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Abstract
We challenge the dominant focus on neural scal-
ing laws and advocate for a paradigm shift toward
downscaling in the development of large language
models (LLMs). While scaling laws have pro-
vided critical insights into performance improve-
ments through increasing model and dataset size,
we emphasize the significant limitations of this ap-
proach, particularly in terms of computational in-
efficiency, environmental impact, and deployment
constraints. To address these challenges, we pro-
pose a holistic framework for downscaling LLMs
that seeks to maintain performance while dras-
tically reducing resource demands. This paper
outlines practical strategies for transitioning away
from traditional scaling paradigms, advocating
for a more sustainable, efficient, and accessible
approach to LLM development.

1. Introduction
The development of neural scaling laws has provided a foun-
dational framework for understanding the performance tra-
jectory of large language models (LLMs). These laws (Ka-
plan et al., 2020; Hoffmann et al., 2022) describe how model
performance improves predictably with increases in param-
eters, dataset size, and compute resources. Initially, scaling
laws seemed to offer a clear roadmap for the continuous and
predictable advancement of LLMs. However, as the field
has evolved — evidenced by the sharp rise in the number
of proposed scaling laws between 2020 and 2024, as shown
in Figure 1 — significant limitations and challenges have
become apparent. These emerging concerns cast doubt on
the long-term viability and effectiveness of scaling laws as
the primary strategy for advancing AI.

One of the central criticisms of neural scaling laws lies in
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Figure 1. The growth of the number of papers on scaling laws for
neural models over the past eight years.

their reliance on simplified power law relationships to pre-
dict model performance. While these laws capture broad
trends, they often fail to account for nuanced factors that
influence real-world outcomes. For instance, the assumption
that increasing dataset size or compute will indefinitely yield
proportional performance improvements ignores diminish-
ing returns observed in practice (Diaz & Madaio, 2024). As
models scale, the marginal gains from additional data and
compute tend to decrease, leading to inefficient resource
allocation (Muennighoff et al., 2023).

Another limitation of neural scaling laws is their emphasis
on uniform scaling across model size, data, and compute.
Jin et al. (2023) demonstrated that different abilities, such
as fact recall and in-context learning, degrade at different
rates under pruning or downsizing. This variability suggests
that scaling laws may not provide a one-size-fits-all solu-
tion and that alternative approaches are needed to address
diverse performance requirements. By focusing exclusively
on scaling, researchers risk missing opportunities to develop
more efficient and specialized models tailored to specific
applications.

Neural scaling laws also neglect the broader implications
of scaling on energy consumption and environmental sus-
tainability. The computational requirements for training
large-scale models are immense, resulting in significant car-
bon emissions (Faiz et al., 2024). Recent studies showed
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that the energy efficiency of compute-intensive tasks varies
based on factors such as hardware configuration, server lo-
cation, and training duration (Zhang et al., 2023). Despite
these insights, scaling laws do not incorporate considera-
tions for energy efficiency, leading to strategies that may be
technically effective but environmentally unsustainable.

As the limitations of neural scaling laws become more appar-
ent, the development of downscaling laws has emerged as a
critical area of focus. These laws aim to understand how to
reduce model size, dataset requirements, and compute usage
while preserving performance for specific tasks. Downscal-
ing laws are essential for promoting efficiency, sustainabil-
ity, and accessibility in AI research. In this position paper,
we enlighten on the importance of focused research on
downscaling laws and propose strategies for leveraging
the insights from neural scaling laws for downscaling
LLMs to efficient, environment-friendly and sustainable
foundational models. Smaller models guided by downscal-
ing laws can address resource constraints, enabling broader
participation in model development by reducing the finan-
cial and computational barriers. Additionally, these laws
can provide insights into optimizing task-specific perfor-
mance, ensuring that models can meet diverse application
requirements without excessive scaling.1

2. Neural Scaling Laws
Neural scaling laws outline how the performance of neu-
ral networks improves predictably with increases in model
size, data volume, and computational resources. These rela-
tionships typically follow power law patterns, providing a
framework for optimizing model development.

2.1. Scaling Laws of LLMs

The evolution of scaling laws for LLMs began with Kaplan
et al. (2020), which established power law relationships
(described in Equation 1) between model performance and
three key factors: model size, dataset size, and compute.
This study revealed that larger models are more sample-
efficient, suggesting that optimal compute efficiency can be
achieved by training very large models on relatively modest
data. Importantly, architectural variations like depth versus
width were found to have minimal impact. Subsequent re-
finements emerged with Hoffmann et al. (2022), known as
the Chinchilla law (described in Equation 2). This work ar-
gued against prioritizing model size alone and demonstrated
that balancing model size and training data is critical. For
instance, a 70B model trained on more data outperformed
larger models such as Gopher-280B, while using the same
compute budget. This insight was further reinforced by Tay

1The source code of our analysis can be found at https:
//github.com/LCS2-IIITD/Downscaling.

et al. (2023), affirming the superiority of vanilla Transformer
architectures over novel designs when scaled, explaining
the industry’s reliance on standard architectures.

Caballero et al. (2023) introduced the concept of Smoothly
Broken Neural Scaling Laws (BNSL), offering a more nu-
anced framework for understanding scaling behavior. BNSL
addressed phenomena like double descent and sharp ca-
pability transitions, which traditional scaling laws failed
to predict. This work highlighted the limitations of exist-
ing models in predicting performance at extreme scales,
broadening our understanding of scaling dynamics across
domains. In vocabulary scaling, Tao et al. (2024) discov-
ered power law relationship between vocabulary size and
model parameters. This work demonstrated that larger mod-
els requires proportionally larger vocabularies to optimize
performance, challenging existing practices.

Kaplan Scaling Law

L(N,D) =

[(
Nc

N

)αN
αD

+
Dc

D

]αD

(1)

where N denotes number of model parameters, D denotes
the amount of training data, and Nc, Dc, αN , αD are
fitting constants.

Chinchilla Scaling Law

L(N,D) =
A

Nα
+

B

Dβ
+ E (2)

where A, B, α, β, and E are fitting constants.

The key difference between the two scaling laws is that
Kaplan suggested that if the model increases 8×, the data
set must increase by 5×, whereas Chinchilla suggested
an equal scaling of N and D. Also, Chinchilla proposed
an irreducible term in the loss which doesn’t vanish on
increasing N and D.

2.2. Scaling Laws Beyond LLMs

Studies on scaling small language models have shown
promising results. Hu et al. (2024) demonstrated that
optimized training strategies could enable small models
(1.2B − 2.4B parameters) to rival larger counterparts
(7B − 13B parameters). Techniques like the Warmup-
Stable-Decay scheduler and extensive use of data (192× pa-
rameter size) improved efficiency and performance, paving
the way for deploying models effectively on edge devices.

Hernandez et al. (2021) investigated transfer learning, re-
vealing a power law relationship between pre-training and
fine-tuning. Their findings demonstrated that pre-training
significantly enhances the utility of smaller fine-tuning
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datasets. However, the phenomenon of “ossification” posed
challenges in adapting pre-trained weights, particularly in
high-data regimes. Complementary studies (Abnar et al.,
2021; Zhang et al., 2024a) highlighted that higher upstream
accuracy does not always translate to downstream perfor-
mance improvements. Notably, the FLP Method (Chen
et al., 2024c) merged as a critical advancement, enabling
accurate predictions of downstream performance for larger
models using smaller-scale data.

Sparse architectures, mainly Mixture of Experts (MoE) mod-
els, revolutionized scaling strategies. Clark et al. (2022)
highlighted the potential of sparsity in parameter utilization,
enabling larger capacities without proportional compute in-
creases. Advances in MoE granularity (Krajewski et al.,
2024) refined these models, achieving compute savings up
to 40× compared to dense Transformers. Subsequent stud-
ies (Yun et al., 2024) balanced expert quantity and inference
efficiency, providing a blueprint for optimizing training and
deployment.

Inference efficiency has become a focal point of scaling
research. Chen et al. (2024a) challenged simple scaling
assumptions, showing that sophisticated inference strate-
gies could enable smaller models to outperform larger ones.
Techniques like REBASE demonstrated this potential, with
Llemma-7B rivaling its 34B counterpart at half the com-
putational cost (Wu et al., 2025). Sardana et al. (2024)
revealed that smaller models trained longer could meet high
inference demands more efficiently. This paradigm shift
emphasizes balancing model scale, training duration, and
inference strategies to achieve cost-effective deployments.

2.3. Criticisms of Neural Scaling Laws

While scaling laws have gained significant popularity, re-
cent studies have highlighted key limitations and uncovered
opportunities to refine and extend these frameworks. Diaz &
Madaio (2024) critiqued the assumption that larger datasets
inherently lead to better model performance. The authors ar-
gued that this relationship breaks down when AI systems are
deployed to serve diverse human populations. As datasets
expand, they increasingly encompass distinct communities
with varying, and often conflicting, perspectives on what
constitutes a “good” AI system. Current evaluation metrics
overlook this diversity, relying on universal benchmarks that
may disadvantage certain groups. Villalobos et al. (2024)
explored the potential limits of scaling LLMs due to the
finite availability of public human-generated text data. It
provides a detailed analysis of current trends in the growth
of dataset size, the stock of available human-generated data,
and the implications for the continued scaling of LLMs.
The authors argued that not all human-generated text data
is of equal quality, and using low-quality data could hin-
der model performance. In their analysis, the authors also

included adjustments for data quality and multi-epoch train-
ing, revealing that careful filtering and deduplication could
enhance the utility of the data stock. However, even with
these strategies, they emphasized the need for more efficient
data utilization to mitigate the impending data bottleneck.
Sorscher et al. (2023) addressed the inefficiency of power
law scaling, where marginal performance gains require ex-
ponentially more data. The authors proposed data pruning
as a solution to achieve exponential improvements in model
performance relative to dataset size.

CO2eqoper =
∑
i

(Pi · effi · ni · ti) · PUE · c_inten

(3)

CO2eqemb =
∑
i

ti · areai · CPAi

lifetimei
(4)

CO2eq = CO2eqoper + CO2eqemb (5)

where CO2eqoper and CO2eqemb denote operational and
embodied carbon footprints, respectively; Pi, effi, ni,
ti, areai, CPAi, and lifetimei denote the peak power,
hardware efficiency, count, execution time, area, carbon
emitted per unit area and lifetime of hardware unit i, re-
spectively; PUE denotes power usage efficiency of the
specific data center; and c_inten denotes the carbon in-
tensity of the specific data center.

Proposition 2.1.

CO2eq(P,D) = (K1 +K2) ·N ·D (6)

where (K1 +K2) represents a compound constant that
encapsulates all hardware, data center, and efficiency
parameters. This shows that CO2 emissions scale linearly
with both (i) the number of model parameters (N), and
(ii) the amount of training data (D).

Computational Costs of Scaling Laws. LLMs require
significant computational resources for training, inference,
and storage, leading to substantial carbon emissions. These
emissions can be divided into operational costs, stemming
from energy usage during training and deployment, and
embodied costs, which result from the manufacturing of
hardware such as GPUs, TPUs, and storage devices. To
address the growing computational costs of neural scaling,
frameworks like LLMCarbon (Faiz et al., 2024) (See Ap-
pendix A for details) provide valuable tools for estimating
and optimizing carbon footprints. We describe the estimated
operational, embodied and total carbon footprint of an LLM
pre-training in Equations 3, 4 and 5, respectively.

Further simplification, as shown in Equation 6, reveals that
carbon footprints scale linearly with both LLM size and
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pre-training token size2. We empirically validate the scaling
laws of carbon cost for different model and pre-training data
sizes, as illustrated in Figures 2 and 3, respectively. While
Kaplan scaling law suggests a logarithmic scaling of test loss
with respect to model size (L ∼ N−0.08) and pre-training
token size (L ∼ D−0.1), carbon cost increases linearly with
both the factors. Moreover, both Kaplan and Chinchilla
scaling laws suggest that test loss L > max(N−α, D−β),
for some arbitrary constants, α and β. Therefore, the test
loss of an LLM is always irreducible, i.e., can not be brought
down below a theoretical bound, irrespective of the model
or pre-training data size.

By combining the Kaplan scaling law (Equation 1) with
our CO2 emission formula (Equation 6), we can establish
a direct relationship between model performance and envi-
ronmental impact: From Kaplan L(N) ∝ N−α; where L is
the loss and N is the number of parameters, with α ≈ 0.08 .
Solving for N in the Kaplan equation and substituting, we
can express N ∝ L−1/α. Therefore putting in Equation 6:

CO2eq ∝ L−1/α (7)

Recent work by Chen et al. (2025) has shown that down-
stream performance P can be modeled as:

P = w1 + w2 · L (8)

Where w1 and w2 are task-specific constants. This gives us:

CO2eq ∝ (P )−1/α (9)

Given that α ≈ 0.08, we can approximate:

P ∝ CO2eqα ≈ CO2eq0.08 (10)

This demonstrates that performance improvements scale
approximately with the 0.08 power of carbon emissions.
Put differently, to achieve linear improvements in perfor-
mance, carbon emissions must increase exponentially - a
10% improvement in performance would require approxi-
mately 1.112.5 = 329% more carbon emissions. Moreover,
as the model’s performance increases, improving it further
requires exponentially more computing.

3. Rise of Small and Efficient Language
Models

Several converging practical and technical factors have
driven the rise in popularity of Small Language Models
(SLMs), which are popular for their size, efficiency, and
ability to maintain competitive performance while offering
cost-effective and resource-efficient solutions. Studies indi-
cate that models like TinyLlama (Zhang et al., 2024b) (1.1B

2The proof is provided in Appendix B.
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Figure 2. Test loss decreases logarithmically with model size,
whereas the estimated training-time carbon emission increases
linearly.
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Figure 3. Test loss decreases logarithmically with training token
size, whereas the estimated training-time carbon emission in-
creases linearly.
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Figure 4. Number of open-sourced SLMs (size 100M -5B) devel-
oped over the years (statistics taken from Lu et al. (2024b)).

parameters), Mistral-7B (Jiang et al., 2023a), and Phi-4 (Ab-
din et al., 2024) (14B parameters) can rival larger models in
performance despite their more compact architectures (Lu
et al., 2024a).

Figure 4 highlights the sharp rise of SLM developments
between 2023 and 2024. The momentum behind SLMs
has been further accelerated by their practical advantages
in real-world applications. The ability to run these mod-
els on consumer hardware, from laptops to edge devices,
has made them particularly attractive for businesses and
developers who need to balance performance with resource
constraints. For instance, models like Gemini Nano (Team
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et al., 2024) have been specifically designed for mobile
devices. In contrast, others like Code Llama (7B) (Roz-
ière et al., 2024) have demonstrated that smaller models
can excel in specialized tasks like code generation. Addi-
tionally, the cost-effectiveness of training and deploying
SLMs, with their faster inference times and lower energy
consumption, has made them increasingly appealing in an
era where environmental impact and operational efficiency
are key considerations. The success of open-source SLMs
has also fostered a vibrant community of researchers and
developers, who continue to push the boundaries of what is
possible with smaller architectures. SLMs have emerged as
strong competitors to larger models due to several defining
characteristics:

• High-quality, domain-specific training data. Rather
than relying solely on scale, SLMs prioritize data, empha-
sizing reasoning patterns and domain relevance.

• Efficient attention mechanisms. Techniques like
grouped-query attention (GQA) and sliding window atten-
tion (SWA) capture long-range dependencies with mini-
mal computational overhead.

• Targeted architectural optimizations. Custom architec-
tures tailored for specific domains boost performance.

• Knowledge distillation. Advanced methods effectively
transfer knowledge from larger models to smaller ones.

• Model compression techniques. Sophisticated quanti-
zation and pruning strategies reduce model size while
preserving capabilities.

3.1. Data Quality Evolution

The early success of SLMs revealed that data quality can
be more crucial than quantity. Recent models have demon-
strated diverse approaches to data quality optimization. Phi-
4 (Abdin et al., 2024) introduces a sophisticated multi-
layered approach featuring plurality-based filtering, where
multiple generated answers per question help filter out
overly simplistic or ambiguous content, along with a self-
revision mechanism that enables continuous improvement
of training data quality. QWEN 2.5 (Qwen et al., 2025) bal-
ances scale with quality by implementing rigorous filtering
through its instruction models while strategically integrat-
ing domain-specific datasets for mathematics and coding
to achieve state-of-the-art performance in these areas. Mo-
bileLLaMA (Chu et al., 2023) demonstrates the effective-
ness of combining high-quality multimodal datasets with
supervised fine-tuning using carefully curated dialogue data.
These approaches collectively highlight a shift from pure
scale to sophisticated data curation techniques, suggesting
that the future of language models depends more on intelli-
gent data processing than model size alone.

3.2. Architectural Innovations

Several key architectural innovations have enabled SLMs
to achieve impressive efficiency. Models like Mistral-
7B (Jiang et al., 2023a) introduce improvements such as
grouped-query attention (GQA) and sliding window atten-
tion (SWA), allowing them to outperform larger parameter
models in specific tasks. Models like Mamba (Gu & Dao,
2025) use hybrid architectures, combining transformers with
state space models, providing new approaches to achieving
efficiency while maintaining performance. Also, the devel-
opment of efficient attention mechanisms and optimization
techniques has allowed models like TinyLlama (Zhang et al.,
2024b) to achieve high training throughput while maintain-
ing small parameter counts.

3.3. Advancements in Task Specialization and Training
Methodology

The field has seen significant progress in developing special-
ized SLMs that excel in specific domains. For example, Wiz-
ardMath (Luo et al., 2025) demonstrates strong mathemati-
cal reasoning capabilities and surpasses most open-source
models with the size ranging between 7B to 40B. Similarly,
WizardCoder (Luo et al., 2024) shows that smaller models
could outperform larger ones in code generation. Advanced
knowledge distillation techniques and targeted training ap-
proaches have enabled this specialization. The evolution
of training methodologies has been crucial in the evolu-
tion of SLMs. As demonstrated by the Orca (Mukherjee
et al., 2023) models, progressive learning approaches show
how smaller models could effectively learn from larger ones
through carefully structured training processes. Despite
their smaller size, explanation tuning and chain-of-thought
approaches have enabled SLMs to develop stronger reason-
ing capabilities. The development of more sophisticated
fine-tuning techniques has allowed for better transfer of
capabilities from larger to smaller models.

3.4. Efficiency Optimizations

Post-training optimizations have become increasingly
sophisticated. Advanced quantization techniques like
SmoothQuant (Xiao et al., 2023) have enabled significant
model compression without substantial performance loss.
Structured pruning approaches have allowed for system-
atic model size reduction while preserving key capabilities.
Developing efficient inference techniques has made SLMs
more practical for real-world deployment. These develop-
ments suggest that SLMs will continue to close the gap with
larger models while offering significant advantages in terms
of efficiency and practicality.
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4. Our Recommendations
The conventional wisdom of neural scaling laws — that
bigger models and more data inevitably lead to better per-
formance, is fundamentally flawed and computationally in-
efficient. While recent LLMs have demonstrated impressive
capabilities through scaling, this success comes at exponen-
tially increasing computational and environmental costs. In
this section, we describe our position on downscaling large
language model with domain adaptation (our specific
recommendations are highlighted with underlined text).

4.1. Downscaling Datasets for Better Knowledge
Alignment

The wide success of SLMs has demonstrated the power
of cleaned and high quality data. Also, the evidence from
data pruning methods (Sorscher et al., 2023) demonstrates
that strategic selection of training examples can achieve
exponential rather than power law scaling, fundamentally
undermining the assumption that we need ever-increasing
amounts of data. This is especially important in light of
findings from data-constrained scaling (Muennighoff et al.,
2023), which demonstrate that in scenarios with limited
data, training smaller models for more epochs outperforms
increasing model size, challenging previous scaling assump-
tions. Future research should focus on optimizing the uti-
lization of existing data over merely accumulating larger
datasets.

The emergence of the Domain-Continual Pre-Training (D-
CPT) law (Que et al., 2024) (see Appendix C for details)
provides a systematic framework to find optimal mixture
ratios between general and domain-specific data for domain
adaptation, to counter catastrophic forgetting of general data.
It eliminates wasteful trial-and-error approaches, achiev-
ing remarkable accuracy across six diverse domains. This
scientific approach to model development offers a more
sophisticated alternative to brute-force scaling.

4.2. Model Downscaling

A branch of research has focused on compressing LLMs
to reduce computational and hardware requirements using
various pruning techniques. Unstructured pruning (Sun
et al., 2023) removes individual weights, producing sparse
matrices that maintain performance but are less hardware-
efficient. Semi-structured pruning (Frantar & Alistarh,
2023), such as the 2:4 sparsity pattern (Pool et al., 2021),
introduces a hardware-friendly structured sparsity that ac-
celerates computation. Structured pruning (Ashkboos et al.,
2024; Yuan et al., 2023; Sengupta et al., 2025) takes a
broader approach by removing entire components, such
as Transformer layers (depth pruning) (Fan et al., 2019) or
reducing embedding dimensions and attention heads (width

pruning) (Zhu et al., 2021). After pruning, post-training is
crucial to mitigate performance degradation. This involves
fine-tuning or continual pre-training on datasets tailored
to enhance performance recovery while maintaining effi-
ciency. The P2 law (Chen et al., 2024b), highlighted in
Equation 11, provides a predictive framework for the post-
training loss, considering factors such as pruning rate, model
size, pre-pruning loss, and the number of training tokens.
This law enables to balance computational costs with per-
formance recovery by identifying optimal post-training data
sizes. While higher pruning rates inevitably lead to larger
initial losses, effective post-training strategies significantly
minimize this impact, allowing smaller models to perform
on par with their larger counterparts in many scenarios.

L(N0, D, ρ, L0) =

L0 +

(
1

ρ

)γ (
1

N0

)δ (
NC

Nα
0

+
DC

Dβ
+ E

)
(11)

where L0 is the uncompressed model loss, ρ is the pruning
rate, N0 is the model size before pruning, D is the number
of post-training tokens, and NC , DC , E, α, β, γ are fitting
constants.

4.3. Ensemble of LLMs

The recent advancements in model merging (Yang et al.,
2024) provide an exciting opportunity to combine multiple
trained models in an efficient and effective manner. This
offers significant practical benefits, including reduced stor-
age and inference costs, while also preserving privacy by
eliminating the need for original training data. Although
model merging is one way to integrate LLM capabilities, en-
semble approaches have become more popular because they
offer more consistent performance increases and greater
flexibility. Ensemble approaches can effectively exploit di-
verse LLMs despite of their architectural differences, while
merging needs models to share compatible architectures and
parameter spaces and does not guarantee better performance
after combination. Ensemble techniques are especially ap-
pealing for practical applications because of their flexibility
and the fact that they tend to produce more consistent per-
formance improvements.

Lu et al. (2024a) categorized LLM ensemble strategies into
three main approaches: (i) before inference through router-
based model selection, (ii) during inference via token-level
integration, and (iii) after inference through output combina-
tion or selection. Pre-inference ensemble methods employ
routers to select the most appropriate LLM for a given in-
put, optimizing for both performance and computational
efficiency. For example, ZOOTER (Lu et al., 2023) uses a
reward model to train a router that selects the optimal LLM
based on query characteristics. During-inference ensem-
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Large language model

Small LLM chunks

Active learning-based
dataset and model pruning

Continual training

Domain-adapted SLMs

 Model ensemle
Calibration

Aligned 
pre-training corpus

Continual training

Continual training

Continual training

Figure 5. Our proposed framework for model downscaling with adaptive domain adaptation. We decompose an LLM pre-training into
multiple stages – (1) calibration for compressing LLM into multiple SLM chunks, along with aligned pre-training corpus, (2) active
learning-based dataset pruning, for optimal data downscaling, (3) Continual training of SLMs on aligned corpus and (4) model ensemble
for merging SLM chunks to recover the larger model with original parameter size.

ble approaches operate at a finer granularity by combining
outputs at each decoding step (Li et al., 2024), which can
help reduce exposure bias and hallucinations. However,
these methods often face challenges with heterogeneous
vocabularies across different LLMs (Xu et al., 2024). Post-
inference ensemble strategies combine multiple generated
outputs or build model cascades where smaller models han-
dle simpler queries and larger models are invoked only when
necessary. This hierarchical approach, as demonstrated by
Chen et al. (2023), can maintain quality while significantly
reducing computational costs, showcasing how ensemble
methods can deliver practical benefits that are harder to
achieve through merging alone.

L(L0, n) = L0 − b+
b

na
(12)

where L0 is the base model loss, n is the number of models
in the ensemble and a, b are fitting constants.

Lobacheva et al. (2021) introduced scaling law of deep en-
semble, which can be analysed as shown in Equation 12 (see
Appendix D for more details), which describes the expected
ensemble loss as the number of models in the ensemble
increases. Crucially, the authors revealed a “Memory Split
Advantage” effect, where using multiple smaller networks
can outperform a single large network for a given computa-
tional budget. Although Lobacheva et al. (2021) investigated
the law primarily for CNN architectures, the key insights
found in the study can be extended to other neural archi-
tectures as well. This finding suggests that practitioners
can improve model performance by strategically splitting
their computational resources across several medium-sized
network models rather than investing in one large model.

4.4. Why Downscaling Law Might Work?

As we have all the necessary tools, such as post-training
after pruning, and expected loss of ensemble, we can com-
bine the knowledge from Equation 11 and Equation 12, to
propose Equation 13 (see Appendix E for details), establish-
ing a robust theoretical guarantee of efficient downscaling.
It describes a condition where increasing the number of
models in a deep ensemble can lead to lower expected en-
semble loss L(L0, n) compared to the base model loss while
maintaining the same overall computational cost. The key
insight is that by increasing the number of models, as long
as the condition in Equation 13 is satisfied, the ensemble can
capture more diversity and reduce the overall loss. This is
a noteworthy finding as deep ensembling enhances model
performance without the need for additional computational
resources.

Proposition 4.1. For n ∈ Z+ satisfying(
na − 1

na+γ

)
(n− 1)γ ≥ 1

bNδ
0

(13)

The expected ensemble loss L < L0, the loss by the base
model, at the same computational cost C.

To show the implication of the equation in depth, let us
take an example of the LLaMA-3-8B model. From Chen
et al. (2024b), we obtain α = −1.57 and γ = 1.08. Simi-
larly, taking some loose assumptions from Lobacheva et al.
(2021), we obtain a = 0.83, b = 0.83, δ = 0.29. Putting
these values in Equation 13, it holds ∀n > 7. This implies
that we can use 8 or more pruned versions of LLaMA-3-8B,
each with 1B parameters, in an ensemble that would out-
perform the original model without incurring any additional
cost.
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4.5. Proposed Downscaling Pipeline

Integrating these insights into model efficiency, scaling laws
and benefits of SLMs, we propose a novel pipeline for devel-
oping more efficient and domain-adapted language models,
as shown in Figure 5. This pipeline leverages techniques
from dataset optimization, model compression, and ensem-
ble methodologies to create smaller, more efficient, yet
competent language models.

The first phase employs active learning-based techniques for
dataset pruning (Sorscher et al., 2023) and model pruning.
Using Bayesian active learning strategies (Bayer & Reuter,
2024), we identify the most informative samples from the
training data while simultaneously determining optimal
model architectures using unstructured, semi-structured
pruning, or structured pruning (Sun et al., 2023; Frantar
& Alistarh, 2023; Ashkboos et al., 2024; Yuan et al., 2023;
Sengupta et al., 2025). This dual optimization approach
allows us to create multiple smaller, more efficient model
variants from a single LLM while maintaining essential
capabilities. Also, we obtain a collection of high quality
and carefully-curated datasets. The data pruning process is
guided by theoretical frameworks such as Sorscher et al.
(2023), suggesting that strategic selection of samples can
help break the power law. The pruning of models should be
done in a manner that it follows our proposition of down-
scaling (Equation 13).

These pruned models are designed to specialize in specific
domains using domain continual pre-training. The parallel
streams shown in the pipeline (Figure 5) represent these
different SLM variants, each paired with an aligned pre-
training corpus carefully curated for their target domain.
This is crucial for efficient specialization and follows the
D-CPT law for systematic domain adaptation, without catas-
trophic forgetting, and guided by theoretical frameworks
such as the P2 law, which helps predict and minimize post-
compression performance degradation. This allows each
model to develop deep expertise in its designated area while
maintaining computational efficiency. This targeted train-
ing approach eliminates wasteful trial-and-error methods
typically associated with domain adaptation, as each model
receives only the most relevant data for its specialization.

The final stage of our pipeline implements a model
ensemble methodology to combine these domain-adapted
SLMs into a unified system. This ensemble approach pre-
serves the specialized capabilities of individual SLMs while
creating a more versatile final model. By leveraging ad-
vanced ensemble techniques (He et al., 2020; Yadav et al.,
2024), we can effectively aggregate the domain expertise of
each component model while maintaining a smaller compu-
tational footprint compared to traditional large-scale models.
This approach is fundamentally different from mixture of
experts, where the primary motivation is usually to encour-

age sparsity within different experts. Rather, we focus on
combining multiple smaller experts together in a more col-
laborative manner, ensuring better combined performance.
As shown earlier in Proposition 4.1, this ensemble would
give a better performance than the original model at the
same computational cost.

The success of this pipeline relies on careful orchestration
between components and systematic empirical validation.
Our approach addresses three critical challenges in mod-
ern language model development: reducing computational
requirements through strategic pruning, maintaining perfor-
mance through targeted domain adaptation, and combin-
ing specialized capabilities through sophisticated ensem-
ble methods. The result is a more efficient, domain-aware
language model that achieves high performance without
excessive computational demands or model scale.

5. Alternative Views
5.1. Limitations of Downscaling

Despite their wide success, SLMs frequently have difficul-
ties with complex language understanding and contextual
intricacies. Also, they may not attain the same degree of
precision in multifaceted reasoning or complex data patterns
as their larger counterparts which leads to diminished perfor-
mance on activities necessitating profound comprehension
or considerable expertise across multiple fields. Further-
more, Jin et al. (2023) revealed crucial insights into how
language model capabilities degrade during downscaling,
challenging the assumption that reduction in model size
uniformly affects all capabilities. Their findings demon-
strate a stark contrast in how different cognitive abilities
deteriorate. While fact recall begins to significantly de-
grade when more than 30% of weights are removed through
pruning, in-context learning capabilities show remarkable
resilience, maintaining performance even with aggressive
pruning of up to 60-70% of weights. This pattern remains
consistent across various model reduction approaches, in-
cluding pruning and dense scaling, and has been observed
across different model families like OPT and LLaMA. This
suggests that the neural mechanisms responsible for storing
factual knowledge require significantly more parameters
than those supporting in-context learning capabilities. This
insight improves SLM deployments by tailoring model re-
duction strategies to the target application’s fact recall versus
in-context learning needs.

5.2. Limitations of Ensembling

Despite their advantages, ensemble techniques for LLMs
face several significant limitations that affect their practi-
cal deployment and effectiveness. As highlighted in the
survey by Lu et al. (2024a), each ensemble approach has
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its own set of challenges. Pre-inference ensemble methods
heavily rely on the accuracy of routing mechanisms, and
the router’s ability to generalize to new queries (Shnitzer
et al., 2023). During-inference ensemble methods struggle
with heterogeneous model architectures and vocabularies,
making it challenging to directly combine outputs from dif-
ferent LLM families (Huang et al., 2024). Post-inference
ensemble approaches face challenges related to the quality
and diversity of candidate pools (Jiang et al., 2023b). Ad-
ditionally, they are particularly resource-intensive as they
require both multiple model executions and additional com-
putation for output selection or fusion. A practical limitation
across all ensemble approaches is the increased latency in
response generation, which can be particularly problematic
in real-time applications where quick responses are crucial.

6. Conclusion
In this position paper, we critiqued the underlying flaws
of neural scaling laws and presented proof that the Carbon
Dioxide emissions of training LLMs scale linearly with both
the number of parameters and dataset size. This indicates
that the scaling of LLMs is not sustainable in the long term,
given the growing emphasis on climate change. Our study
encouraged exploration of downscaling laws, where instead
of training larger models on larger datasets, we proposed
training smaller models on aligned pre-training datasets for
robust performance without introducing additional compu-
tational costs. Utilising insights from recent research, we
offered a downscaling law that estimates the number of
smaller models in an ensemble that may outperform the
original model. The study paves way for more sustainable
approaches for training language models.
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A. CO2 Emission Formulas from LLMCarbon (Faiz et al., 2024)
FLOP Count Formulas:

Training: TC ≈ 6ND (14)

Inference: IC ≈ 2ND (15)

where N denotes number of parameters, and D denotes amount of training data.

Device Execution Time:
tdev =

TFLOP

ndev · FLOPpeak · eff
(16)

where TFLOP denotes FLOP count, ndev denotes number of computing devices, eff denotes the hardware efficiency, and
the computing device number, and FLOPpeak represents the device peak throughput.

Hardware Energy:
energyhard =

∑
i∈hardware_set

(Pi · effi · ni · ti) (17)

where Pi, effi, ni, ti denote the peak power, hardware efficiency, count, and execution time of hardware unit i, respectively.

Operational Energy:
energyoper = energyhard · PUE (18)

where PUE denotes Power Usage Efficiency of the specific data center.

Operational carbon footprint:

CO2eqoper = energyoper · c_inten (19)

where c_inten denotes the carbon intensity of the specific data center.

Embodied Carbon Footprint:

CO2eqchip = area · CPA (20)

CO2eqemb =
∑

i∈hardware_set

ti · CO2eqchipi

lifetimei
(21)

where CO2eqchip denotes chip’s embodied carbon footprint, CPA denotes Carbon emitted Per unit Area and lifetime
denotes lifetime of hardware unit.

Total Carbon Footprint:
CO2eq = CO2eqoper + CO2eqemb (22)

B. Proof of Proposition 2.1
Equation 16 can be expressed in terms of Equation 14:

t =
6ND

n · FLOPpeak · eff
[for training] (23)

Starting with the basic formula and substituting each component:

CO2eqoper = energyoper · c_inten (from 19)
= (energyhard · PUE) · c_inten (from 18)

=

(∑
i

Pi · effi · ni · ti

)
· PUE · c_inten (from 17)

=

(∑
i

Pi · effi · ni ·
6ND

n · FLOPpeak · effi

)
· PUE · c_inten (from 23)
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Similarly for embodied CO2 from Equation 21 and Equation 23:

CO2eqemb =
∑
i

6PD

n · FLOPpeak · effi
· areai · CPAi

lifetimei

Combining operational and embodied CO2:

CO2eq(N,D) = CO2eqoper + CO2eqemb

Grouping terms with P and D and further simplifying:

CO2eq(N,D) = (K1 +K2) ·N ·D (24)

where

K1 =

(∑
i

Pi · effi · ni ·
6

n · FLOPpeak · effi

)
· PUE · c_inten

K2 =
∑
i

6

n · FLOPpeak · effi
· areai · CPAi

lifetimei

K1 +K2 represents a compound constant that encapsulates all hardware, data center, and efficiency parameters.

C. Domain-Continual Pre-Training Scaling Law
Que et al. (2024) provided a mathematical framework to determine the optimal mixture ratio between general and domain-
specific data during continual pre-training. It eliminates the need for expensive grid search experiments to find the best ratio
and enables more efficient resource allocation in domain adaptation of LLMs. They validated its effectiveness across code,
math, law, chemistry, music and medical domains. The law is as follows:

L(N,D, r) = E +
A

Nα
+

B · rη

Dβ
+

C

(r + ϵ)γ
(25)

where N denotes number of parameters, D denotes dataset size, r denotes mixture ratio and E,A,B,C, α, β, γ, η, ϵ are
fitting parameters.

D. Proof of Equation 12
The scaling law of model ensemble proposed by Lobacheva et al. (2021) is:

L = c+
b

na
(26)

where L is the ensemble loss, n is the number of models in the ensemble, and c, b are fitting parameters.

For getting a single base model loss L0, we can put n = 1:

L0 = L(1) = c+ b =⇒ c = L0 − b

Putting this back in Equation 26, we get our final form:

L = L0 − b+
b

na

E. Proof of Proposition 4.1
For P2 scaling law in Equation 11, we get

Lcompressed = L0 +

(
1

ρ

)γ (
1

N0

)δ (
NC

Nα
0

+
DC

Dβ
+ E

)
(27)

≈ L0 +
1

ργ
· 1

Nδ
0

(28)
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For simplicity, we assume the term
(

NC

Nα
0
+ DC

Dβ + E
)

remains approximately constant when comparing the base model and
the ensemble model at the same computational budget. This is justified as both the original model and ensemble use similar
total parameter counts and similar computational resources, merely distributed differently.

Therefore, this term appears in both sides of our inequality and cancels out, allowing us to focus on the essential components
of the inequality that determine when the ensemble outperforms the base model.

We can know that ρ → pruning rate =
(
n−1
n

)
.

The ensemble loss is given by Equation 12:

Lensemble = L− b+
b

na
(29)

We need Lensemble ≤ L0. So,

L0 +
1

ργNδ
0

− b+
b

na
≤ L0 (30)

This implies:
1

δγNδ
0

− b+
b

na
≤ 0 (31)

Substituting ρ = n−1
n and rearranging: (

na − 1

na+γ

)
(n− 1)γ ≥ 1

bNδ
0

(32)

The computational cost of the ensemble is n ·K · (1− ρ) ·N ·D = K ·N ·D, same as the base model computational cost.
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