents the ease with which COVID moves between
them.

To compute effective distances, we rely on flight data, obtained by OpenFlights3. Starting with 66934
commercial routes (Fig. 6b), between 7698 airports (Fig. 6a), we count the number of flights Cij

linking airports of country i with those in country j. We first compute the flight distance DF
ij between

i and j as DF
ij = 1/(Cij + ϵ) (where ϵ is a small constant) (Fig. 6c). In words, a small flight distance

implies the existence of frequent connections between two countries. By multiplying flight distances
DF

ij by the geographic distance between countries (Fig. 6d), we obtain the matrix DE = (DE
ij)ij of

effective distances (Fig. 6e). DE is a connectivity matrix on the graph of nations and we can measure
the shortest paths (Sij) between nodes. We then embed in 2 dimensions the manifold induced by
the metric (Sij)ij via UMAP (McInnes et al., 2020) and therefore obtain a planar representation of
the effective positions of countries (Fig. 6i). This layout resembles the world map, e.g., it clusters
European nations at the top, but also reflects the ease of traveling between countries, e.g., India is
equally far from the US and from the UK.

Variant embedding. Having described how we determine the location coordinates (x), we now
turn to the representation of COVID variants (v). We aim to capture the biological similarity between
variants based on the similarity of corresponding Spike proteins, which are critical in determining
their infectiousness.

We focus on the mutations occurring in the receptor-binding domains (RBDs), a key part of the Spike
protein. More specifically, we encode the amino-acid sequences describing RBDs using ESM-2 (Lin
et al., 2023), a state-of-the-art language model optimized for proteins. When projected along their
biggest 2 principal components, these embeddings organize in the plane as shown in Fig. 6f. We
construct the representation of the other variant type, by averaging the embeddings of all the variants
excluded by our analysis (gray dots in Fig. 6f). As expected, the Beta variant shares more similarities
with Alpha than with Delta, which emerged later in time and features additional mutations in its
RBD.

Prior death/birth rates. To complete the description of the SB problem at hand, we need to specify
the prior killing and birth functions. We assume a positive prior probability that Delta cases emerge in

3https://openflights.org
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India since early Delta samples were detected in that country. Furthermore, we introduce birthplaces
(for all variants) close to every country and killing zones everywhere else. This prior allows UDSB-F
to strike a balance between spreading the virus by making it move across countries (initial infections)
and growing native clusters (local proliferation).

G.4.2 MODEL AND TRAINING

We require 3 networks to parametrize the forward and backward scores (f and f̂ ) and the multiplicative
reweighting factor of the posterior killing function (g).

We use the same model architecture for fθ and f̂ θ̂, which consists of:

• x_encoder: a 3-layer MLP, with 64-dimensional hidden layers, which takes c ∈ X as input;
• t_encoder: a 3-layer MLP, with 32 hidden dimensions, which takes the sinusoidal embedding

(over 16 dimensions) of the time t as input;
• net: a 5-layer MLP, with 64-dimension wide hidden layers, which receives the concatenation of

the outputs of the two previous modules as input and outputs the score.

All the above networks use the SiLU activation function.

To parametrize gζ , instead, we use a 5-layer MLP with 64 hidden dimensions and Leaky-ReLU as
non-linearity.

We run UDSB-F for 10 iterations with a batch size of 1024 and update the weights using the AdamW
optimizer, with initial learning rates of 1e-3, for f and f̂ , and 1e-2 for gζ .

Variant assignment. Given a point cT = (xT ,vT ) in the statespace X , we map it to one of
the five COVID variants by using a 1-Neighbor Classifier on v, from the scikit-learn library
(Pedregosa et al., 2011), trained on the representations in Fig. 6f.

Baselines. To assess the performance of our method, we first restrict to the sub-task of predicting
how the Delta variant spreads in Europe (Fig. 6h), in the time period under consideration. We
consider the following 3 different baselines:

• Spline interpolation (past): a cubic spline interpolation of the first 4 available measurements, i.e.,
those happening between April 5, 2021 and May 17, 2021. In this period, the Delta variant was not
yet widespread in Europe, and, as a consequence, the fitted curve underestimates the number of
COVID registered in later months.

• Spline interpolation (endpoints): a cubic spline interpolation of the first 2 and last 2 known
measurements.

• SIR model: a popular ODE-based model (Kermack and McKendrick, 1927) of infectious diseases.

G.5 Evaluation Metrics. In this section, we detail the evaluation metrics used to benchmark our
algorithms.

Wasserstein-2 distance. We measure accuracy of the predicted target population ν̂ to the observed
target population ν using the entropy-regularized Wasserstein distance (Cuturi, 2013) provided in the
OTT library (Bradbury et al., 2018; Cuturi et al., 2022).

Maximum mean discrepancy. Kernel maximum mean discrepancy (Gretton et al., 2012) is another
metric to measure distances between distributions, i.e., in our case between predicted population ν̂
and observed one ν. Given two random variables x and y with distributions ν̂ and ν, and a kernel
function ω, Gretton et al. (2012) define the squared MMD as:

MMD(ν̂, ν;ω) = Ex,x′ [ω(x, x
′)] + Ey,y′ [ω(y, y

′)]− 2Ex,y[ω(x, y)].

We report an unbiased estimate of MMD(ν̂, ν), in which the expectations are evaluated by averages
over the population particles in each set. We utilize the RBF kernel, and as is usually done, report the
MMD as an average over the length scales: 2, 1, 0.5, 0.1, 0.01, 0.005.
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