
Supplementary Material
“Survival Permanental Processes for Survival Analysis

with Time-Varying Covariates”

Anonymous Author(s)
Affiliation
Address
email

S1 Derivation of MAP Estimator1

We detail the derivation of the MAP estimator (12). The functional derivative of S(x
(
y), x(y)

)
2

should be zero on the MAP estimator x̂(y):3

δS
(
x̂(y), x̂(y)

)
=

∫
Y

[
δS

δx̂(y)
δx(y) +

δS

δx̂(y)
δx(y)

]
dy +O((δx)2)

≃
∫
Y

[
2

J∑
j=1

∆j x̂(y)δ(y − yj)−
N∑

n=1

2

x̂(y)
δ(y − ỹn) +

1

2
x̂(y)

]
δxdy

+

∫
Y

1

2
x̂(y)δxdy

=

∫
Y

[
2

J∑
j=1

∆j x̂(y)δ(y − yj)−
N∑

n=1

2

x̂(y)
δ(y − ỹn) + x̂(y)

]
δxdy = 0,

where the following relation was used,4 ∫
Y
x̂(y)δxdy =

∫
Y
x̂(y)

∫
Y
k∗(y,y′)δx(y′)dy′dy

=

∫
Y
dy′δx(y′)

∫
Y
k∗(y,y′)x̂(y)dy

=

∫
Y
x̂(y′)δxdy′. ∵) k∗(y,y′) = k∗(y′,y)

Thus the following equation is derived,5

x̂(y) + 2

J∑
j=1

∆j x̂(yj)δ(y − yj) =

N∑
n=1

2

x̂(ỹn)
δ(y − ỹn), y ∈ Y . (S1)

By applying operator K to (S1), we obtain a linear integral equation that derives the MAP estimator6

x̂(y) as follows,7

x̂(y) + 2

J∑
j=1

∆j x̂(yj)k(y,yj) = 2

N∑
n=1

k(y, ỹn)x̂(ỹn)
−1, y ∈ Y .

The linearity of the integral equation permits a representation of the form8

x̂(y) = 2

N∑
n=1

h(y, ỹn)x̂(ỹn)
−1,

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

where h(y,y′) is a positive semi-definite kernel that solves the following equation,9

h(y,y′) + 2

J∑
j=1

k(y,yj)∆jh(yj ,y
′) = k(y,y′).

Note that the derivations follow Kim [2].10

S2 Model Configuration11

S2.1 Synthetic Data12

Survival Permanental Process (SurvPP)13

For all the experiments in Section 4, we set the number of features for Random feature map [4] (M),14

the learning parameter (lr), and the stop condition (G) for Adam [3] as follows:15

M = 500, lr = 0.05, G < 10−5,

We applied to SurvPP a multiplicative Gaussian kernel16

k(y,y′) =

2∏
d=1

e−(θ(yd−y′
d))

2

, y = (y1, y2),

where the hyper-parameter θ was optimized for each data by maximizing the marginal likelihood17

through grid search. In the experiments with synthetic data, we selected a set of nine values for θ18

for the grid points,19

θ ∈ {0.1, 0.2, 0.5, 0.7, 1.0, 2.0, 5.0, 7.0, 10.0}.

We implemented SurvPP by using TensorFlow-2.10. A MacBook Pro with 12-core CPU (Apple M220

Max) was used, where GPU was set as off (tf.device(‘/cpu:0’)) for a fair comparison with the21

benchmarks.22

Cox Proportional Hazards Model (CoxPH)23

We implemented CoxPH through package survival.coxph in R-4.2.3 (LGPL-3) [5]. The calls in24

coxph to fit a model and compute a base hazard function were25

> cfit = coxph(Surv(Start, Stop, Event) ∼ cov1+ cov2, df)

> sfit = survfit(cfit, list(cov1 = 0, cov2 = 0)),

where df was the survival data in a counting process format.26

Generalized Boosted Model (GBM)27

We implemented GBM through package gbm3.gbmt (GPL) 1 in R-4.2.3. The call in gbmt to fit a28

model was29

> gfit = gbmt(Surv(Start, Stop, Event) ∼ cov1+ cov2, data = df,

distribution = gbm dist(“CoxPH”),

cv folds = 10, train params = params,

par details = gbmParallel(num threads = 12)),

where params represents the hyperparameter. We selected a set of nine hyperparameters for the grid30

search,31

num trees ∈ {500, 1000, 2000} × shrinkage ∈ {0.001, 0.005, 0.01},
and found one that minimized the cross validation error (gfit$valid.error), where num trees32

and shrinkage represent the number of trees and the shrinkage/learning rate, respectively.33

1https://rdrr.io/github/gbm-developers/gbm3/

2

Random Forest-based Model (RFM)34

We implemented RFM through package LTRCforests in R-4.2.3 (GPL) [6]. The call to fit a model35

was36

> rfit = ltrcrrf(Surv(Start, Stop, Event) ∼ cov1+ cov2, data = df,

id = ID, mtry = ceiling(10), ntree = 100).

S2.2 Real-world Data37

Survival Permanental Process (SurvPP)38

For the experiments in Section S4, we set the number of features for Random feature map [4] (M),39

the learning parameter (lr), and the stop condition (G) for Adam [3] as follows:40

M = 500, lr = 50, G < 10−5,

We applied to SurvPP a multiplicative Gaussian kernel41

k(y,y′) =

13∏
d=1

e−(θ(yd−y′
d))

2

, y = (y1, . . . , y13),

where the hyper-parameter θ was optimized for each data by maximizing the marginal likelihood42

through grid search. In the experiments with synthetic data, we selected a set of nine values for θ43

for the grid points,44

θ ∈ {0.1, 0.2, 0.5, 0.7, 1.0, 2.0, 5.0, 7.0, 10.0}.
Here, we normalized the 13 covariates of PBC data so that yd → 0.1(yd − mean[yd])/std[yd].45

As in the experiments on synthetic data, GPU was set as off (tf.device(‘/cpu:0’)) for a fair46

comparison with the benchmarks.47

Cox Proportional Hazards Model (CoxPH)48

We implemented CoxPH through package survival.coxph in R-4.2.3 (LGPL-3) [5]. The calls in49

coxph to fit a model and compute a base hazard function were50

> cfit = coxph(Surv(Start, Stop, Event) ∼ age+ edema+ alk.phos+ chol+ ast

+platelet+ spiders+ hepato+ ascites+ albumin+ bili+ protime, df)

> sfit = survfit(cfit, list(age = 0, edema = 0, alk.phos = 0, chol = 0, ast = 0,

platelet = 0, spiders = 0, hepato = 0, ascites = 0, albumin = 0,

bili = 0, protime = 0)),

where df was the survival data in a counting process format.51

Generalized Boosted Model (GBM)52

We implemented GBM through package gbm3.gbmt (GPL) 2 in R-4.2.3. The call in gbmt to fit a53

model was54

> gfit = gbmt(Surv(Start, Stop, Event) ∼ age+ edema+ alk.phos+ chol+ ast

+platelet+ spiders+ hepato+ ascites+ albumin+ bili

+protime, data = df,

distribution = gbm dist(“CoxPH”),

cv folds = 10, train params = params,

par details = gbmParallel(num threads = 12)),

where params represents the hyperparameter. We selected a set of nine hyperparameters for the grid55

search,56

num trees ∈ {500, 1000, 2000} × shrinkage ∈ {0.001, 0.005, 0.01},
and found one that minimized the cross validation error (gfit$valid.error), where num trees57

and shrinkage represent the number of trees and the shrinkage/learning rate, respectively.58

2https://rdrr.io/github/gbm-developers/gbm3/

3

CoxPH

SurvPP

GBM

Number of Observed Events N

C
P

U
[s

e
c
]

RFM

100

101

10-1

10-2

102

103

103 104 105

Figure S1: The CPU times demanded for estimating a hazard function regarding the number of
observed events. The error bars represent the standard deviations across 10 trials. The dashed line
represents a line of CPU ∝ N as reference. For GBM and SurvPP, the average cpu times over 9-
points grid search of the hyperparameter are displayed. The CPU times of GBM and RFM exceeded
103 seconds with N > 104, and the estimations were given up.

Random Forest-based Model (RFM)59

We implemented RFM through package LTRCforests in R-4.2.3 (GPL) [6]. The call to fit a model60

was61

> rfit = ltrcrrf(Surv(Start, Stop, Event) ∼ age+ edema+ alk.phos+ chol+ ast

+platelet+ spiders+ hepato+ ascites+ albumin+ bili

+protime, data = df, id = ID, stepFactor = 1.5).

S3 Experiment on Larger Data Sets62

To examine the computation scalability of the compared models regarding the number of observed63

events N , we created data sets with the user size U ∈ {103, 104, 5 · 104, 105} according to the64

nonlinear scenario (see Section 4.1),65

λnon(t) = h(t) exp
[
2− 5(y21(t) + y22(t))

]
, h(t) = 2 · t3/2,

which resulted in the data sets with N ∈ {818, 8082, 40660, 81066}. Here, we set Ju as 10 for66

the counting process format of data. For each dataset, we randomly split the U individuals into 1067

subgroups, repeated assigning 9 subgroups to training data, and conducted 10 trials of evaluations68

of the CPU times demanded for estimating a hazard function. Figure S1 displays the CPU times69

as function of N of training data. It shows that the computation of CoxPH scaled linearly with N70

clearly, while that of SurvPP seems to be a little more than linear. It is because that each iteration71

of gradient descent algorithm scaled linearly with N , but the number of iterations to meet a stop72

condition G < 10−5 increased moderately with N . Among the non-parametric approaches (SurvPP,73

GBM, and RFM), our SurvPP achieved the fastest computation, which was hundreds of times faster74

than the others regardless of the number of observed events N .75

S4 Experiment on Real-world Data76

We examined the validity of SurvPP against the benchmark models on real-world survival data set,77

Mayo Clinic Primary Biliary Cholangitis Data, provided by R package survival (LGPL-3) [5].78

312 patients with primary biliary cirrhosis (PBC) were enrolled in a randomized medical trial at79

the Mayo Clinic between 1974 and 1984 [1], where events were the time of death. In the data80

set, twelve time-varying covariates were measured at entry and at yearly intervals, which include81

age at entry (age), alkaline phosphotase (alk.phos), logarithm of serum albumin (albumin), pres-82

ence of ascites (ascites), aspartate aminotransferase (ast), logarithm of serum bilirubin (bili),83

serum cholesterol (chol), condition of edema (edema), presence of hepatomegaly or enlarged liver84

(hepato), platelet count (platelet), logarithm of prothrombin time (protime) and presence or85

absence of spiders (spiders). As with the experiments on synthetic data, we randomly split the86

4

A B

CoxPH SurvPPGBM

Evaluation Time Point

1 2 3 4

- 4

- 6

- 2

100

101

10-1

CPU [sec]TLL

RFM

AUC

CoxPH
GBM

RFM
SurvPP

103x

- 8
0.7

0.8

0.9

1.0

Evaluation Time Point

1 2 3 4 103x

Figure S2: Performances on the real-world dataset. (A) Box plot of TLL and AUC as functions of
evaluation time points: the higher, the better. (B) Box plot of CPU times demanded for estimating a
hazard function: the lower, the better.

312 individuals into10 subgroups, assigned one to test and the others to training data, and conducted87

10-fold cross evaluation of the predictive performances.88

Figure S2 displays the predictive performances on the real-world dataset, showing that all com-89

pared models achieved comparable performances at AUC, while SurvPP and CoxPH outperformed90

significantly at TLL against the other non-parametric models. We confirmed that among the non-91

parametric models, our SurvPP was the best on both the predictive accuracy and the computational92

time.93

References94

[1] E. Rolland Dickson, Patricia M. Grambsch, Thomas R. Fleming, Lloyd D. Fisher, and Alice95

Langworthy. Prognosis in primary biliary cirrhosis: Model for decision making. Hepatology,96

10(1):1–7, 1989.97

[2] Hideaki Kim. Fast Bayesian inference for Gaussian Cox processes via path integral formulation.98

In Advances in Neural Information Processing Systems 34, 2021.99

[3] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint100

arXiv:1412.6980, 2014.101

[4] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances102

in Neural Information Processing Systems 20, 2007.103

[5] Terry M. Therneau and Thomas Lumley. Package ‘survival’. R Top Doc, 128(10):28–33, 2015.104

[6] Weichi Yao, Halina Frydman, Denis Larocque, and Jeffrey S. Simonoff. Ensemble methods for105

survival data with time-varying covariates. arXiv preprint arXiv:2006.00567, 2020.106

5

