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1 NETWORK AND TRAINING
Platform and hardware: The proposed Bifusion framework is im-
plemented with Pytorch [7]. The training and testing are conducted
using a middle-range desktop computer with an Nvidia RTX 4090
GPU of 24 GB memory.

Network architecture:The volume branch of Bifusion is con-
structed with a five layers U-shaped network. And similarly, the
point branch is built with five layers of point based U-net. Volume
and points modules’ design are mirror symmetric to facilitate point
and voxel feature fusion. Their feature dimensions are [4, 16, 32, 64,
128, 128, 64, 32, 16, 16] from encoder to decoder of the U-shaped
net.

Fusion design: We implemented two versions of bidirectional
fusion modules. The self-contained figure 1 demonstrate the design
for side by side comparison. Figure 1(a) illustrate the design used
in ablation study Bifusion v1. The design shown in Figure 1(b)
corresponds to Bifusion v2 which is mainly tested in our work.

Loss functions: We use binary cross entropy loss of Equation 1
for occupancy learning:

𝐿𝑜 (𝑊 ) = 1
|𝐵 |

|𝐵 |∑︁
𝑖=1

𝐾∑︁
𝑗=1

���𝐵𝐶𝐸 (
𝑂𝑞,𝑖, 𝑗 ,𝑂

𝑗
𝑖

)��� (1)

∗Co-first author.
†Co-first author.
‡Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Graphics Interface 2024, June 03–06, 2024, Halifax, Nova Scotia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

Here 𝐵 is the mini-batch data size, 𝐾 is the number of query points
for each object,𝑂𝑞,𝑖, 𝑗 is the prediction value for a given query point
𝑞
𝑗
𝑖
, 𝐵𝐶𝐸 is the binary cross entropy loss for occupancy field.
Training: The network is trained using the Adam optimizer[4]

with parameters 𝛽1 = 0.9, 𝛽2 = 0.999, and an initial learning rate of
1.0𝑒−4. The learning rate decreases by 0.1× with the step scheduler
at 50 and 100 epochs, respectively. We use the same ratio of 7:2:1
for training, validation, and testing for all the datasets.

Metrics:Chamfer distance (CD) as the metric for performance
evaluation More specifically, we sample points on both the recon-
struction and the ground truth surface to serve as the proxy for
computing the chamfer distance between the two surfaces. The
chamfer distance between the two shapes represented by point
cloud 𝑃𝑎 and 𝑃𝑏 respectively can thus be measured as the sum of
the average of the minimum distances from 𝑃𝑎 to 𝑃𝑏 and from 𝑃𝑏
to 𝑃𝑎 . In the paper, we follow ONet [6], IFnet [2], we compute both
𝐶𝐷𝑙1 and 𝐶𝐷𝑙2.
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Normal Consistency (NC). The normal consistency between
two points cloud 𝑃𝑎 and 𝑃𝑏 is defined by the following equation:
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where 𝑁𝑛𝑒𝑎𝑟𝑝𝑎,𝑃𝑏 is the nearest point of 𝑝𝑎 of 𝑃𝑎 in point cloud
𝑃𝑏 . and 𝑁𝑝 is the normal of point p on the mesh. F-Score (FS).
F-Score between the two point clouds 𝑃𝑎 and 𝑃𝑏 given a threshold
t is defined as follows:
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We follows ONet [6], ConvONet [8] and POCO [1], we set t =
0.01.

Intersection over Union (IoU) measure the volumetric align-
ment between the predicted mesh and ground truth mesh. We
basically sample a large number of points in unite cube of the re-
construction volume. and then count the number of points that lie
in or outside of the predicted mesh and ground truth mesh. then
the IOU is computed as follows:

𝐼𝑜𝑈 (𝑀𝑎, 𝑀𝑏 ) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(8)

where TP (resp. FP, FN) are the number of the true positive points
i.e. those correctly predicted as inside occupancy (reps. the num-
ber of points wrongly predicted as inside actually being outside
points, and the number of points wrongly predicted as outside but
actually being inside of the ground truth mesh). We sample one
Million points within the reconstruction unit volume for this IOU
measurement.

2 DATA AND PROCESSING
For training, we prepare three types of data for a given mesh object:
1. A given mesh is normalized to [-0.5, 0.5] before sampling. 𝑁 input
points will be sampled from the normalized mesh as input to the
network. N were set to 10K, 3K, etc in our testing.
2. 𝐾 query points will be generated by adding isotropic Gaussian
noise displacement 𝑛 ∼ 𝑁 (0, Σ) to each sampled surface point, 𝑖 .𝑒 .
𝑞 = 𝑝 + 𝑛, where Σ ∈ 𝑅3×3 is the diagonal covariance matrix with
variance setting Σ0,0 = Σ1,1 = Σ2,2 = 𝜎 defining the displacement
scales. We prepare three sets of query points 𝐾1, 𝐾2, and 𝐾3, with
500,000 points in each set, and 𝜎 equals to 0.25, 0.02, 0.003, respec-
tively for each mesh object. We then randomly pick 15%, 35%, and
50% from 𝐾1, 𝐾2, and 𝐾3, respectively, and combine them together
as the final 𝐾 = 0.15×𝐾1 + 0.35×𝐾2 + 0.50×𝐾3 query points for
each object for training.
3. Ground truth occupancy every query point for occupancy field.

ABC, Famous, Thingi10K: We select a total of 3800 watertight
meshes from ABC [5] dataset, We then split 8:2 for training and
validation respectively. We use the trained model to test datasets
prepared by point2surf [3], which include 100 ABC test dataset, 22
shape of Famous and 100 shapes of Thingi10K [11].

ShapeNet car: There are a total of 3094 objects that has water-
tight surface with no interior structures in the ShapeNet car dataset
[9]. We conduct two types of evaluations, one with 3K input points,
and one with 10K input points, respectively.

THuman: In order to evaluate the performance of open surface
reconstruction, we use 500 human mesh of THuman2.0 [10] for
human shape reconstruction. We use 7:2:1 for train, validation and
test respectively. The number of input points are 10K points. We
follow the same processing procedure for IFNet [2] train and test,
while for POCO [1] test, we use the officially pretrained model with
ShapeNet.

3 MORE QUALITATIVE RESULTS OF ABC,
FAMOUS, THINGI10K

Figure 2 , Figure 3 and Figure 4 show more qualitative results of
ABC [5], Famous and Thingi10K [12] respectively. POCO [1] results
are obtained with officially pre-trained models.

4 MORE RESULTS OF SHAPENET CARS
Figure 5 and Figure 6 demonstrate more results of ablation studies
about the network designs. Figure 5 and 6 use 3K and 10K input
points respectively. Bifusion v2 refers to the network illustrated in
the main manuscript with fusion module of figure 1 (a). Bifusion
v0 refers to the blending weight is set to 0.5 at the output of the
network. Bifusion v1 refers to using fusion module of figure 1(b).

5 MORE RESULTS ON THUMAN 2.0 HUMAN
BODY SHAPE RECONSTRUCTION

Figures 7, 8, 9 and 10 list more THuman2.0 [10] results for more
clear comparison among our network, baselines and POCO [1] and
IFNet [2].
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Figure 1: The two fusion modules designs for our network. (a) shows the bidirectional fusion structure version 1. (b) shows the
mainly tested bidirectional fusion structure version 2.

Figure 2: More ABC [5] test results. Testing data is prepared by point2surf [3]. POCO results are obtained by using officially
pre-trained model.
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Figure 3: More Famous dataset test results. Testing data is prepared by point2surf [3]. POCO results are obtained by using
officially pre-trained model.
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Figure 4: More results on Thingi10K. Testing data is prepared by point2surf [3]. POCO results are obtained by using officially
pre-trained model.
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Figure 5: Ablation study with various network designs with 3K input points. Bifusion v0 uses simple average of occupancy O1
of volume branch and occupancy O2 of point branch. i.e. 𝑜𝑚𝑒𝑔𝑎 = 0.5. Bifusion v1 use complex fusion module instead of the
version shown in figure of fusion block. Please refer to the supplementary manuscript for detailed structure design. Bifusion
v2 refers to the main network demonstrated in this manuscript of figure of the network which uses fusion modules of figure of
fusion block.
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Figure 6: Ablation study with various network designs with 10K input points. Bifusion v0 use simple average of occupancy O1
of volume branch and occupancy O2 of point branch. i.e. 𝑜𝑚𝑒𝑔𝑎 = 0.5. Bifusion v1 use complex fusion module instead of the
version shown in figure of fusion block. Please refer to the supplementary manuscript for detailed structure design. Bifusion
v2 refers to the main network demonstrated in this manuscript of figure of network which uses fusion modules of figure of
fusion block.
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Figure 7: Ablation studies with THuman2.0 [10]. From left to right volumes, they are ground truth mesh, 10K input points,
point base network results, volume base network results, Bifusion v2 results, POCO [1] and IFNet [2] results respectively.



Point Voxel Bi-directional Fusion Implicit Field for 3D Reconstruction: Supplemental Materials Graphics Interface 2024, June 03–06, 2024, Halifax, Nova Scotia

Figure 8: Figure 7 continued
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Figure 9: Figure 7 Continued
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Figure 10: Figure 7 Continued


	1 Network and training
	2 Data and processing
	3 More qualitative results of ABC, Famous, Thingi10K
	4 More results of ShapeNet cars
	5 More results on THuman 2.0 human body shape reconstruction
	References

