
Published as a conference paper at ICLR 2024

FAST UPDATING TRUNCATED SVD FOR REPRESENTA-
TION LEARNING WITH SPARSE MATRICES

Haoran Deng1, Yang Yang1∗, Jiahe Li1, Cheng Chen2, Weihao Jiang2, Shiliang Pu2

1Zhejiang University, 2Hikvision Research Institute
{denghaoran, yangya, jiaheli}@zju.edu.cn
{chencheng16, jiangweihao5, pushiliang.hri}@hikvision.com

ABSTRACT

Updating a truncated Singular Value Decomposition (SVD) is crucial in represen-
tation learning. In practice, when dealing with evolving large-scale data matrices,
aligning SVD-based models with fast-paced updates becomes critically impor-
tant. Existing methods for updating truncated SVDs employ Rayleigh-Ritz pro-
jection procedures, where projection matrices are augmented based on original
singular vectors. However, these methods are inefficient due to the densification
of the update matrix and the application of the projection to all singular vectors.
To overcome these limitations, we introduce a novel method for dynamically ap-
proximating the truncated SVD of a sparse and temporally evolving matrix. Our
approach leverages sparsity in the orthogonalization process of augmented ma-
trices and utilizes an extended decomposition to independently store projections
in the column space of singular vectors. Numerical experiments demonstrate the
efficiency of our method is improved by an order of magnitude compared to pre-
vious methods. Remarkably, this improvement is achieved while maintaining a
comparable precision to existing approaches. Codes are available1.

1 INTRODUCTION

Truncated Singular Value Decompositions (truncated SVDs) are widely used in various machine
learning tasks, including computer vision (Turk & Pentland, 1991), natural language process-
ing (Deerwester et al., 1990; Levy & Goldberg, 2014), recommender systems (Koren et al., 2009)
and graph representation learning (Ramasamy & Madhow, 2015; Abu-El-Haija et al., 2021; Cai
et al., 2022). Representation learning with a truncated SVD has several benefits, including the
absence of gradients and hyperparameters, better interpretability derived from the optimal approx-
imation properties, and efficient adaptation to large-scale data using randomized numerical linear
algebra techniques (Halko et al., 2011; Ubaru et al., 2015; Musco & Musco, 2015).

However, large-scale data matrices frequently undergo temporal evolution in practical applications.
Consequently, it is imperative for a representation learning system that relies on the truncated SVD
of these matrices to adjust the representations based on the evolving data. Node representation for
a graph, for instance, can be computed with a truncated SVD of the adjacency matrix, where each
row in the decomposed matrix corresponds to the representation of a node (Ramasamy & Madhow,
2015). When the adjacency matrix undergoes modifications, it is necessary to update the correspond-
ing representation (Zhu et al., 2018; Zhang et al., 2018; Deng et al., 2023). Similar implementations
exist in recommender systems based on the truncated SVD of an evolving and sparse user-item rat-
ing matrix (Sarwar et al., 2002; Cremonesi et al., 2010; Du et al., 2015; Nikolakopoulos et al., 2019).
This requirement for timely updates emphasizes the significance of keeping SVD-based models in
alignment with the ever-evolving data.

Over the past few decades, methods recognized as the Rayleigh-Ritz projection process (Zha & Si-
mon, 1999; Vecharynski & Saad, 2014; Yamazaki et al., 2015; Kalantzis et al., 2021) have been
widely adopted for their high accuracy. Specifically, they construct the projection matrix by aug-
menting the columns of the current singular vector to an orthonormal matrix that roughly captures

∗Corresponding author
1https://github.com/zjunet/IncSVD.

1



Published as a conference paper at ICLR 2024

the column space of the updated singular vector. Notably, the augmentation procedure typically
thickens sparse areas of the matrices, rendering the inefficiency of these algorithms. Moreover, due
to the requirement of applying the projection process to all singular vectors, these methods become
impractical in situations involving frequent updates or using only a portion of the representations in
the downstream tasks.

In this paper, we present a novel algorithm for fast updating truncated SVDs in sparse matrices.

Contributions.

1. We study the orthogonalization process of the augmented matrix performed in an inner product
space isometric to the column space of the augmented matrix, which can take advantage of the
sparsity of the updated matrix to reduce the time complexity. Besides, we propose an extended
decomposition for the obtained orthogonal basis to efficiently update singular vectors.

2. We propose an algorithm for approximately updating the rank-k truncated SVD with a theoretical
guarantee (Theorem 1), which runs at the update sparsity time complexity when considering k and
s (the rank of the updated matrix) as constants. We also propose two variants of the algorithm that
can be applied to cases where s is large.

3. We perform numerical experiments on updating truncated SVDs for sparse matrices in various
real-world scenarios, such as representation learning applications in graphs and recommendations.
The results demonstrate that the proposed method achieves a speed improvement of an order of
magnitude compared to previous methods, while still maintaining a comparable accuracy.

2 BACKGROUND AND NOTATIONS

The singular value decomposition (SVD) of an m-by-n real data matrix A is denoted by A =
UΣV ⊤, where U ∈ Rm×m, V ∈ Rn×n are orthogonal and Σ ∈ Rm×n is a rectangular diagonal
with non-negative real numbers sorted across the diagonal. The rank-k truncated SVD of A is
obtained by keeping only the first k largest singular values and using the corresponding k columns
of U and V, which is denoted by UkΣkVk = SVDk(A).

In this paper, we consider the problem of updating the truncated SVD of a sparse matrix by adding
new rows (or columns) and low-rank modifications of weights. Specifically, when a truncated SVD
of data matrix A ∈ Rm×n is available, our goal is to approximate the truncated SVD of the new data
matrix A with addition of rows Er ∈ Rs×n (or columns Ec ∈ Rm×s) or low-rank modifications
Dm ∈ Rm×s, Em ∈ Rs×n to A.

A =

[
A
Er

]
, A = [A Ec] , or A = A+DmE⊤

m

In several related works, including Zha-Simon’s, a key issue often revolves around the optimization
of the QR decomposition of (I − UkU

⊤
k )B matrix. Specifically, given an orthonormal matrix Uk

and a sparse matrix B, we refer to (I − UkU
⊤
k )B as the Augmented Matrix with respect to Uk,

where its column space is orthogonal to Uk.

Notations. In this paper, we use the lowercase letter x, bold lowercase letter x and bold uppercase
letter X to denote scalars, vectors, and matrices, respectively. Moreover, nnz(X) denotes the
number of non-zero entries in a matrix, X denotes the updated matrix, X̃k denotes the rank-k
approximation of a matrix, and range(X) denotes the matrix’s column space. A table of notations
commonly used in this paper is listed in Appendix B.

2.1 RELATED WORK

Projection Viewpoint. Recent perspectives (Vecharynski & Saad, 2014; Kalantzis et al., 2021)
frame the prevailing methodologies for updating the truncated SVD as instances of the Rayleigh-
Ritz projection process, which can be characterized by following steps.

1. Augment the singular vector Uk and Vk by adding extra columns (or rows), resulting in Û

and V̂ , respectively. This augmentation is performed so that range(Û) and range(V̂ ) can
effectively approximate and capture the updated singular vectors’ column space.

2



Published as a conference paper at ICLR 2024

2. Compute Fk,Θk,Gk = SVDk(Û
⊤AV̂ ).

3. Approximate the updated truncated SVD by ÛFk,Θk, V̂ Gk.

Zha-Simon’s Scheme. For Ãk = UkΣkV
⊤
k , let (I − UkU

⊤
k )Ec = QR, where Q’s columns

are orthonormal and R is upper trapezoidal. Zha & Simon (1999) method updates the truncate SVD
after appending new columns Ec ∈ Rm×s to A ∈ Rm×n by

A ≈
[
Ãk Ec

]
= [Uk Q]

[
Σk U⊤

k Ec

R

] [
V ⊤
k

I

]
= ([Uk Q] Fk)Θk(

[
Vk

I

]
Gk)

⊤ (1)

where Fk,Θk,Gk = SVDk(

[
Σk U⊤

k Ec

R

]
). The updated approximate left singular vectors, sin-

gular values and right singular vectors are [Uk Q]Fk,Θk,

[
Vk

I

]
Gk, respectively.

When it comes to weight update, let the QR-decomposition of the augmented matrices be (I −
UkU

⊤
k )Dm = QDRD and (I − VkV

⊤
k )Em = QERE , then the update procedure is

A ≈ Ãk +DmEm
⊤ = [Uk QD] (

[
Σk 0
0 0

]
+

[
U⊤

k Dm

RD

] [
V ⊤
k Em

RE

]⊤
) [Vk QE ]

⊤

= ([Uk QD] Fk)Θk([Vk QE ]Gk)
⊤

(2)

where Fk,Θk,Gk = SVDk(

[
Σk 0
0 0

]
+

[
U⊤

k Dm

RD

] [
V ⊤
k Em

RE

]⊤
). The updated approximate trun-

cated SVD is [Uk QD]Fk,Θk, [Vk QE ]Gk.

Orthogonalization of Augmented Matrix. The above QR decomposition of the augmented matrix
and the consequent compact SVD is of high time complexity and occupies the majority of the total
time when the granularity of the update is large (i.e., s is large). To reduce the time complexity, a
series of subsequent methods have been developed based on a faster approximation of the orthogo-
nal basis of the augmented matrix. Vecharynski & Saad (2014) used Lanczos vectors conducted by
a Golub-Kahan-Lanczos (GKL) bidiagonalization procedure to approximate the augmented matrix.
Yamazaki et al. (2015) and Ubaru & Saad (2019) replaced the above GKL procedure with Random-
ized Power Iteration (RPI) and graph coarsening, respectively. Kalantzis et al. (2021) suggested
determining only the left singular projection subspaces with the augmented matrix set as the identity
matrix, and obtaining the right singular vectors by projection.

3 METHODOLOGY

We propose an algorithm for fast updating the truncated SVD based on the Rayleigh-Ritz projection
paradigm. In Section 3.1, we present a procedure for orthogonalizing the augmented matrix that
takes advantage of the sparsity of the updated matrix. This procedure is performed in an inner
product space that is isometric to the augmented space. In Section 3.2, we demonstrate how to
utilize the resulting orthogonal basis to update the truncated SVD. We also propose an extended
decomposition technique to reduce complexity. In Section 3.3, we provide a detailed description of
the proposed algorithm and summarize the main findings in the form of theorems. In Section 3.4,
we evaluate the time complexity of our algorithm in relation to existing methods.

3.1 FASTER ORTHOGONALIZATION OF AUGMENTED MATRIX

In this section, we introduce an inner product space that is isomorphic to the column space of the
augmented matrix, where each element is a tuple of a sparse vector and a low-dimensional vector.
The orthogonalization process in this space can exploit sparsity and low dimension, and the resulting
orthonormal basis is bijective to the orthonormal basis of the column space of the augmented matrix.

Previous methods perform QR decomposition of the augmented matrix with QR = (I−UkU
⊤
k )B,

to obtain the updated orthogonal matrix. The matrix Q derived from the aforementioned procedure
is not only orthonormal, but its column space is also orthogonal to the column space of Uk, implying
that matrix [Uk Q] is orthonormal.

3



Published as a conference paper at ICLR 2024

Let Z = (I − UkU
⊤
k )B = B − UkC be the augmented matrix, then each column of Z can

be written as a sparse m-dimensional matrix of column vectors minus a linear combination of the
column vectors of the m-by-k orthonormal matrix Uk i.e., zi = bi −UkC[i]. We refer to the form
of a sparse vector minus a linear combination of orthonormal vectors as SV-LCOV, and its definition
is as follows:
Definition 1 (SV-LCOV). Let Uk ∈ Rm×k be an arbitrary matrix satisfying U⊤

k Uk = I , and let
b ∈ Rm be a sparse vector. Then, the SV-LCOV form of the vector z = (I − UkU

⊤
k )b is a tuple

denoted as (b, c)Uk
, where c = U⊤

k b.

Converting columns of an augmented matrix into SV-LCOV is efficient, because the computation of
U⊤

k b can be done by extracting the rows of Uk that correspond to the nonzero elements of b, and
then multiplying them by b.
Lemma 1. For an orthonormal matrix Uk ∈ Rm×k with U⊤

k Uk = I , turning (I −UkU
⊤
k )b with

a sparse vector b ∈ Rm into SV-LCOV can be done in time complexity of O(k · nnz(b)).

Furthermore, we define the scalar multiplication, addition and inner product (i.e., dot product) of
SV-LCOV and show in Lemma 2 that these operations can be computed with low time complexity
when b is sparse.
Lemma 2. For an orthonormal matrix Uk ∈ Rm×k with U⊤

k Uk = I , the following operations of
SV-LCOV can be done in the following time.

• Scalar multiplication: α(b, c)Uk
= (αb, αc)Uk

in O(nnz(b) + k) time.
• Addition: (b1, c1)Uk

+ (b2, c2)Uk
= (b1 + b2, c1 + c2)Uk

in O(nnz(b1 + b2) + k) time.
• Inner product: ⟨(b1, c1)Uk

, (b2, c2)Uk
⟩ = ⟨b1, b2⟩ − ⟨c1, c2⟩ in O(nnz(b1 + b2) + k) time.

With the scalar multiplication, addition and inner product operations of SV-LCOV, we can further
study the inner product space of SV-LCOV.
Lemma 3 (Isometry of SV-LCOV). For an orthonormal matrix Uk ∈ Rm×k with U⊤

k Uk = I , let
B ∈ Rm×s be arbitrary sparse matrix with the columns of B = [b1, ..., bs], then the column space
of (I −UkU

⊤
k )B is isometric to the inner product space of their SV-LCOV.

The isometry of an inner product space here is a transformation that preserves the inner product,
thereby preserving the angles and lengths in the space. From Lemma 3, we can see that in SV-
LCOV, since the dot product remains unchanged, the orthogonalization process of an augmented
matrix can be transformed into an orthogonalization process in the inner product space.

As an example, the Modified Gram-Schmidt process (i.e. Algorithm 1) is commonly used to com-
pute an orthonormal basis for a given set of vectors. It involves a series of orthogonalization and
normalization steps to produce a set of mutually orthogonal vectors that span the same subspace as
the original vectors. Numerically, the entire process consists of only three types of operations in
Lemma 2, so we can replace them with SV-LCOV operations to obtain a more efficient method (i.e.
Algorithm 2).

Algorithm 1: Modified Gram-Schmidt
Input: E ∈ Rn×s,Uk ∈ Rn×k

Output: Q ∈ Rn×s,R ∈ Rs×s

1 Q← (I −UkU
⊤
k )E;

2 for i = 1 to s do
3 α←

√
⟨qi, qi⟩;

4 Ri,i ← α;
5 qi ← qi/α;
6 for j = i+ 1 to s do
7 β ← ⟨qi, qj⟩;
8 Ri,j ← β;
9 qj ← qj − βqi;

10 end
11 end
12 return Q = [q1, ..., qs],R

Algorithm 2: SV-LCOV’s QR process
Input: E ∈ Rm×s,Uk ∈ Rm×k

Output: B ∈ Rm×s,C ∈ Rk×s,R ∈ Rs×s

1 B ← E, C ← U⊤
k E;

2 for i = 1 to s do
3 α←

√
⟨bi, bi⟩ − ⟨ci, ci⟩;

4 Ri,i ← α ;
5 bi ← bi/α, ci ← ci/α;
6 for j = i+ 1 to s do
7 β ← ⟨bi, bj⟩ − ⟨ci, cj⟩;
8 Ri,j ← β;
9 bj ← bj − βbi, cj ← cj − βci;

10 end
11 end
12 return Q = [(b1, c1)Uk , ..., (bs, cs)Uk ],R

4



Published as a conference paper at ICLR 2024

Lemma 4. Given an orthonormal matrix Uk ∈ Rm×k satisfying U⊤
k Uk = I , there exists an

algorithm that can obtain a orthonormal basis of a set of SV-LCOV {(b1, c1)Uk
, ..., (bs, cs)Uk

} in
O((nnz(

∑s
i=1 bi) + k)s2) time.

Approximating the augmented matrix with SV-LCOV. The Modified Gram-Schdmit process is
less efficient when s is large. To this end, Vecharynski & Saad (2014) and Yamazaki et al. (2015)
approximated the orthogonal basis of the augmented matrix with Golub-Kahan-Lanczos bidiagonal-
ization(GKL) procedure (Golub & Kahan, 1965) and Randomized Power Iteration (RPI) process.
We find they consists of three operations in Lemma 2 and can be transformed into SV-LCOV to
improve efficiency. Limited by space, we elaborate the proposed algorithm of SV-LCOV approxi-
mation to the augmented matrix in Appendix D.1 and Appendix D.2, respectively.

3.2 AN EXTENDED DECOMPOSITION TO REDUCING COMPLEXITY

Low-dimensional matrix mutliplication and sparse matrix addition. Suppose an orthonormal
basis (b1, c1)Uk

, ..., (bs, cs)Uk
of the augmented matrix in the SV-LCOV is obtained, according to

Definition 1, this orthonormal basis corresponds to the matrix B −UkC where the i-th column of
B is bi. Regarding the final step of the Rayleigh-Ritz process for updating the truncated SVD by
adding columns, we have the update procedure for the left singular vectors:

Uk ← [Uk Q]Fk = UkFk[: k] +QFk[k :]

= UkFk[: k] + (B −UkC)Fk[k :]

= Uk(Fk[: k]−CFk[k :]) +BFk[k :]

(3)

where Fk[: k] denotes the submatrix consisting of the first k rows of Fk, and Fk[k :] denotes the
submatrix consisting of rows starting from the (k + 1)-th rows of Fk.

Equation (3) shows that each update of the singular vectors Uk consists of the following operations:

1. A low-dimensional matrix multiplication to Uk by a k-by-k matrix (Fk[: k]−CFk[k :]).
2. A sparse matrix addition to Uk by a sparse matrix BFk[k :] that has at most nnz(B) · k

non-zero entries. While BFk[k :] may appear relatively dense in the context, considering it
as a sparse matrix during the process of sparse matrix addition ensures asymptotic complexity.

An extended decomposition for reducing complexity. To reduce the complexity, we write the
truncated SVD as a product of the following five matrices:

U ′
m×k ·U ′′

k×k ·Σk×k · V ′′⊤
k×k · V ′⊤

n×k (4)

with orthonormal U = U ′ · U ′′ and V ′ · V ′′ (but not V ′ or V ′′), that is, the singular vectors
will be obtained by the product of the two matrices. Initially, U ′′ and V ′′ are set by the k-by-
k identity matrix, and U ′, V ′ are set as the left and right singular vectors. Similar additional
decomposition was used in Brand (2006) for updating of SVD without any truncation and with
much higher complexity. With the additional decomposition presented above, two operations can be
performed to update the singular vector:

U ′′ ← U ′′(Fk[: k]−CFk[k :])

U ′ ← U ′ +BFk[k :]U ′′−1 (5)

which is a low-dimensional matrix multiplication and a sparse matrix addition. And the update of
the right singular vectors is

Vk ←
[
Vk

I

]
Gk =

[
Vk

0

]
Gk[: k] +

[
0
I

]
Gk[k :] (6)

where Gk[: k] denotes the submatrix consisting of the first k rows of Gk and Gk[k :] denotes the
submatrix cosisting of rows starting from the (k + 1)-th rows of Gk. Now this can be performed as

V ′′ ←V ′′Gk[: k]

Append matrix Gk[k :]V ′′−1
to V ′

(7)

Above we have only shown the scenario of adding columns, but a similar approach can be used
to add rows and modify weights. Such an extended decomposition reduces the time complexity of

5



Published as a conference paper at ICLR 2024

updating the left and right singular vectors, allowing them to be deployed to the large-scale matrix
with large m and n. In practical applications, the aforementioned extended decomposition might
introduce potential numerical issues when the condition number of the matrix is large, even though
in most cases these matrices have relatively low condition numbers. One solution to this issue is to
reset the k-by-k matrix to the identity matrix.

3.3 MAIN RESULT

Algorithm 3 and Algorithm 4 are the pseudocodes of the proposed algorithm for adding columns
and modifying weights, respectively.

Algorithm 3: Add columns
Input: Uk(U

′,U ′′),Σk,Vk(V
′,V ′′),Ec

1 Turn (I −UkU
⊤
k )Ec into SV-LCOV and get

Q(B,C),R with Algorithm 2;

2 Fk,Θk,Gk ← SVDk(

[
Σk U⊤

k Ec

R

]
);

3 U ′′ ← U ′′(Fk[: k]−CFk[k :]);
4 U ′ ← U ′ +BFk[k :]U ′′−1;
5 Σk ← Θk;
6 V ′′ ← V ′′Gk[: k];
7 Append new columns G[k :]V ′′−1 to V ′;

Algorithm 4: Update weights
Input: Uk(U

′,U ′′),Σk,Vk(V
′,V ′′),Dn,Em

1 Turn (I −UkU
⊤
k )D into SV-LCOV and get

QD(BD,CD),RD with Algorithm 2;
2 Turn (I − VkV

⊤
k )Em into SV-LCOV and get

QE(BE ,CE),RE with Algorithm 2;
3 Fk,Σk,Gk ←

SVDk(

[
Σk 0
0 0

]
+

[
U⊤

k Dm

RD

] [
V ⊤

k Em

RE

]⊤

) ;

4 U ′′ ← U ′′(Fk[: k]−CDFk[k :]);
5 U ′ ← U ′ +BDFk[k :]U ′′−1;
6 Σk ← Θk;
7 V ′′ ← V ′′(Gk[: k]−CEGk[k :]);
8 V ′ ← V ′ +BEGk[k :]U ′′−1;

The time complexity of the proposed algorithm in this paper is summarized in Theorem 1 and a
detailed examination of the time complexity is provided in Appendix F.

Theorem 1 (Main result). There is a data structure for maintaining an approximate rank-k trun-
cated SVD of A ∈ Rm×n with the following operations in the following time.

• Add rows(Er): Update Uk,Σk,Vk ← SVDk(

[
Ãk

Er

]
) in O(nnz(Er)(s+ k)2 + (s+ k)3) time.

• Add columns(Ec): Update Uk,Σk,Vk ← SVDk(
[
Ãk Ec

]
) in O(nnz(Ec)(s+ k)2+(s+ k)3)

time.
• Update weights(Dm,Em): Update Uk,Σk,Vk ← SVDk(Ãk + DmEm

⊤) in O(nnz(Dm +
Em)(s+ k)2 + (s+ k)3) time.

• Query(i): Return Uk[i] (or Vk[i]) and Σk in O(k2) time.

where Ãk = UkΣkV
⊤
k and s is the rank of the update matrix.

Remark 1. Please note that we uses Ãk, the best rank-k approximation of A, rather than the
original A matrix as the starting point of the updating process. Therefore, the update here may not
obtain the updated best rank-k approximation of the new matrix.

The proposed method can theoretically produce the same output as Zha & Simon (1999) method
with a much lower time complexity.

The proposed variants with the approximate augmented space. To address updates with coarser
granularity (i.e., larger s), we propose two variants of the proposed algorithm based on approximate
augmented spaces with GKL and RPI (see section 3.1) in SV-LCOV, denoted with the suffixes -GKL
and -RPI, respectively. The proposed variants procude theoretically the same output as Vecharynski
& Saad (2014) and Yamazaki et al. (2015), repectively. We elaborate the proposed variants in
Appendix D.3.

6



Published as a conference paper at ICLR 2024

Table 1: Time complexity comparing to previous methods

Algorithm Asymptotic complexity

Kalantzis et al. (2021) (m+ n)k2 + nnz(A)k + (k + s)k2

Zha & Simon (1999) (m+ n)k2 + nks+ ns2 + (k + s)3

Vecharynski & Saad (2014) (m+ n)k2 + nkl + nnz(E)(k + l) + (k + s)(k + l)2

Yamazaki et al. (2015) (m+ n)k2 + t(nkl + nl2 + nnz(E)l) + (k + s)(k + l)2

ours nnz(E)(k + s)2 + (k + s)3

ours-GKL nnz(E)(k2 + sl + kl) + (k + s)(k + l)2

ours-RPI nnz(E)(sl + l2)t+ nnz(E)k2 + (k + s)(k + l)2

3.4 TIME COMPLEXITY COMPARING TO PREVIOUS METHODS

Table. 1 presents the comparison of the time complexity of our proposed algorithms with the pre-
vious algorithms when updating rows E ∈ Rs×n. To simplify the results, we have assumed s < n
and omitted the big-O notation. l denotes the rank of approximation in GKL and RPI. t denotes the
number of iteration RPI performed.

Our method achieves a time complexity of O(nnz(E)) for updating, without any O(n) or O(m)
terms when s and k are considered as constants (i.e., the proposed algorithm is at the update sparsity
time complexity). This is because SV-LCOV is used to obtain the orthogonal basis, eliminating the
O(n) or O(m) terms when processing the augmented matrix. Additionally, our extended decompo-
sition avoids the O(n) or O(m) terms when restoring the SV-LCOV and eliminates the projection
in all rows of singular vectors. Despite the time complexity of the query increases from O(k) to
O(k2), this trade-off remains acceptable considering the optimizations mentioned above.

For updates with one coarse granularity (i.e. larger s), the proposed method of approximating the
augmented space with GKL or RPI in the SV-LCOV space eliminates the squared term of s in the
time complexity, making the proposed algorithm also applicable to coarse granularity update.

4 NUMERICAL EXPERIMENT

In this section, we conduct experimental evaluations of the update process for the truncated SVD on
sparse matrices. Subsequently, we assess the performance of the proposed method by applying it to
two downstream tasks: (1) link prediction, where we utilize node representations learned from an
evolving adjacency matrix, and (2) collaborative filtering, where we utilize user/item representations
learned from an evolving user-item matrix.

4.1 EXPERIMENTAL DESCRIPTION

Baselines. We evaluate the proposed algorithm and its variants against existing methods, includ-
ing Zha & Simon (1999), Vecharynski & Saad (2014) and Yamazaki et al. (2015). Throughout
the experiments, we set l, the spatial dimension of the approximation, to 10 based on previous set-
tings (Vecharynski & Saad, 2014). The required number of iterations for the RPI, denoted by t, is
set to 3. In the methods of Vecharynski & Saad (2014) and Yamazaki et al. (2015), there may be
differences in running time between 1) directly constructing the augmented matrix, and 2) accessing
the matrix-vector multiplication as needed without directly constructing the augmented matrix. We
conducted tests under both implementations and considered the minimum value as the running time.

Tasks and Settings. For the adjacency matrix, we initialize the SVD with the first 50% of the rows
and columns, and for the user-item matrix, we initialize the SVD with the first 50% of the columns.

The experiment involves ϕ batch updates, adding n/ϕ rows and columns each time for a 2n-sized
adjacency matrix. For a user-item matrix with 2n columns, n/ϕ columns are added per update.

• Link Prediction aims at predicting whether there is a link between a given node pair. Specifically,
each node’s representation is obtained by a truncated SVD of the adjacency matrix. During the
inference stage, we first query the representation obtained by the truncated SVD of the node pair

7



Published as a conference paper at ICLR 2024

Figure 1: Computational efficiency of adjacency matrix when k is 16, 32, 64, 128, 256

Figure 2: Computational efficiency of adjacency matrix when ϕ is 101, 102, 103, 104

(i, j). A score is then performed, representing the inner product between pairs of nodes

U [i]⊤ΣV [j]

to make predictions. Maximum value in both directions is taken for undirected graphs. We sort
the scores in the test set and label the edges between node pairs with high scores as positive ones.
Based on previous research, we create the training set G′ by randomly removing 30% of the edges
from the original graph G. The node pairs connected by the eliminated edges are then chosen,
together with an equal number of unconnected node pairs from G, to create the testing set Etest.

• Collaborative Filtering in recommender systems is a technique using a small sample of user
preferences to predict likes and dislikes for a wide range of products. In this paper, we focus on
predicting the values of the normalized user-item matrix.
In this task, a truncated SVD is used to learn the representation for each user and item. And the
value is predicted by the inner product between the representation of i-th user and j-th item with

U [i]⊤ΣV [j]

The matrix is normalized by subtracting the average value of each item. Values in the matrix are
initially divided into the training and testing set with a ratio of 8 : 2.

Datasets. The link prediction experiments are conducted on three publicly available graph datasets,
namely Slashdot (Leskovec et al., 2009) with 82, 168 nodes and 870, 161 edges, Flickr (Tang &
Liu, 2009) with 80, 513 nodes and 11, 799, 764 edges, and Epinions (Richardson et al., 2003) with
75, 879 nodes and 1, 017, 674 edges. The social network consists of nodes representing users, and
edges indicating social relationships between them. In our setup, all graphs are undirected.

For the collaborative filtering task, we use data from MovieLens (Harper & Konstan, 2015). The
MovieLens25M dataset contains more than 2, 500, 000 ratings for 62, 423 movies. According to the
selection mechanism of the dataset, all selected users rated at least 20 movies, ensuring the dataset’s
validity and a moderate level of density. All ratings in the dataset are integers ranging from 1 to 5.

4.2 EFFICIENCY STUDY

To study the efficiency of the proposed algorithm, we evaluate the proposed method and our opti-
mized GKL and RPI methods in the context of link prediction and collaborative filtering tasks.

Experiments are conducted on the undirected graphs of Slashdot (Leskovec et al., 2009),
Flickr (Tang & Liu, 2009), and Epinions (Richardson et al., 2003) to investigate link prediction.
The obtained results are presented in Table 2, Fig. 1 and Fig. 2. Our examination metrics for the
Efficiency section include runtime and Average Precision (AP) which is the percentage of correctly
predicted edges in the predicted categories to the total number of predicted edges. Besides, we
report the Frobenius norm between the UkΣkV

⊤
k and the train matrix. The results demonstrate

8



Published as a conference paper at ICLR 2024

Table 2: Experimental results on adjacency matrix

Slashdot Flickr Epinions
Method Norm AP Norm AP Norm AP

Zha & Simon (1999) 792.11 93.40% 2079.23 95.16% 1370.26 95.62%
Vecharynski & Saad (2014) 792.01 93.56% 2079.63 95.11% 1370.64 95.70%

Yamazaki et al. (2015) 792.11 93.52% 2079.28 95.14% 1370.29 95.61%

ours 792.11 93.41% 2079.23 95.16% 1370.26 95.62%
ours-GKL 792.01 93.56% 2079.63 95.11% 1370.64 95.70%
ours-RPI 792.11 93.50% 2079.28 95.14% 1370.29 95.61%

Table 3: Experimental results of user-item matrix

Batch Update Streaming Update
Method Runtime MSE Runtime MSE

k=16

Zha & Simon (1999) 192s 0.8616 626s 0.8616
Vecharynski & Saad (2014) 323s 0.8646 2529s 0.8647

Yamazaki et al. (2015) 278s 0.8618 352s 0.8619
ours 23s 0.8616 35s 0.8616

ours-GKL 18s 0.8646 48s 0.8647
ours-RPI 45s 0.8618 43s 0.8619

k=64

Zha & Simon (1999) 343s 0.8526 2410s 0.8527
Vecharynski & Saad (2014) 124s 0.8572 3786s 0.8568

Yamazaki et al. (2015) 313s 0.8527 758s 0.8528
ours 49s 0.8526 135s 0.8527

ours-GKL 45s 0.8572 147s 0.8568
ours-RPI 98s 0.8527 141s 0.8528

that across multiple datasets, the proposed method and its variants have demonstrated significant
increases in efficiency without compromising AP, reducing time consumption by more than 85%.

Table 3 demonstrates the results of four experiments conducted for the collaborative filtering task:
batch update(ϕ = 2000) and streaming update(ϕ = #entries) with k = 16 and k = 64. Our
evaluation metrics include runtime and mean squared error (MSE). The results show that our method
significantly reduces runtime while maintaining the comparable accuracy. It is difficult for existing
methods to update large and sparse datasets, especially streaming updates, making real-time updates
challenging. The methodology employed in our study effectively decreases the runtime by a factor
of 10 or more.

4.3 VARYING k AND ϕ

We conduct link prediction experiments on three datasets for k and ϕ, aiming to explore the selection
of variants and approaches in various scenarios. The results in Fig. 1 show that our optimized
methods are significantly faster than the original ones for different choices of k. The performance
of all methods slows as k increases, which is consistent with the asymptotic complexity in Table 1.

We experimentally evaluate the performance of each method for different batch sizes ϕ. As shown
in Fig. 2, our methods (ours-GKL and ours-RPI) outperform others when a large number of entries
are updated simultaneously. Experimental results show that the efficiency of approximating the
augmented space improves significantly when s is larger. Therefore, choosing the proposed variants
(GKL or RPI) for larger s is recommended.

5 CONCLUSION

In conclusion, we introduce a novel algorithm along with two variants for updating truncated SVDs
with sparse matrices. Numerical experiments show a substantial speed boost of our method com-
pared to previous approaches, while maintaining the comparable accuracy.

9



Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENT

This work is supported by Zhejiang NSF (LR22F020005).

REFERENCES

Sami Abu-El-Haija, Hesham Mostafa, Marcel Nassar, Valentino Crespi, Greg Ver Steeg, and Aram
Galstyan. Implicit svd for graph representation learning. Advances in Neural Information Pro-
cessing Systems, 34:8419–8431, 2021.

Matthew Brand. Fast low-rank modifications of the thin singular value decomposition. Linear
algebra and its applications, 415(1):20–30, 2006.

Xuheng Cai, Chao Huang, Lianghao Xia, and Xubin Ren. Lightgcl: Simple yet effective graph
contrastive learning for recommendation. In The Eleventh International Conference on Learning
Representations, 2022.

Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. Performance of recommender algorithms on
top-n recommendation tasks. In Proceedings of the fourth ACM conference on Recommender
systems, pp. 39–46, 2010.

Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and Richard Harshman.
Indexing by latent semantic analysis. Journal of the American society for information science, 41
(6):391–407, 1990.

Haoran Deng, Yang Yang, Jiahe Li, Haoyang Cai, Shiliang Pu, and Weihao Jiang. Accelerating
dynamic network embedding with billions of parameter updates to milliseconds. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 414–425,
2023.

Nan Du, Yichen Wang, Niao He, Jimeng Sun, and Le Song. Time-sensitive recommendation from
recurrent user activities. Advances in neural information processing systems, 28, 2015.

Gene Golub and William Kahan. Calculating the singular values and pseudo-inverse of a matrix.
Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis, 2
(2):205–224, 1965.

Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review, 53
(2):217–288, 2011.

F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context. ACM
Transactions on Interactive Intelligent Systems (TiiS), 5(4):19:1–19:19, 2015. doi: 10.1145/
2827872.

Vasileios Kalantzis, Georgios Kollias, Shashanka Ubaru, Athanasios N Nikolakopoulos, Lior
Horesh, and Kenneth Clarkson. Projection techniques to update the truncated svd of evolving
matrices with applications. In International Conference on Machine Learning, pp. 5236–5246.
PMLR, 2021.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender
systems. Computer, 42(8):30–37, 2009.

J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney. Community structure in large networks:
Natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics, 6(1):
29–123, 2009.

Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factorization. Advances
in neural information processing systems, 27, 2014.

Cameron Musco and Christopher Musco. Randomized block krylov methods for stronger and faster
approximate singular value decomposition. Advances in neural information processing systems,
28, 2015.

10



Published as a conference paper at ICLR 2024

Athanasios N Nikolakopoulos, Vassilis Kalantzis, Efstratios Gallopoulos, and John D Garofalakis.
Eigenrec: generalizing puresvd for effective and efficient top-n recommendations. Knowledge
and Information Systems, 58:59–81, 2019.

Dinesh Ramasamy and Upamanyu Madhow. Compressive spectral embedding: sidestepping the
svd. Advances in neural information processing systems, 28, 2015.

M. Richardson, R. Agrawal, and P. Domingos. Trust management for the semantic web. In ISWC,
2003.

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Incremental singular value decom-
position algorithms for highly scalable recommender systems. In Fifth international conference
on computer and information science, volume 1, pp. 27–8. Citeseer, 2002.

Lei Tang and Huan Liu. Relational learning via latent social dimensions. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 817–826,
2009.

Matthew Turk and Alex Pentland. Eigenfaces for recognition. Journal of cognitive neuroscience, 3
(1):71–86, 1991.

Shashanka Ubaru and Yousef Saad. Sampling and multilevel coarsening algorithms for fast matrix
approximations. Numerical Linear Algebra with Applications, 26(3):e2234, 2019.

Shashanka Ubaru, Arya Mazumdar, and Yousef Saad. Low rank approximation using error correct-
ing coding matrices. In International Conference on Machine Learning, pp. 702–710. PMLR,
2015.

Eugene Vecharynski and Yousef Saad. Fast updating algorithms for latent semantic indexing. SIAM
Journal on Matrix Analysis and Applications, 35(3):1105–1131, 2014.

Ichitaro Yamazaki, Jakub Kurzak, Piotr Luszczek, and Jack Dongarra. Randomized algorithms to
update partial singular value decomposition on a hybrid cpu/gpu cluster. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis,
pp. 1–12, 2015.

Hongyuan Zha and Horst D Simon. On updating problems in latent semantic indexing. SIAM
Journal on Scientific Computing, 21(2):782–791, 1999.

Ziwei Zhang, Peng Cui, Jian Pei, Xiao Wang, and Wenwu Zhu. Timers: Error-bounded svd restart on
dynamic networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32,
2018.

Dingyuan Zhu, Peng Cui, Ziwei Zhang, Jian Pei, and Wenwu Zhu. High-order proximity preserved
embedding for dynamic networks. IEEE Transactions on Knowledge and Data Engineering, 30
(11):2134–2144, 2018.

11



Published as a conference paper at ICLR 2024

A REPRODUCIBILITY

We released the implement of all the algorithms involved in the experiment as a python package.
The code is available at: https://github.com/zjunet/IncSVD. We also make public our experimental
code, which includes python implementations of all methods involved in the experiment, as well as
the datasets. The code is available at https://github.com/HaoranDeng/IncSVDforICLR2024.

B NOTATIONS

Frequently used notations throughout the paper are summarized in Table 4.

Table 4: Frequently used notations

Notation Description
A The data matrix
Ec The update matrix (new columns)
Er The update matrix (new rows)
Dm,Em The update matrix (low rank update of weight)
I The identity matrix
U The left singular vectors
Σ The singular values
V The right singular vectors
(I −UkUk)B The (left) augmented matrix
(I − VkVk)B The (right) augmented matrix
m,n The number of rows and columns of data matrix
k The rank of truncated SVD
s The rank of update matrix
l The rank of approximate augmented space
t The number of Random Power Iteration performed

Xk A matrix with rank k
X⊤ The transpose of matrix X

X̃k A rank-k approximation of X
X The updated matrix of X
∥x∥ l2-norm of x
⟨x1,x2⟩ Dot product bewteen x1,x2

SVDk(X) A rank-k truncated SVD of X

C OMITTED PROOFS

Proof of Lemma 2

Proof. We prove each of the three operations as follows.

• Scalar multiplication. It takes O(nnz(b)) time to get αb and O(k) time to get αc, respectively.
Therefore the overall time complexity for scalar multiplication is O(nnz(b) + k).

• Addition. It takes O(nnz(b1)+nnz(b2)) = O(nnz(b1+b2)) time to get b1+b2 and O(k) time
to get c1 + c2, respectively. Therefore the overall time complexity for addition is O(nnz(b1 +
b2) + k).

• Inner product. It takes O(nnz(b1) + nnz(b2)) = O(nnz(b1 + b2)) time to get ⟨b1, b2⟩ and
O(k) time to get ⟨c1, c2⟩, respectively. Therefore the overall time complexity for inner product is
O(nnz(b1 + b2) + k).

12

https://github.com/zjunet/IncSVD
https://github.com/HaoranDeng/IncSVDforICLR2024


Published as a conference paper at ICLR 2024

Proof of Lemma 3

Proof. Each of the three operations of SV-LCOV can correspond to the original space as follows.

• Scalar multiplication.

α(b, c)Uk
= (αb, αc)Uk

= (αb)−Uk(U
⊤
k αb) = α(I −UkU

⊤
k )b (8)

• Addition.
(b1, c1)Uk

+ (b2, c2)Uk
= (b1 + b2, c1 + c2)Uk

= (b1 + b2)−UkU
⊤
k (c1 + c2)

= b1 −UkU
⊤
k c1 + b2 −UkU

⊤
k c2

= (I −UkU
⊤
k )b1 + (I −UkU

⊤
k )b2

(9)

• Inner product.

⟨(b1, c1)Uk
, (b2, c2)Uk

⟩ = ⟨b1, b2⟩ − ⟨c1, c2⟩
= b⊤1 b2 − c⊤1 c2

= b⊤1 b2 − b⊤1 UkU
⊤
k b2

= b⊤1 b2 − 2b⊤1 UkU
⊤
k b2 + b⊤1 UkU

⊤
k b2

= b⊤1 b2 − 2b⊤1 UkU
⊤
k b2 + b⊤1 UkU

⊤
k UkU

⊤
k b2

= (b⊤1 − b⊤1 UkU
⊤
k )(b2 −UkU

⊤
k b2)

= ((I −UkU
⊤
k )b1)

⊤((I −UkU
⊤
k )b2)

= ⟨(I −UkU
⊤
k )b1, (I −UkU

⊤
k )b2⟩

(10)

Proof of Lemma 4

Proof. An orthogonal basis can be obtained by Algorithm 2, and we next analyze the time complex-
ity of Algorithm 2.

Because the number of non-zero entries of any linear combination of a set of sparse vectors
{b1, b2, ..., bk} with size k is at most

∑k
i=1 nnz(bi), the number of non-zero entries of the sparse

vector (b) in each SV-LCOV during the process of Algorithm 2 are at most nnz(
∑k

i=1 bi).

There are a total of O(s2) projections and subtractions of SV-LCOV in Algorithm 2, and by Lemma
2, the overall time complexity is O((nnz(

∑k
i=1 bi) + k)s2).

Proof of Theorem 1

Proof. The output of proposed method is theoretically equivalent to the output of Zha & Simon
(1999), and the detailed time complexity analysis is given in Appendix F.

13



Published as a conference paper at ICLR 2024

D APPROXIMATING THE AUGMENTED SPACE

D.1 APPROXIMATING THE AUGMENTED SPACE VIA GOLUB-KAHAN-LANCZOS PROCESS

Algorithm 5: GKL
Input: E ∈ Rm×s,Uk ∈ Rm×k, l ∈ N+

Output: Q ∈ Rn×l,P ∈ Rs×l

1 Z ← (I −UkU
⊤
k )E;

2 Choose p1 ∈ Rs, ∥p1∥ = 1. Set β0 = 0;
3 for i = 1, ..., l do
4 qi ← Zpi − βi−1qi−1;
5 αi ← ∥qi∥;
6 qi ← qi/αi;
7 pi+1 ← Z⊤qi − αipi;
8 Orthogonalze pi+1 against [p1, ...,pi];
9 βi ← ∥pi+1∥;

10 pi+1 = pi+1/βi;
11 end
12 Pl+1 = [p1, ...,pl+1];
13 H = diag{α1, ..., αl}+ superdiag{β1, ..., βl};
14 P ← Pl+1H

⊤;
15 return Q = [q1, ..., ql],P

Algorithm 6: GKL with SV-LCOV
Input: E ∈ Rm×s,Uk ∈ Rm×k, l ∈ N+

Output: B ∈ Rn×l,C ∈ Rs×l,P ∈ Rs×l

1 B ← E, C ← U⊤
k E;

2 Choose p1 ∈ Rs, ∥p1∥ = 1. Set β0 = 0;
3 for i = 1, ..., l do
4 b′i ← (

∑
t pi[t] · bt)− βi−1b

′
i−1;

5 c′i ← (
∑

t pi[t] · ct)− βi−1c
′
i−1;

6 αi ←
√
⟨b′i, b′i⟩ − ⟨c′ic′i⟩;

7 b′i ← b′i/α;
8 c′i ← c′i/α;
9 pi+1 ← B⊤b′i −C⊤c′i − αipi;

10 Orthogonalze pi+1 against [p1, ...,pi];
11 βi ← ∥pi+1∥;
12 pi+1 = pi+1/βi;
13 end
14 Pl+1 = [p1, ...,pl+1];
15 H = diag{α1, ..., αl}+ superdiag{β1, ..., βl};
16 P ← Pl+1H

⊤;
17 return Q = (B′,C′),P

A step-by-step description. Specifically, the Zpi in Line 4 of Algorithm 5 can be viewed as a
linear combination of SV-LCOV with Line 4 and Line 5 in Algorithm 6. The l2 norm of qi in Line
5 of Algorithm 5 is the length of a SV-LCOV and can be transformed into the inner product in Line
6 of Algorithm 6. Line 6 of Algorithm 5 is a scalar multiplication corresponding to Line 7 and Line
8 of Algorithm 6. And the Z⊤qi in Line 7 of Algorithm 5 can be recongnized as the inner product
between SV-LCOV demonstarted in Line 9 of Algorithm 6.

Complexity analysis of Algorithm 6. Line 4, 5 run in O((nnz(E) + k)sl) time. Line 6 runs in
O(nnz(E + k)l) time. Line 7, 8 run in O((nnz(E) + k)l) time. Line 9 runs in O(nnz(E + k)sl)
time. Line 10 runs in O(sl2) time. Line 11, 12 run in O(sl) time. Line 14, 15, 16 run in O(sl2)
time.

The overall time complexity of Algorithm 6 is O(nnz(E + k)sl) time.

D.2 APPROXIMATING THE AUGMENTED SPACE VIA RANDOM POWER ITERATION PROCESS

Algorithm 7: RPI
Input: E ∈ Rm×s,Uk ∈ Rm×k, l, t ∈ N+

Output: Q ∈ Rn×l,P ∈ Rs×l

1 Z ← (I −UkU
⊤
k )E;

2 Choose P ∈ Rs×l with random unitary columns;
3 for i = 1, ..., t do
4 P ,R← QR(P );
5 Q← ZP ;
6 Q,R← QR(Q);
7 P ← Z⊤Q;
8 end
9 return Q,P

Algorithm 8: RPI with SV-LCOV
Input: E ∈ Rm×s,Uk ∈ Rm×k, l, t ∈ N+

Output: Q ∈ Rn×l,P ∈ Rs×l

1 B ← E, C ← U⊤
k E;

2 Choose P ∈ Rs×l with random unitary columns;
3 for i = 1, ..., t do
4 B′,C′ ← BP ,CP ;
5 B′,C′,R← QR with Algorithm 2;
6 P ,R← QR(P );
7 P ← B⊤B′ −C⊤C′;
8 end
9 return Q = (B′,C′),P

Complexity analysis of Algorithm 8. Line 1 runs in O(nnz(E)k2) time. Line 4 runs in
O((nnz(E) + k)slt) time. Line 5 runs in O(nnz(E) + k)l2t) time. Line 6 runs in O(sl2t)

14



Published as a conference paper at ICLR 2024

time. Line 7 runs in O((nnz(E) + k)slt) time. The overall time complexity of Algorithm 8 is
O((nnz(E) + k)(sl + l2)t+ nnz(E)k2).

D.3 THE PROPOSED UPDATING TRUNCATED SVD WITH APPROXIMATE AUGMENTED
MATRIX

Algorithm 9: Add columns with approxi-
mated augmented space
Input: Uk(U

′,U ′′),Σk,Vk(V
′,V ′′),E

1 Turn (I −UkU
⊤
k )E into SV-LCOV and get

Q(B,C),P with Algorithm 6 or 8;

2 Fk,Θk,Gk ← SVDk(

[
Σk U⊤

k E
P⊤

]
);

3 U ′′ ← U ′′(Fk[: k]−CFk[k :]);
4 U ′ ← U ′ +BFk[k :]U ′′−1;
5 Σk ← Θk;
6 V ′′ ← V ′′Gk[: k];
7 Append new columns G[k :]V ′′−1 to V ′;

Algorithm 10: Update weights with approx-
imated augmented space
Input: Uk(U

′,U ′′),Σk,Vk(V
′,V ′′),D,E

1 Turn (I −UkU
⊤
k )D into SV-LCOV and get

QD(BD,CD),PD with Algorithm 6 or 8;
2 Turn (I − VkV

⊤
k )E into SV-LCOV and get

QE(BE ,CE),PE with Algorithm 6 or 8;
3 Fk,Σk,Gk ←

SVDk(

[
Σk 0
0 0

]
+

[
U⊤

k D
P⊤

D

] [
V ⊤

k E
P⊤

E

]⊤

) ;

4 U ′′ ← U ′′(Fk[: k]−CDFk[k :]);
5 U ′ ← U ′ +BDFk[k :]U ′′−1;
6 Σk ← Θk;
7 V ′′ ← V ′′(Gk[: k]−CEGk[k :]);
8 V ′ ← V ′ +BEGk[k :]U ′′−1;

15



Published as a conference paper at ICLR 2024

E EXPERIMENTS

E.1 RUNTIME OF EACH STEP

We present the runtime analysis of each component in the experiments, specifically focusing on the
verification of ϕ using the Slashdot datasets. Since all the baselines, as well as the proposed method,
can be conceptualized as a three-step algorithm outlined in Section 2.1, we provide an illustration
of the runtime for each step. Specifically, we break down the entire algorithm into three distinct
steps: the stage before the execution of the compact SVD, the actual execution of the compact SVD,
and the segment after the execution of the compact SVD. The experimental results are depicted in
Figure 3.

Figure 3: Runtime of each step on the Slashdot dataset.

Compared to the original methods, the proposed methods take approximately the same amount of
time to execute the compact SVD. This similarity arises because both the proposed and original
methods involve decomposing a matrix of the same shape. Furthermore, as the value of ϕ increases
and s decreases, the proportion of total time consumed by step-2 (compact SVD) increases. This
trend suggests a more significant improvement in efficiency for step-1 and step-3 of the algorithm.

The proposed method mainly focuses on time complexity in step-1 and step-3, respectively bene-
fiting from the structure of SV-LCOV described in Section 3.1 and the extended decomposition in
Section 3.2. The optimization in the first step is more pronounced when ϕ is larger (i.e., when s is
smaller). This is due to the fact that in the SV-LCOV framework, the sparse vectors have fewer non-
zero rows when s is smaller. This reduction in non-zero rows is a consequence of fewer columns

16



Published as a conference paper at ICLR 2024

in the matrix E, resulting in more significant efficiency improvements through sparse addition and
subtraction operations.

Furthermore, when ϕ is smaller and s is larger, the utilization of the proposed variant method, which
involves approximating the basis of the augmented space instead of obtaining the exact basis, tends
to yield greater efficiency.

E.2 EXPERIMENTS ON SYNTHETIC MATRICES WITH DIFFERENT SPARSITY

We conduct experiments using synthetic matrices with varying sparsity levels (i.e., varying the num-
ber of non-zero entries) to investigate the influence of sparsity on the efficiency of updating the SVD.
Specifically, we first generate several random sparse matrices with a fixed size of 100,000× 100,000.
The number of non-zero elements in these matrices ranges from 1,000,000 to 1,000,000,000 (i.e.,
density from 0.01% to 10%). We initialize a truncated SVD by utilizing a matrix comprised of
the initial 50% of the columns. Subsequently, the remaining 50% of the columns are incrementally
inserted into the matrix in ϕ batches, with each batch containing an equal number of columns. The
number of columns added in each batch is denoted as s. The experimental results are shown in
Figure 4.

Figure 4: Computational efficiency on synthetic matrices

Experimental results under various s values show that: 1) The proposed method exhibits greater
efficiency improvement when the matrix is relatively sparse. 2) When the rank of the update matrix
is higher, the variant using Lanczos vectors for space approximation achieves faster performance.

E.3 EFFECTIVENESS

We report the Frobenius norm beteween UkΣkV
⊤
k and original matrix in the Slashdot datasets and

MovieLen25M datasets in Table 5. Our proposed approach maintains a comparable precision to
baselines.

17



Published as a conference paper at ICLR 2024

Table 5: Frobenius norm w.r.t ϕ

Slashdot MovieLen25M
Method ϕ = 101 ϕ = 102 ϕ = 103 ϕ = 101 ϕ = 102 ϕ = 103

Zha & Simon (1999) 784.48 792.16 792.11 4043.86 4044.23 4044.40
Vecharynski & Saad (2014) 802.61 796.26 792.01 4073.41 4111.66 4050.53

Yamazaki et al. (2015) 796.97 795.94 792.11 4098.87 4098.62 4047.87

ours 784.48 792.16 792.11 4043.86 4044.23 4044.40
ours-GKL 802.85 795.65 792.01 4076.61 4110.71 4050.36
ours-RPI 796.65 795.19 792.11 4099.11 4099.09 4047.20

F TIME COMPLEXITY ANALYSIS

A line-by-line analysis of time complexity for Algorithm 3, 4, 9, 10 is given below. Note that
due to the extended decomposition, the time complexity of converting the augmented matrix into
SV-LCOV is O(nnz(E)k2) instead of O(nnz(E)k).

Table 6: Asymptotic complexity of Algorithm 3

Asymptotic complexity (big-O notation is omitted)

Line 1 nnz(E)(k2 + s2)
Line 2 nnz(E)k2 + (k + s)3

Line 3 k3 + k2s
Line 4 nnz(E)(ks+ k2) + k3

Line 5 k
Line 6 k3

Line 7 k2s+ k3

Overall nnz(E)(k + s)2 + (k + s)3

Table 7: Asymptotic complexity of Algorithm 4

Asymptotic complexity (big-O notation is omitted)

Line 1 nnz(D)(k2 + s2)
Line 2 nnz(E)(k2 + s2)
Line 3 nnz(D +E)k2 + (k + s)3

Line 4 k3 + k2s
Line 5 nnz(D)(ks+ k2) + k3

Line 6 k
Line 7 k3 + k2s
Line 8 nnz(E)(ks+ k2) + k3

Overall nnz(D +E)(k + s)2 + (k + s)3

18



Published as a conference paper at ICLR 2024

Table 8: Asymptotic complexity of Algorithm 9

Asymptotic complexity (big-O notation is omitted)

Line 1 (GKL) nnz(E)k2 + nnz(E + k)sl
Line 1 (RPI) (nnz(E) + k)(sl + l2)t+ nnz(E)k2

Line 2 (k + s)(k + l)2

Line 3 k3 + k2l
Line 4 nnz(E)(kl + k2) + k3

Line 5 k
Line 6 k3

Line 7 k2l + k3

Overall (GKL) nnz(E)(k2 + sl + kl) + (k + s)(k + l)2

Overall (RPI) nnz(E)(sl + l2)t+ nnz(E)k2 + (k + s)(k + l)2

Table 9: Asymptotic complexity of Algorithm 10

Asymptotic complexity (big-O notation is omitted)

Line 1 (GKL) nnz(D)k2 + nnz(D + k)sl
Line 1 (RPI) (nnz(D) + k)(sl + l2)t+ nnz(D)k2

Line 2 (GKL) nnz(E)k2 + nnz(E + k)sl
Line 2 (RPI) (nnz(E) + k)(sl + l2)t+ nnz(E)k2

Line 3 nnz(D +E)k2 + (k + l)3

Line 4 k3 + k2l
Line 5 nnz(D)(kl + k2) + k3

Line 6 k
Line 7 k3 + k2l
Line 8 nnz(E)(kl + k2) + k3

Overall (GKL) nnz(D +E)(k2 + sl + kl) + (k + s)(k + l)2

Overall (RPI) nnz(D +E)(sl + l2)t+ nnz(D +E)k2 + (k + s)(k + l)2

G ALGORITHM OF ADDING ROWS

Algorithm 11: Add rows
Input: Uk(U

′,U ′′),Σk,Vk(V
′,V ′′),Er

1 Turn (I − VkV
⊤
k )Er

⊤ into SV-LCOV and get Q(B,C),R with Algorithm 2;

2 Fk,Θk,Gk ← SVDk(

[
Σk

E⊤
r Vk R⊤

]
);

3 U ′′ ← U ′′Fk[: k];
4 Append new rows F [k :]U ′′−1 to U ′;
5 Σk ← Θk;
6 V ′′ ← V ′′(Gk[: k]−CGk[k :]);
7 V ′ ← V ′ +BGk[k :]V ′′−1;

19


	Introduction
	Background and Notations
	Related Work

	Methodology
	Faster Orthogonalization of Augmented Matrix
	An Extended Decomposition to Reducing Complexity
	Main Result
	Time complexity comparing to previous methods

	Numerical Experiment
	Experimental Description
	Efficiency Study
	Varying k and 

	Conclusion
	Reproducibility
	Notations
	Omitted Proofs
	Approximating the Augmented Space
	Approximating the Augmented Space via Golub-Kahan-Lanczos Process
	Approximating the Augmented Space via Random Power Iteration Process
	The Proposed Updating Truncated SVD with Approximate Augmented Matrix

	Experiments
	Runtime of Each Step
	Experiments on Synthetic Matrices with Different Sparsity
	Effectiveness

	Time Complexity Analysis
	Algorithm of adding rows

