
Published as a conference paper at ICLR 2024

MG-TSD: MULTI-GRANULARITY TIME SERIES DIF-
FUSION MODELS WITH GUIDED LEARNING PROCESS

Xinyao Fan1∗, Yueying Wu2∗, Chang Xu4†, Yuhao Huang3, Weiqing Liu4, Jiang Bian4

University of British Columbia1, Peking University2, Nanjing University3, Microsoft Research4

xinyao.fan@stat.ubc.ca, wuyueying@stu.pku.edu.cn,
huangyh@smail.nju.edu.cn,
{chanx, weiqing.liu, jiang.bian}@microsoft.com

ABSTRACT

Recently, diffusion probabilistic models have attracted attention in generative time
series forecasting due to their remarkable capacity to generate high-fidelity sam-
ples. However, the effective utilization of their strong modeling ability in the
probabilistic time series forecasting task remains an open question, partially due
to the challenge of instability arising from their stochastic nature. To address this
challenge, we introduce a novel Multi-Granularity Time Series Diffusion (MG-
TSD) model, which achieves state-of-the-art predictive performance by leverag-
ing the inherent granularity levels within the data as given targets at intermedi-
ate diffusion steps to guide the learning process of diffusion models. The way
to construct the targets is motivated by the observation that the forward pro-
cess of the diffusion model, which sequentially corrupts the data distribution to
a standard normal distribution, intuitively aligns with the process of smoothing
fine-grained data into a coarse-grained representation, both of which result in a
gradual loss of fine distribution features. In the study, we derive a novel multi-
granularity guidance diffusion loss function and propose a concise implemen-
tation method to effectively utilize coarse-grained data across various granular-
ity levels. More importantly, our approach does not rely on additional external
data, making it versatile and applicable across various domains. Extensive exper-
iments conducted on real-world datasets demonstrate that our MG-TSD model
outperforms existing time series prediction methods. Our code is available at
https://github.com/Hundredl/MG-TSD.

1 INTRODUCTION

Time series prediction is a critical task with applications in various domains such as finance fore-
casting (Hou et al., 2021; Chen et al., 2018), energy planning (Koprinska et al., 2018; Wu et al.,
2021), climate modeling (Wu et al., 2023; 2021), and biological sciences (Luo et al., 2020; Ra-
jpurkar et al., 2022). Considering that time series forecasting problems can be effectively addressed
as a conditional generation task, many works leverage generative models for predictive purposes.
For instance, Salinas et al. (2019) utilizes a low-rank plus diagonal covariance Gaussian copula; Ra-
sul et al. (2021) models the predictive distribution using normalizing flows. Recent advancements
in diffusion probabilistic models (Ho et al., 2020) have sparked interest in utilizing them into prob-
abilistic time series prediction. For example, Rasul et al. (2020) auto-regressively generates data
through iterative denoising diffusion models. Tashiro et al. (2021) uses a conditional score-based
diffusion model explicitly trained for probabilistic time series imputation and prediction. These
methods relying on diffusion models have exhibited remarkable predictive capabilities. However,
there is still considerable scope for improvement. One challenge that diffusion models face in time
series forecasting tasks is the instability due to their stochastic nature when compared to determinis-
tic models like RNNs and variants like LSTMs (Hochreiter & Schmidhuber, 1997; Lai et al., 2018),
GRUs (Ballakur & Arya, 2020; Yamak et al., 2019), and Transformers that rely on self-attention
mechanisms (Vaswani et al., 2017; Zhou et al., 2021; 2022; Wu et al., 2021). More specifically, the

∗These authors contributed equally to this work.
† Corresponding to chanx@microsoft.com

1

https://github.com/Hundredl/MG-TSD

Published as a conference paper at ICLR 2024

diffusion models yield diverse samples from the conditional distributions, including possible low-
fidelity samples from the low-density regions within the data manifold (Sehwag et al., 2022). In
the context of time series forecasting, where fixed observations exclusively serve as objectives, such
variability would result in forecasting instability and inferior prediction performance.

...

Forward

process

Guidance

Smoothing

Reverse

process
Prediction

Coarser-grained Data

Coarsest-grained Data

Coarse-grained Data

Forward process

Guidance

Smoothing out

Reverse process

...

Observation

Real Data

Diffusion Process

Noise

Figure 1: The process of smoothing data
from finest-grained to coarsest-grained nat-
urally aligns with the diffusion process.

To stabilize the output of a diffusion model in time
series prediction, one straightforward method is to
constrain the intermediate states during the sam-
pling process. Prior research in the realm of dif-
fusion models has introduced the idea of classifier-
guidance (Nichol et al., 2021) and classifier-free
guidance (Ho & Salimans, 2022), where the pre-
dicted posterior mean is shifted with the gradient of
either explicit or implicit classifier. However, these
methods require labels as the source of guidance
while sampling, which are unavailable during out-
of-sample inference. We observe that the forward
process of the diffusion model, which sequentially
corrupts the data distribution to a standard normal
distribution, intuitively aligns with the process of
smoothing fine-grained data into a coarser-grained
representation, both of which result in a gradual loss
of finer distribution features. This provides the in-
sights that intrinsic features within data granularities
may also serve as a source of guidance.

In this paper, we propose a novel Multi-Granularity Time Series Diffusion (MG-TSD) model that
leverages multiple granularity levels within data to guide the learning process of diffusion models.
The coarse-grained data at different granularity levels are utilized as targets to guide the learning of
the denoising process. These targets serve as constraints for the intermediate latent states, ensuring a
regularized sampling path that preserves the trends and patterns within the coarse-grained data. They
introduce inductive bias which promotes the generation of coarser features during intermediate steps
and facilitates the recovery of finer features in subsequent diffusion steps. Consequently, this design
reduces variability and results in high-quality predictions. Our key contributions can be summarized
as below:

1. We introduce a novel MG-TSD model with an innovatively designed multi-granularity
guidance loss function that efficiently guides the diffusion learning process, resulting in
reliable sampling paths and more precise forecasting results.

2. We provide a concise implementation that leverages coarse-grained data instances at var-
ious granularity levels. Furthermore, we explore the optimal configuration for different
granularity levels and propose a practical rule of thumb.

3. Extensive experiments conducted on real-world datasets demonstrate the superiority of the
proposed model, achieving the best performance compared to the state-of-the-art methods.

2 BACKGROUND

2.1 DENOISING DIFFUSION PROBABILISTIC MODELS

Suppose x0 ∼ qX (x0) is a multivariate vector from space X = RD. Denoising diffusion probabilis-
tic models aim to learn a model distribution pθ(x0) that approximates the data distribution q(x0).
Briefly, they are latent variable models of the form pθ(x0) =

∫
pθ(x0:N)dx1:N , where xn for n =

1, . . . , N is a sequence of latent variables in the same sample space as x0. The denoising diffusion
models are composed of two processes: the forward process and the reverse process. During the for-
ward process, a small amount of Gaussian noise is added gradually in N steps to samples. It is char-
acterized by the following Markov chain: q(x1:N |x0) =

∏N
n=1 q(xn|xn−1), where q(xn|xn−1) :=

N (
√
1− βnxn−1, βnI). The step sizes are controlled by a variance schedule {βn ∈ (0, 1)}Nn=1,

where n represents a diffusion step. A nice property of the above process is that one can sample

2

Published as a conference paper at ICLR 2024

at any arbitrary diffusion step in a closed form, let αn := 1 − βn and ᾱn =
∏n
i=1 αi. It has

been shown that xn =
√
ᾱnx0 +

√
1− ᾱnϵ. The reverse diffusion process is to recreate the real

samples from a Gaussian noise input. It is defined as a Markov chain with learned Gaussian transi-
tions starting with p(xN) = N (xN ; 0, I). The reverse process is characterized as pθ(x0:N) :=

p(xN)
∏1
n=N pθ(xn−1|xn), where pθ(xn−1|xn) := N (xn−1;µθ(xn, n),Σθ(xn, n)I); µθ :

RD × N → RD and Σθ : RD × N → R+ take the variable xn ∈ RD and the diffusion step
n ∈ N as inputs, and share the parameters θ. The parameters in the model are optimized to mini-
mize the negative log-likelihood minθ Ex0∼q(x0)[− log pθ(x0)] via a variational bound. According
to denoising diffusion probabilistic models (DDPM) in Ho et al. (2020), the parameterization of
pθ(xn−1|xn) is chosen as:

µθ(xn, n) =
1

√
αn

(
xn − 1− αn√

1− ᾱn
ϵθ(

√
ᾱnx0 +

√
1− ᾱnϵ, n)

)
, (1)

where ϵθ is a network which predicts ϵ ∼ N (0, I) from xn. We simplify the objective function into

Lsimple
n = En,ϵn,x0

[
∥ϵn − ϵθ(

√
ᾱnx0 +

√
1− ᾱnϵn, n)∥2

]
. (2)

Once trained, we can iteratively sample from the reverse process pθ(xn−1|xn) to reconstruct x0.

2.2 TIMEGRAD MODEL

We treat the time series forecasting task as a conditional generation task and utilize the diffusion
models presented in Section 2.1 as the backbone generative model. TimeGrad model is a related
work by Rasul et al. (2020) which first explored the use of diffusion models for forecasting mul-
tivariate time series. Consider a contiguous time series sampled from the complete history train-
ing data, indexed from 1 to T . This time series is partitioned into a context window of interval
[1, t0) and a prediction interval [t0, T]. TimeGrad utilizes diffusion models from Ho et al. (2020) to
learn the conditional distribution of the future timesteps of the multivariate time series given their
past. An RNN is employed to capture the temporal dependencies, and the time series sequence
up to timestep t is encoded in the updated hidden state ht. Mathematically, TimeGrad models
qX (xt0:T |x1:t0−1) =

∏T
t=t0

qX (xt|x1:t−1) ≈
∏T
t=t0

qX (xt|ht−1), where xt ∈ RD denotes the
time series at timestep t and ht = RNNψ(xt,ht−1). Each factor is learned via a shared conditional
denoising diffusion model. In contrast to Ho et al. (2020), the hidden states ht−1 are taken as an
additional input in the denoising network ϵθ(x

n
t ,ht−1, n), and the loss function for timestep t and

diffusion step n is given by:

Eϵ,x0,t,n[∥ϵ− ϵθ(
√
ᾱnx0,t +

√
1− ᾱnϵ, n,ht−1)∥2], (3)

where the first subscript in x0,t represents the index of the diffusion step, while t denotes the timestep
within the time series.

2.3 PROBLEM FORMULATION

In the time series prediction task, let X(1) represent the original observed data. The time series
data is denoted as X(1) = [x1

1, . . . ,x
1
t , . . . ,x

1
T], where t represents the timestep t ∈ [1, T] and

xt ∈ RD. Specifically, our task is to model the conditional distribution of future timesteps of the
time series [x1

t0 , . . . ,x
1
T] given the fixed window of history context. Mathematically, the problem

we consider can be formulated as follows:

qX

(
x1
t0:T |

{
x1
1:t0−1

})
=

T∏
t=t0

qX

(
x1
t |
{
x1
1:t−1

})
. (4)

3 METHOD

In this section, we provide an overview of the MG-TSD model architecture in Section 3.1, followed
by a detailed discussion of the novel guided diffusion process module in Section 3.2, including the
derivation of the heuristic loss function and its implementation across various granularity levels.

3

Published as a conference paper at ICLR 2024

3.1 MG-TSD MODEL ARCHITECTURE

The proposed methodology consists of three key modules, as depicted in Figure 2.

Multi-granularity Data Generator is responsible for generating multi-granularity data from ob-
servations. In this module, various coarse-grained time series are obtained by smoothing out the
fine-grained data using historical sliding windows with different sizes. Suppose f is a pre-defined
smoothing (for example, average) function, and sg is the pre-defined sliding window size for granu-
larity level g. Then X(g) = f(X(1), sg). The sliding windows are non-overlapping and the obtained
coarse-grained data for granularity g are replicated sg times to align over the timeline [1, T].

Temporal Process Module is designed to capture the temporal dynamics of the multi-granularity
time series data. We utilize RNN architecture on each granularity level g separately to encode the
time series sequence up to a specific timestep t and the encoded hidden states are denoted as hgt .
The RNN cell type is implemented as GRU in Chung et al. (2014).

Guided Diffusion Process Module is designed to generate stable time series predictions at each
timestep t. We utilize multi-granularity data as given targets to guide the diffusion learning process.
A detailed discussion of the module can be found in Section 3.2.

Guided Diffusion
Process Module

M
u
l
t
i
-
g
r
a
n
u
l
a
r
i
t
y

D
a
t
a

G
e
n
e
r
a
t
o
rTPM

......

......

......

......

NoiseSample

Timestep Timestep

(Temporal Process Module)
0Diffusion

step

Figure 2: Overview of the Multi-Granularity Time Series Diffusion (MG-TSD) model, consisting of
three key modules: Multi-granularity Data Generator, Temporal Process Module (TPM), and
Guided Diffusion Process Module for time series forecasting at a specific granularity level.

3.2 MULTI-GRANULARITY GUIDED DIFFUSION

In this section, we delve into the details of the Guided Diffusion Process Module, a key compo-
nent in our model. Section 3.2.1 presents the derivation of a heuristic guidance loss for the two-
granularity case. In Section 3.2.2, we generalize the loss to the multi-granularity case and provide
a concise implementation to effectively utilize coarse-grained data across various granularity levels.
Briefly, the optimization of the heuristic loss function can be simply achieved by training denois-
ing diffusion models on the multi-granularity data with shared denoising network parameters and
partially shared variance schedule.

3.2.1 COARSE-GRAINED GUIDANCE

Without loss of generality, consider two granularities: finest-grained data xg1t (g1 = 1) from X(g1)

and coarse-grained data xgt from X(g) at a fixed timestep t, where 1 < t < T . We omit the
subscript t in the derivation for notation brevity. Suppose the denoising diffusion models presented
in Section 2.1 are employed to approximate the distribution q(xg1) and let the variance schedule
be {β1

n = 1 − α1
n ∈ (0, 1)}Nn=1. Suppose xg10 ∼ q(xg10), where the subscript 0 denotes the index

4

Published as a conference paper at ICLR 2024

of diffusion step. The diffusion models in Section 2.2 define a forward trajectory q(xg10:N) and a
θ-parameterized reverse trajectory pθ(x

g1
0:N).

While Section 2.2 focuses on predicting samples over a specific timestep, it does not account for the
intrinsic structure of time series, such as trends, which are represented by coarse-grained time series.
In this paper, we guide the generation of samples by ensuring that the intermediate latent space
retains the underlying time series structure. This is achieved by introducing coarse-grained targets
xg at intermediate diffusion step Ng

∗ ∈ [1, N − 1]. Specifically, we establish the objective function
as the log-likelihood of observed coarse-grained data xg evaluated at the marginal distributions at
diffusion step Ng

∗ , which can be expressed as log pθ(xg). With an appropriate choice of diffusion
step Ng

∗ , the coarser features recovered from the denoising process could gain information from the
realistic coarse-grained sample. Recall that the marginal distribution of latent variable at denoising
step Ng

∗ determined by the θ-parameterized trajectory pθ(xNg
∗ :N) can be expressed as:

pθ(xNg
∗) =

∫
pθ(xNg

∗ :N)dx(Ng
∗+1):N =

∫
p(xN)

N∏
Ng

∗+1

pθ(xn−1|xn)dx(Ng
∗+1):N , (5)

where xN ∼ N (0, I), pθ(xn−1|xn) = N (xn−1;µθ(xn, n),Σθ(xn, n)).

To make the objective tractable, a common technique involves optimizing a variational lower bound
on the likelihood in Equation 5. This can be achieved by specifying a latent variable sequence
of length N − Ng

∗ , such that the joint distribution of xg and these latent variables is available.
Conveniently, we employ a diffusion process on xg with a total of N −Ng

∗ diffusion steps, defining
a sequence of noisy samples xg

Ng
∗+1

, . . ., xgN as realizations of the latent variable sequence. Then,
the guidance objective can be expressed as:

log pθ(x
g) = log

∫
pθ(x

g
Ng

∗
,xg

Ng
∗+1

, . . . ,xgN)dxg
(Ng

∗+1):N
. (6)

Applying the same technique as in Ho et al. (2020), the guidance objective function in Equation 6
simplifies the loss function of the diffusion models (see the Appendix A for proof details):

Eϵ,xg,n[∥ϵ− ϵθ(x
g
n, n)∥2], (7)

where xgn = (
∏n
i=Ng

∗
α1
i)x

g +
√

1−
∏n
i=Ng

∗
α1
i ϵ and ϵ ∼ N (0, I). When the variance schedule

is chosen as {α1
n}Nn=Ng

∗
, the loss function of the diffusion model in Ho et al. (2020) is equivalent to

the guidance loss function presented in Equation 7.

3.2.2 MULTI-GRANULARITY GUIDANCE

In general, for G granularity levels, data of different granularities generated by Multi-granularity
Data Generator can be represented as X(1),X(2), . . . ,X(G). We expect these coarse-grained data
can guide the learning process of the diffusion model at different steps, serving as constraints along
the sampling trajectory. For coarse-grained data at granularity level g, where g ∈ {2, . . . , G}, we
define the share ratio as rg := 1 − (Ng

∗ − 1)/N . It represents the shared percentage of variance
schedule between the gth granularity data and the finest-grained data. For the finest-grained data,
N1

∗ = 1 and r1 = 1. Formally, the variance schedule for granularity g is defined as

αgn(N
g
∗) =

{
1 if n = 1, . . . , Ng

∗
α1
n if n = Ng

∗ + 1, . . . , N,
(8)

and {βgn}Nn=1 = {1 − αgn}Nn=1. Accordingly, define agn(N
g
∗) =

∏n
k=1 α

g
k, and bgn(N

g
∗) = 1 −

agn(N
g
∗). We suppose N1

∗ < N2
∗ . . . < Ng

∗ < . . . < NG
∗ , which represents the diffusion index

for starting sharing the variance schedule across granularity level g ∈ {1, . . . , G}. The starting
index Ng

∗ is larger for coarser granularity level, aligning with the intuition that the coarser-grained
data loses fine distribution features to a greater extent and is expected to resemble the samples from
earlier sampling steps.

Furthermore, we use the temporal hidden states for granularity level g up to timestep t from the
Temporal Process Module as conditional inputs for the model to generate time series at corre-
sponding granularity levels similar to Rasul et al. (2020). Then the guidance loss function L(g)(θ)

5

Published as a conference paper at ICLR 2024

for gth-granularity xgn,t at timestep t and diffusion step n, can be expressed as:

L(g)(θ) = Eϵ,xg
0,t,n

∥(ϵ− ϵθ(
√

agnx
g
0,t +

√
bgnϵ, n,h

g
t−1)∥22, (9)

where hgt = RNNθ(x
g
t ,h

g
t−1) is the updated hidden states from the last step.

The guidance loss function with G − 1 granularity levels of data is Lguidance =
∑G
g=2 ω

gL(g)(θ),
where ωg ∈ [0, 1] is a hyper-parameter controlling the scale of guidance from granularity g.

Training. The training algorithm is in Algorithm 1. The final training objective is the weighted
summation of loss for all granularities, including the finest granularity:

Lfinal = ω1L(1)(θ) + Lguidance(θ) =

G∑
g=1

ωgEϵ,xg
0,t,n

[∥ϵ− ϵθ(x
g
n,t, n,h

g
t−1)∥2], (10)

where xgn,t =
√
agnx

g
0,t +

√
bgnϵ and

∑G
g=1 ω

g = 1. The denoising network parameters are shared
across all granularities during training.

Algorithm 1 Training procedure
Input: Context interval [1, t0); prediction interval [t0, T]; number of diffusion step N ; a set of share
ratio for g granularity (or equivalently {Ng

∗ , g ∈ {1, . . . , G}}); generated multi-granularity data
[xg1, . . . ,x

g
t0 , . . . ,x

g
T], g ∈ {1, . . . , G}; initial hidden states hg0, g ∈ {1, . . . , G}]

repeat
1: Sample the multi-granularity time series [xg1, . . . ,x

g
T], g ∈ {1, . . . , G}.

2: Obtain hgt = RNNg(xgt ,h
g
t−1), g ∈ {1, . . . , G}, t ∈ [1, . . . , T].

3: for t = t0 to T do
4: Initialize n ∼ Uniform(1, . . . , N) and ϵ ∼ N (0, I)
5: Reset the variance schedule {βgn = 1− αgn(N

g
∗)}Nn=1, g ∈ {1, . . . , G}.

6: Compute loss Lfinal according to Equation 10
7: Take the gradient ∇θL

final

8: end for
until converged

Inference. Once the model is trained, our goal is to make predictions on the finest-grained data, up
to a certain number of future prediction steps. Suppose that the last context window ends at timestep
t0 − 1, we use Algorithm 2 to perform the sampling procedure and generate a sample x1

t0 for the
next timestep. This process is repeated until reaching the desired forecast horizon. With different
hidden states as conditional inputs, the model can sample time series at respective granularity levels.

Algorithm 2 Inference procedure for each timestep t ∈ [t0, T]

Input: Noise xNt ∼ N (0, I) and hidden states hgt−1, g ∈ {1, . . . , G}
1: for n = N to 1 do
2: if n > 1 then
3: Sample z ∼ N (0, I)
4: else
5: z = 0
6: end if
7: for g = 1 to G do
8: xgn−1,t =

1√
αg

n

(xgn,t −
βg
n√

1−agn
ϵθ(x

g
n,t, n,h

g
t−1)) +

√
σgnz, where σgn =

1−agn−1

1−agn βgn.

9: end for
10: end for
Return: xg0,t, g = 1(finest-grained data); (Optional: xg0,t, g ∈ {2, . . . , G})

Selection of share ratio. We propose a heuristic approach to help select the appropriate share ratio
rg , which is derived from Ng

∗ . We determine the choice of Ng
∗ as the diffusion step at which the

distance between two distributions q(xg) and pθ(x
g1
n) is minimum, as shown below:

Ng
∗ := argmin

n
D(q(xg), pθ(x

g1
n)), (11)

6

Published as a conference paper at ICLR 2024

where D is a measure for accessing discrepancy between two distributions, such as KL divergence.
In practice, we first pre-train a TimeGrad model and then compute the CRPSsum between the coarse-
grained targets and the samples along the sampling path of finest-grained data during inference. The
range of steps where the CRPSsum values can consistently maintain relatively small values suggests
a proper range of share ratios.

4 EXPERIMENTS

In this section, we conduct extensive experiments on six real-world datasets to evaluate the perfor-
mance of the proposed MG-TSD model and compare it with previous state-of-the-art baselines.

4.1 SETTINGS

Datasets. We consider six real-word datasets characterized by a range of temporal dynamics,
namely Solar, Electricity, Traffic, Taxi, KDD-cup and Wikipedia. The data is
recorded at intervals of 30 minutes, 1 hour, or 1 day frequencies. Refer to Appendix C.1 for details.

Evaluation Metrics. We assess our model and all baselines using CRPSsum (Continuous Ranked
Probability Score), a widely used metric for probabilistic time series forecasting, as well as
NMAEsum (Normalized Mean Absolute Error) and NRMSEsum (Normalized Root Mean Squared
Error). For detailed descriptions, refer to Appendix D.

Baselines. We assess the predictive performance of the proposed MG-TSD model in comparison
with multivariate time series forecasting models, including Vec-LSTM-ind-scaling (Salinas et al.,
2019), GP-scaling (Salinas et al., 2019), GP-Copula (Salinas et al., 2019), Transformer-MAF (Rasul
et al., 2020), LSTM-MAF (Rasul et al., 2020), TimeGrad (Rasul et al., 2021), and TACTiS (Drouin
et al., 2022). The MG-Input ensemble model serves as the baseline with multi-granularity inputs. It
combines two TimeGrad models trained on one coarse-grained and finest-grained data respectively,
and generates the final predictions by a weighted average of their outputs.

Implementation details. We train our model for 30 epochs using the Adam optimizer with a fixed
learning rate of 10−5. We set the mini-batch size to 128 for solar and 32 for other datasets. The
diffusion step is configured as 100. Additional hyper-parameters, such as share ratios, granularity
levels, and loss weights, are detailed in Appendix C.3. All models are trained and tested on a single
NVIDIA A100 80GB GPU.

4.2 RESULTS

The CRPSsum values averaged over 10 independent runs are reported in Table 1. The results show
our model achieves the lowest CRPSsum and outperforms the baseline models across all six datasets.
The MG-Input model exhibits marginal improvement on certain datasets when compared to the
TimeGrad. This implies that while integrating multi-granularity information may result in some
information gain, direct ensembling of coarse-grained outputs is inefficient in boosting performance.

4.3 ABLATION STUDY

Share ratio of variance schedule. To investigate the effect of share ratio, we evaluate the perfor-
mance of MG-TSD using various share ratios across different coarse granularities. The experiment
is conducted in a two-granularity setting, where one coarse granularity is utilized to guide the learn-
ing process for the finest-grained data. Table 2 shows that for each coarse granularity level, the
CRPSsum values initially decrease to their lowest values and then ascend again as the share ratio
gets larger. Furthermore, we observe for coarser granularities, the model performs better with a
smaller share ratio. This suggests that the model achieves optimal performance when the share ratio
is chosen at the step where the coarse-grained samples most closely resemble intermediate states.
Utilizing 4-hour or 6-hour granularity as guidance greatly enhances the model performance. How-
ever, the improvement in performance diminishes as the granularity becomes coarser, such as 12
hours or 24 hours, possibly due to the greater loss of information on local fluctuations.

In practice, the selection of share ratio can follow the heuristic rule outlined in Section 3.2.2. Fig-
ure 3 provides illustrative plots for the share ratio selection curve of different granularities. The blue

7

Published as a conference paper at ICLR 2024

Table 1: Comparison of CRPSsum (smaller is better) of models on six real-world datasets. The
reported mean and standard error are obtained from 10 re-training and evaluation independent runs.

Method Solar Electricity Traffic KDD-cup Taxi Wikipedia

Vec-LSTM ind-scaling 0.4825±0.0027 0.0949±0.0175 0.0915±0.0197 0.3560±0.1667 0.4794±0.0343 0.1254±0.0174

GP-Scaling 0.3802±0.0052 0.0499±0.0031 0.0753±0.0152 0.2983±0.0448 0.2265±0.0210 0.1351±0.0612

GP-Copula 0.3612±0.0035 0.0287±0.0005 0.0618±0.0018 0.3157±0.0462 0.1894±0.0087 0.0669±0.0009

LSTM-MAF 0.3427±0.0082 0.0312±0.0046 0.0526±0.0021 0.2919±0.1486 0.2295±0.0082 0.0763±0.0051

Transformer-MAF 0.3532±0.0053 0.0272±0.0017 0.0499±0.0011 0.2951±0.0504 0.1531±0.0038 0.0644±0.0037

TimeGrad 0.3335±0.0653 0.0232±0.0035 0.0414±0.0112 0.2902±0.2178 0.1255±0.0207 0.0555±0.0088

TACTiS 0.4209±0.0330 0.0259±0.0019 0.1093±0.0076 0.5406±0.1584 0.2070±0.0159 −
MG-Input 0.3239±0.0427 0.0238±0.0035 0.0658±0.0065 0.2977±0.1163 0.1592±0.0087 0.0567±0.0091

MG-TSD 0.3081±0.0099 0.0149±0.0017 0.0323±0.0125 0.1837±0.0865 0.1159±0.0132 0.0529±0.0054

Table 2: Influence of share ratios for different granularities on Solar dataset. The reported mean
and standard error are obtained from 10 re-training and evaluation independent runs.

Ratio 4 hour 6 hour
CRPSsum NMAEsum NRMSEsum CRPSsum NMAEsum NRMSEsum

20% 0.3489±0.0190 0.3826±0.0200 0.7177±0.0445 0.3378±0.0305 0.3703±0.0368 0.6916±0.0536

40% 0.3405±0.0415 0.3792±0.0386 0.6870±0.0870 0.3275±0.0250 0.3608±0.0267 0.6650±0.0374

60% 0.3268±0.0475 0.3604±0.0463 0.6579±0.0919 0.3166±0.0376 0.3491±0.0368 0.6478±0.0696

80% 0.3172±0.0249 0.3510±0.0240 0.6515±0.051 0.3221±0.0425 0.3555±0.0443 0.6542±0.0747

100% 0.3178±0.0342 0.3480±0.0356 0.6591±0.0503 0.3232±0.0396 0.3548±0.0417 0.6550±0.0660

Ratio 12 hour 24 hour
CRPSsum NMAEsum NRMSEsum CRPSsum NMAEsum NRMSEsum

20% 0.3440±0.0391 0.3767±0.0450 0.6999±0.0772 0.3315±0.0266 0.3693±0.0298 0.6801±0.0554

40% 0.3374±0.0370 0.3713±0.0346 0.6837±0.0641 0.3276±0.0358 0.3612±0.0361 0.6722±0.0552

60% 0.3240±0.0382 0.3597±0.0388 0.6694±0.0746 0.3382±0.0343 0.3737±0.0365 0.6878±0.0655

80% 0.3391±0.0390 0.3719±0.0403 0.6953±0.0691 0.3288±0.0460 0.3639±0.0476 0.6741±0.0929

100% 0.3284±0.0323 0.3538±0.0450 0.6609±0.0917 0.3407±0.0248 0.3692±0.0244 0.6933±0.0528

curve in each plot represents CRPSsum values between coarse-grained targets and 1-hour samples
come from 1-gran(finest-gran) model at each intermediate denoising step; each point on the orange
polylines represents the CRPSsum value of 1-hour predictions by 2-gran MG-TSD models with dif-
ferent share ratios ranging from [0.2, 0.4, 0.6, 0.8, 1.0], and the lowest point of the line segment can
be used to characterize the most suitable share ratio for the corresponding granularity.

The diffusion steps that can achieve relatively small CRPSsum values are colored in grey, suggest-
ing a proper range for the share ratio at which the model can achieve satisfactory performance.
From the plots, a strong correlation exists between the polyline of CRPSsum calculated during test
time and the share ratio selection curve, which validates the effectiveness of the selection rule. In
addition, as granularity transitions from fine to coarse (4h→6h→12h→24h), the diffusion steps at
which the distribution most resembles the coarse-grained targets increase (approximately at steps
20→40→60→60). This comparison shows the similarity between the diffusion process and the
smoothing process from the finest-grained to coarse-grained data, both of which involve a gradual
loss of finer characteristics from the finest-grained data through a smooth and convex transformation.

(a) CRPSsum values between 4-
hour targets and samples

(b) CRPSsum values between 6-
hour targets and samples

(c) CRPSsum values between 12-
hour targets and samples

(d) CRPSsum values between 24h-
granularity targets and samples

Figure 3: Selection of share ratio for MG-TSD models

The number of granularities. We further explore the impact of the number of granularities on
the MG-TSD model. As presented in Table 3, increasing the number of granularity levels gener-
ally boosts the performance of the MG-TSD model, which demonstrates that the introduction of

8

Published as a conference paper at ICLR 2024

multi-granularity information effectively guides the learning process of diffusion models. However,
the marginal benefit diminishes with the increase in granularity amounts. The results suggest that
utilizing four to five granularity levels generally suffices for achieving favorable performance.

Table 3: Influence of the number of granularities on MG-TSD performance for Solar and
Electricity Dataset.

Num of gran Solar Electricity

CRPSsum NMAEsum NRMSEsum CRPSsum NMAEsum NRMSEsum

2 0.3172±0.0249 0.3510±0.0240 0.6515±0.0571 0.0174±0.0042 0.0226±0.0071 0.0296±0.0086

3 0.3110±0.0329 0.3494±0.0378 0.6452±0.0632 0.0160±0.0020 0.0198±0.0029 0.0262±0.0039

4 0.3081±0.0099 0.3445±0.0102 0.6245±0.0268 0.0149±0.0017 0.0178±0.0018 0.0241±0.0030

5 0.3093±0.0411 0.3430±0.0451 0.6117±0.0746 0.0153±0.0027 0.0181±0.0043 0.0254±0.0058

Num of gran Traffic KDD-cup

CRPSsum NMAEsum NRMSEsum CRPSsum NMAEsum NRMSEsum

2 0.0347±0.0020 0.0396±0.0022 0.0593±0.0043 0.2427±0.1167 0.3171±0.1557 0.3745±0.1652

3 0.0334±0.0034 0.0382±0.0035 0.0574±0.0066 0.2414±0.1619 0.3030±0.1789 0.3808±0.2168

4 0.0326±0.0041 0.0374±0.0048 0.0573±0.0050 0.2198±0.1162 0.2893±0.1554 0.3315±0.1882

5 0.0323±0.0125 0.0370±0.0140 0.0563±0.0230 0.1837±0.0636 0.2463±0.0865 0.3001±0.0997

4.4 CASE STUDY

To illustrate the guidance effect of coarse-grained data, we visualize the ground truth and the pre-
dicted mean for both 1-hour and 4-hour granularity time series across four dimensions in the Solar
dataset in Figure 4. For comparison, the prediction results for the 1-hour data from TimeGrad are
also included. The results indicate that the TimeGrad model struggles to accurately capture the
peaks in the series and tends to underestimate the peaks in solar energy. In the MG-TSD model, the
coarse-grained samples display a more robust capacity to capture the trends, subsequently guiding
the generation of more precise fine-grained data.

00
:00

00
:00

00
:0006

:00
12

:00
18

:00
06

:00
12

:00
18

:00
0

50

100

150

200

250
Dim A

00
:00

00
:00

00
:0006

:00
12

:00
18

:00
06

:00
12

:00
18

:00
0

50

100

150

200

Dim B

00
:00

00
:00

00
:0006

:00
12

:00
18

:00
06

:00
12

:00
18

:00
0

20

40

60

80

100

120

Dim C

00
:00

00
:00

00
:0006

:00
12

:00
18

:00
06

:00
12

:00
18

:00
0

20

40

60

Dim D

Observations
TimeGrad: median prediction

MG-TSD: median prediction of 1h
MG-TSD: median prediction of 4h

TimeGrad: 50.0% prediction interval
MG-TSD: 50.0% prediction interval

Figure 4: Visualization of the ground-truth (Solar dataset), MG-TSD predicted mean for 4-hour
and 1-hour time series, and TimeGrad predicted mean for the 1-hour time series. Additionally, the
50% prediction intervals for the 1-hour data are also included. These plots represent some illustrative
dimensions out of 370 dimensions from the first 24-hour rolling-window.

5 CONCLUSION

In this paper, we introduce a novel Multi-Granularity Time Series Diffusion (MG-TSD) model,
which leverages the inherent granularity levels within the data as given targets at intermediate dif-
fusion steps to guide the learning process of diffusion models. We derive a novel multi-granularity
guidance diffusion loss function and propose a concise implementation method to effectively utilize
coarse-grained data across various granularity levels. Extensive experiments conducted on real-
world datasets demonstrate that MG-TSD outperforms existing time series prediction methods.

9

Published as a conference paper at ICLR 2024

REFERENCES

Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider, Valentin Flunkert, Jan
Gasthaus, Tim Januschowski, Danielle C. Maddix, Syama Rangapuram, David Salinas, Jasper
Schulz, Lorenzo Stella, Ali Caner Türkmen, and Yuyang Wang. GluonTS: Probabilistic and
Neural Time Series Modeling in Python. Journal of Machine Learning Research, 21(116):1–6,
2020a. URL http://jmlr.org/papers/v21/19-820.html.

Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider, Valentin Flunkert, Jan
Gasthaus, Tim Januschowski, Danielle C Maddix, Syama Rangapuram, David Salinas, Jasper
Schulz, et al. Gluonts: Probabilistic and neural time series modeling in python. The Journal of
Machine Learning Research, 21(1):4629–4634, 2020b.

Amulya Arun Ballakur and Arti Arya. Empirical evaluation of gated recurrent neural network ar-
chitectures in aviation delay prediction. In 2020 5th International Conference on Computing,
Communication and Security (ICCCS), pp. 1–7, 2020. doi: 10.1109/ICCCS49678.2020.9276855.

Yingmei Chen, Zhongyu Wei, and Xuanjing Huang. Incorporating corporation relationship via
graph convolutional neural networks for stock price prediction. In Proceedings of the 27th ACM
International Conference on Information and Knowledge Management, pp. 1655–1658, 2018.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Emmanuel de Bézenac, Syama Sundar Rangapuram, Konstantinos Benidis, Michael Bohlke-
Schneider, Richard Kurle, Lorenzo Stella, Hilaf Hasson, Patrick Gallinari, and Tim Januschowski.
Normalizing kalman filters for multivariate time series analysis. Advances in Neural Information
Processing Systems, 33:2995–3007, 2020.

Alexandre Drouin, Étienne Marcotte, and Nicolas Chapados. Tactis: Transformer-attentional cop-
ulas for time series. In International Conference on Machine Learning, pp. 5447–5493. PMLR,
2022.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation, 9
(8):1735–1780, 11 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL https:
//doi.org/10.1162/neco.1997.9.8.1735.

Min Hou, Chang Xu, Yang Liu, Weiqing Liu, Jiang Bian, Le Wu, Zhi Li, Enhong Chen, and Tie-
Yan Liu. Stock trend prediction with multi-granularity data: A contrastive learning approach with
adaptive fusion. In Proceedings of the 30th ACM International Conference on Information &
Knowledge Management, pp. 700–709, 2021.

Irena Koprinska, Dengsong Wu, and Zheng Wang. Convolutional neural networks for energy time
series forecasting. In 2018 international joint conference on neural networks (IJCNN), pp. 1–8.
IEEE, 2018.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling Long- and Short-Term
Temporal Patterns with Deep Neural Networks. In The 41st International ACM SIGIR Conference
on Research & Development in Information Retrieval, SIGIR ’18, pp. 95–104, New York, NY,
USA, June 2018. Association for Computing Machinery. ISBN 978-1-4503-5657-2. doi: 10.114
5/3209978.3210006.

Yan Li, Xinjiang Lu, Yaqing Wang, and Dejing Dou. Generative time series forecasting with dif-
fusion, denoise, and disentanglement. Advances in Neural Information Processing Systems, 35:
23009–23022, 2022.

10

http://jmlr.org/papers/v21/19-820.html
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

Published as a conference paper at ICLR 2024

Junyu Luo, Muchao Ye, Cao Xiao, and Fenglong Ma. Hitanet: Hierarchical time-aware atten-
tion networks for risk prediction on electronic health records. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 647–656, 2020.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. In The Eleventh International Conference on
Learning Representations, 2022.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. Advances in neural information processing systems, 30, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Pranav Rajpurkar, Emma Chen, Oishi Banerjee, and Eric J Topol. AI in health and medicine. Nature
medicine, 28(1):31–38, 2022.

Kashif Rasul. PytorchTS, 2021. URL https://github.com/zalandoresearch/pytor
ch-ts.

Kashif Rasul, Abdul-Saboor Sheikh, Ingmar Schuster, Urs Bergmann, and Roland Vollgraf. Mul-
tivariate probabilistic time series forecasting via conditioned normalizing flows. arXiv preprint
arXiv:2002.06103, 2020.

Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. Autoregressive denoising dif-
fusion models for multivariate probabilistic time series forecasting. In International Conference
on Machine Learning, pp. 8857–8868. PMLR, 2021.

David Salinas, Michael Bohlke-Schneider, Laurent Callot, Roberto Medico, and Jan Gasthaus.
High-dimensional multivariate forecasting with low-rank gaussian copula processes. Advances
in neural information processing systems, 32, 2019.

Vikash Sehwag, Caner Hazirbas, Albert Gordo, Firat Ozgenel, and Cristian Canton. Generating high
fidelity data from low-density regions using diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 11492–11501, 2022.

Lifeng Shen and James Kwok. Non-autoregressive conditional diffusion models for time series
prediction. In International Conference on Machine Learning, pp. 31016–31029. PMLR, 2023.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based
diffusion models for probabilistic time series imputation. Advances in Neural Information Pro-
cessing Systems, 34:24804–24816, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/fi
le/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. Advances in neural information
processing systems, 34:22419–22430, 2021.

Haixu Wu, Hang Zhou, Mingsheng Long, and Jianmin Wang. Interpretable weather forecasting for
worldwide stations with a unified deep model. Nature Machine Intelligence, pp. 1–10, 2023.

11

https://github.com/zalandoresearch/pytorch-ts
https://github.com/zalandoresearch/pytorch-ts
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Published as a conference paper at ICLR 2024

Peter T Yamak, Li Yujian, and Pius K Gadosey. A comparison between arima, lstm, and gru for
time series forecasting. In Proceedings of the 2019 2nd international conference on algorithms,
computing and artificial intelligence, pp. 49–55, 2019.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 35(12):11106–11115, May 2021. ISSN
2374-3468. doi: 10.1609/aaai.v35i12.17325.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International Conference
on Machine Learning, pp. 27268–27286. PMLR, 2022.

12

Published as a conference paper at ICLR 2024

A APPENDIX: DERIVATION OF LOSS FUNCTION

Recall that we specify a sequence of noisy samples xg
Ng

∗+1
, . . . ,xgN by applying the forward process

on xg . The superscript in Ng
∗ is suppressed for notation brevity. Suppose the coarse-grained data

xgN∗
∼ q(xg), where the subscript notation N∗ indicates that the observed xg is treated as a sample

from the distribution. (In the diffusion model, the subscript is typically denoted as 0, but we start
with N∗ to simplify the derivation).

log pθ(x
g
N∗

) ≤ − log pθ(x
g
N∗

) +DKL(q(x
g
(N∗+1):N |xgN∗

)∥pθ(xg(N∗+1):N |xgN∗
))

= − log pθ(x
g
N∗

) + Exg
(N∗+1):N

∼q(xg
(N∗+1):N

|xg
N∗)

[
log

q(xg(N∗+1):N |xgN∗
)

pθ(x
g
N∗:N

)/pθ(x
g
N∗

)

]
= − log pθ(x

g
N∗

) + Eq
[
log

q(xg(N∗+1):N |xgN∗
)

pθ(x
g
N∗:N

)
+ log pθ(x

g
N∗

)
]

= Eq
[
log

q(xg(N∗+1):N |xgN∗
)

pθ(x
g
N∗:N

)

]
(12)

Then, the training objective can be performed by optimizing the usual variational lower bound shown
below:

LVLB = Eq(xg
N∗:N)

[
log

q(xg(N∗+1):N |xgN∗
)

pθ(x
g
N∗:N

)

]
≥ −Eq(xg

N∗)
log pθ(x

g
N∗

) (13)

It is obvious that the objective LVLB is equivalent to the that of diffusion model in Ho et al. (2020)
when employing diffusion models on xg with N − N∗ steps. The forward process is defined as
q(xg(N∗+1):N |xgN∗

) =
∏N
n=N∗

q(xgn|x
g
n−1), where q(xgn|x

g
n−1) := N (

√
1− βgnx

g
n−1, β

g
nI). The

{βgn}Nn=N∗
share values with the variance schedule {β1

n}Nn=1 of the finest-grained data from index
N∗. And, the reverse process is defined by the θ-parameterized trajectory. Then following the same
technique in Ho et al. (2020), the LVLB can reduce to the usual loss of diffusion models.

B APPENDIX: EXPERIMENTS

B.1 BENCHMARK EXPERIMENTS

The results of the benchmark experiments, evaluated based on the metrics NRMSEsum and
NMAEsum, are presented in Table 4 and Table 5 respectively. In the experiments, we include four
extra baseline models for a more comprehensive comparison: TimeDiff (Shen & Kwok, 2023),
D3VAE (Li et al., 2022), PatchTST (Nie et al., 2022), and AutoFormer (Wu et al., 2021).

Table 4: Comparison of NRMSEsum (smaller is better) of models on six real-world datasets. The
reported mean and standard error are obtained from 10 re-training and evaluation independent runs.

Method Solar Electricity Traffic KDD-cup Taxi Wikipedia

Vec-LSTM ind-scaling 0.9952±0.0077 0.1439±0.0228 0.1451±0.0248 0.4461±0.1833 0.6398±0.0390 0.1618±0.0162

GP-Scaling 0.9004±0.0095 0.0811±0.0062 0.1469±0.0181 0.3445±0.0621 0.3598±0.0285 0.1710±0.1006

GP-Copula 0.8279±0.0053 0.0512±0.0009 0.1282±0.0033 0.2605±0.0227 0.3125±0.0113 0.0930±0.0076

Autoformer 0.7046±0.0000 0.0475±0.0000 0.0951±0.0000 0.8984±0.0000 0.3498±0.0000 0.1052±0.0000

PatchTST 0.7270±0.0000 0.0474±0.0000 0.1897±0.0000 0.5137±0.0000 0.3690±0.0000 0.0915±0.0000

D3VAE 0.7472±0.0508 0.1640±0.0928 0.4722±0.1197 0.5628±0.0419 0.7624±0.5598 2.2094±2.1646

TimeDiff 1.5985±0.0359 0.3714±0.0073 0.5520±0.0087 0.4955±0.0147 0.5479±0.0084 0.1412±0.0099

TimeGrad 0.6953±0.0845 0.0348±0.0057 0.0653±0.0244 0.4092±0.1332 0.2365±0.0386 0.0870±0.0106

TACTiS 0.8532±0.0851 0.0427±0.0023 0.2270±0.0159 0.6513±0.1767 0.3387±0.0097 -
MG-TSD 0.6178±0.0418 0.0241±0.0030 0.0563±0.0230 0.3001±0.0997 0.2334±0.0313 0.0810±0.0057

13

Published as a conference paper at ICLR 2024

Table 5: Comparison of NMAEsum (smaller is better) of models on six real-world datasets. The
reported mean and standard error are obtained from 10 re-training and evaluation independent runs.

Method Solar Electricity Traffic KDD-cup Taxi Wikipedia

Vec-LSTM ind-scaling 0.5091±0.0027 0.1261±0.0211 0.1042±0.0228 0.4193±0.1902 0.4974±0.0351 0.1416±0.0180

GP-Scaling 0.4945±0.0065 0.0648±0.0046 0.0975±0.0163 0.2892±0.0550 0.2867±0.0264 0.1452±0.1029

GP-Copula 0.4302±0.0046 0.0312±0.0007 0.0769±0.0022 0.2140±0.0124 0.2390±0.0098 0.0659±0.0061

Autoformer 0.6368±0.0000 0.0388±0.0000 0.0684±0.0000 0.7658±0.0000 0.2652±0.0000 0.1239±0.0000

PatchTST 0.4351±0.0000 0.0350±0.0000 0.1219±0.0000 0.4497±0.0000 0.2887±0.0000 0.0625±0.0000

D3VAE 0.4457±0.0377 0.1434±0.0892 0.3992±0.1177 0.4874±0.0520 0.6080±0.5061 2.0151±2.0005

TimeDiff 1.3343±0.0305 0.3519±0.0075 0.4782±0.0058 0.3630±0.0127 0.4521±0.0102 0.1146±0.0106

TimeGrad 0.3694±0.0400 0.0266±0.0049 0.0410±0.0089 0.3614±0.1334 0.1365±0.0193 0.0631±0.008

TACTiS 0.4448±0.0313 0.0310±0.0015 0.1352±0.0159 0.6078±0.1718 0.2244±0.0036 -
MG-TSD 0.3347±0.0220 0.0178±0.0018 0.0370±0.0140 0.2463±0.0865 0.1300±0.0150 0.0601±0.0057

B.2 MORE EXPERIMENT SETTINGS

B.2.1 PERFORMANCE FOR LONG-TERM FORECASTING

To evaluate the performance of MG-TSD for long-term forecasting, we maintain a fixed context
length of 24 and extend the prediction length to 24, 48, 96, and 144. The results of the datasets
Solar and Eelectrity are displayed in Figure 5.

The results in Figure 5 indicate that MG-TSD performs well for long-time forecasting. The results
indicate that as the prediction length increases, the performance of our proposed method stays robust,
exhibiting no sudden decline. Furthermore, our method consistently outperforms the competitive
baseline. This performance advantage is anticipated to persist in future trends, with no indication of
convergence between the approaches.

(a) Solar: Performance Evaluation Across Different Prediction Lengths (b) Electricity: Performance Evaluation Across Different Prediction Lengths

Figure 5: Performance evaluation across different prediction horizons for MG-TSD with TimeGrad
as the baseline Model. The context length is fixed at 24h and the prediction length is tested at
24h, 48h, 96h, and 144h. The average CRPS, NRMSE, and NMAE metrics are computed for both
MG-TSD and the baseline over 10 independent runs, with error bars indicating the corresponding
standard deviations.

B.2.2 TIME AND MEMORY USAGE OF THE MG-TSD MODEL DURING TRAINING

Experiments have been conducted to evaluate the time and memory usage of the MG-TSD model
during training across various granularities. These experiments were executed using a single A6000
card with 48G memory capacity. The Solar dataset was utilized in this context, with a batch size of
128, an input size of 552, 100 diffusion steps, and 30 epochs.

As illustrated in Figure 6, there is a linear increase in memory consumption with an increase in
granularity. A slight surge in training time is also observed. These findings are coherent with the
architecture of our model. In particular, each additional granularity results in the introduction of
an extra RNN in the Temporal Process Module and an increase in computation within the Guided
Diffusion Process Module. As per theoretical expectations, these resource consumptions should
exhibit linear growth. The slight increase in training time can be ascribed to the design of the
Multi-granularity Data Generator Module which enables parallel forward processes across different
granularities, thus promoting acceleration. Moreover, it is pertinent to mention that an excessive
increase in granularity may not notably boost the final prediction results, hence the granularity will
be kept within a certain range. Therefore, the consumption of memory will not rise indefinitely.

14

Published as a conference paper at ICLR 2024

2 3 4 5
Granularity

5

10

15

20

25

30

M
em

or
y(

GB
)/

Ru
n

Ti
m

e(
m

in
)

Memory
Run Time

Figure 6: Comparison of Time and Memory Consumption at Different Granularity Levels in MG-
TSD Model Training

B.2.3 VARIATIONS IN THE FREQUENCY DOMAIN OF TIME SERIES DATA: THE IMPACT OF
GRANULARITY AND DENOISING STEPS

We sampled series from Solar dateset and we conducted a Fast Fourier Transform to extract the sea-
sonality components of the series, as well as the samples of different granularities and corresponding
noisy samples along the forward diffusion process.

0 25 50 75 100 125 150
Frequency

0

500

1000

1500

2000

2500

3000

3500

Am
pl

itu
de

gran: 1h
gran: 4h
gran: 6h
gran: 12h
gran: 24h

(a) Different granularities

0 25 50 75 100 125 150
Frequency

0

500

1000

1500

2000

2500

3000

3500

Am
pl

itu
de

diffusion step: 0
diffusion step: 20
diffusion step: 40
diffusion step: 60
diffusion step: 100

(b) Different diffusion steps

Figure 7: Variations in the frequency domain of time series data: the impact of granularity and
denoising steps.

As depicted in Figure 7(a), as granularity becomes coarser, the components of all outstanding fre-
quencies get lower, while the high-frequency peak (around 125 and 80) diminishes quicker than
lower-frequency peak (around 45). Figure 7(b) demonstrates the distribution of frequency compo-
nents of the same noisy series with gradually ascending forward diffusion steps and the same pattern
is observable. This empirical study indicates the connection between the forward diffusion process
and the smoothing process from fine-grained data to coarse-grained data, both of which result in
losing finer informative features.

C APPENDIX: IMPLEMENTATION DETAILS

C.1 BENCHMARK DATASETS

For our experiments, we use Solar, Electricity, Traffic, Taxi, KDD-cup and
Wikipedia open-source datasets, with their properties listed in Table 6.

The dataset can be obtained through the links below.

(i) Solar: https://www.nrel.gov/grid/solar-power-data.html

15

https://www.nrel.gov/grid/solar-power-data.html

Published as a conference paper at ICLR 2024

(ii) Electricity: https://archive.ics.uci.edu/dataset/321/electricit
yloaddiagrams20112014

(iii) Traffic: https://archive.ics.uci.edu/dataset/204/pems+sf

(iv) Taxi: https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.pa
ge

(v) KDD-cup: https://www.kdd.org/kdd2018/kdd-cup

(vi) Wikipedia: https://github.com/mbohlkeschneider/gluon-ts/tree/mv
_release/datasets

Name Frequency Number of series Context length Prediction length Multi-granularity dictionary
Solar 1 hour 137 24 24 [1 hour, 4 hour, 12 hour, 24hour, 48 hour]

Electricity 1 hour 370 24 24 [1 hour, 4 hour, 12 hour, 24 hour, 48 hour]
Traffic 1 hour 963 24 24 [1 hour, 4 hour, 12 hour, 24 hour, 48 hour]
Taxi 30 min 1214 24 24 [30 min , 2 hour, 6 hour, 12 hour, 24 hour]

KDD-cup 1 hour 270 48 48 [1 hour, 4 hour, 12 hour, 24hour, 48 hour]
Wikipedia 1 day 2000 30 30 [1 day, 4 day, 7 day, 14 day]

Table 6: Detailed information of the datasets used in our benchmark including data frequency and
number of times series (dimension), including the information about context length and prediction
length and the multi-granularity dictionary utilized in the multivariate time series forecasting task.

C.2 LIBRARIES USED

The MG-TSD code in this study is implemented using PyTorch (Paszke et al., 2019). It utilizes the
PytorchTS library (Rasul, 2021), which enables convenient integration of PyTorch models with the
GluonTS library (Alexandrov et al., 2020b) on which we heavily rely for data preprocessing, model
training, and evaluation in our experiments.

The code for the baseline methods is obtained from the following sources.

(i) Vec-LSTM-ind-scaling: models the dynamics via an RNN and outputs the parameters of an
independent Gaussian distribution with mean-scaling.
Code: https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release;

(ii) GP-scaling: a model that unrolls an LSTM with scaling on each individual time series before
reconstructing the joint distribution via a low-rank Gaussian.
Code: https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release

(iii) GP-Copula: a model that unrolls an LSTM on each individual time series. The joint emission
distribution is then represented by a low-rank plus diagonal covariance Gaussian copula.
Code: https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release;

(iv) LSTM-MAF: a model which utilizes LSTM for modeling the temporal conditioning and em-
ploys Masked Autoregressive Flow (Papamakarios et al., 2017) for the distribution emission.
Code: https://github.com/zalandoresearch/pytorch-ts/tree/master/pt
s/model/tempflow

(v) Transformer-MAF: a model which utilizes Transformer (Vaswani et al., 2017) for modeling the
temporal conditioning and employs Masked Autoregressive Flow (Papamakarios et al., 2017) for
the distribution emission model.
Code: https://github.com/zalandoresearch/pytorch-ts/tree/master/pt
s/model/transformer_tempflow

(vi) TimeGrad: an auto-regressive model designed for multivariate probabilistic time series fore-
casting, assisted by an energy-based model.
Code: https://github.com/zalandoresearch/pytorch-ts

(vii) TACTiS: a non-parametric copula model based on transformer architecture.
Code: https://github.com/servicenow/tactis

16

https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014
https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014
https://archive.ics.uci.edu/dataset/204/pems+sf
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.kdd.org/kdd2018/kdd-cup
https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release/datasets
https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release/datasets
https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release
https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release
https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release
https://github.com/zalandoresearch/pytorch-ts/tree/master/pts/model/tempflow
https://github.com/zalandoresearch/pytorch-ts/tree/master/pts/model/tempflow
https://github.com/zalandoresearch/pytorch-ts/tree/master/pts/model/transformer_tempflow
https://github.com/zalandoresearch/pytorch-ts/tree/master/pts/model/transformer_tempflow
https://github.com/zalandoresearch/pytorch-ts
https://github.com/servicenow/tactis

Published as a conference paper at ICLR 2024

(viii) D3VAE: a bidirectional variational auto-encoder(BVAE) equipped with diffusion, denoise, and
disentanglement.
Code: https://github.com/ramber1836/d3vae.

(ix) TimeDiff: a predictive framework trained by blending hidden contextual elements with future
actual outcomes for sample conditioning.
Code: There is no publicly available code; we obtained the code by emailing the author.

(x) Autoformer: redefines the Transformer with a deep decomposition architecture, including se-
quence decomposition units, self-correlation mechanisms, and encoder-decoders.
Code: https://github.com/thuml/Autoformer

(xi) PatchTST: an efficient design of Transformer-based models for multivariate time series fore-
casting and self-supervised representation learning.
Code: https://github.com/yuqinie98/PatchTST

C.3 HYPER-PARAMETER SETTING FOR EACH MODEL

Dataset Num gran Gran dict Share ratio Loss weight

Solar
Electricity
Traffic
KDD-cup

2 [1h,4h]
[1h,12h]

[1,0.9]
[0.9,0.1][1,0.8]

[1,0.6]

3 [1h,4h,12h]
[1h,4h,24h]

[1,0.9,0.8] [0.8, 0.1, 0.1]
[1,0.8,0.8] [0.9, 0.05, 0.05]
[1,0.8,0.6] [0.85, 0.10, 0.05]

4 [1h,4h,12h,24h]
[1h,4h,12h,48h]

[1,0.9,0.8,0.8]
[0.8, 0.1, 0.05, 0.05]

[0.7,0.1,0.1,0.1]
[1,0.9,0.8,0.6]
[1,0.8,0.6,0.6]
[1,0.8,0.6,0.4]

5 [1h,4h,8h,12h,24h]
[1h,4h,12h,24h,48h]

[1,0.9,0.8,0.6,0.6]
[0.8,0.1,0.05,0.04,0.01]

[0.8,0.05,0.05,0.05,0.05]
[0.6,0.1,0.1,0.1,0.1]

[1,0.9,0.8,0.6,0.4]
[1,0.8,0.6,0.6,0.6]
[1,0.8,0.6,0.6,0.4]
[1,0.8,0.6,0.4,0.4]

Taxi 2

[30m,2h]
[1,0.8]
[1,0.6] [0.9,0.1][30m,6h]

[30m,12h]
[30m,24h]

Wikipedia 3
[1d,4d]
[1d,7d]

[1d,14d]

[1,0.8]
[1,0.6] [0.9,0.1]

Table 7: Tested hyper-parameter values for the MG-TSD Model. The reported results in the paper
are based on a parameter search within these choices.

D APPENDIX: METRICS

More details about the metrics we adopt can be found in Gluonts documentation (Alexandrov et al.,
2020a). We briefly summarize them as below:

CRPSsum : From de Bézenac et al. (2020), CRPS is a univariate strictly proper scoring rule which
measures the compatibility of a cumulative distribution function F with an observation x ∈ R as

CRPS(F, x) =
∫
R
(F (y)− 1(x ≤ y))2dy

where I{x ≤ y} is the indicator function, which is 1 if x ≤ y and 0 otherwise. The CRPS attains the
minimum value when the predictive distribution F same as the data distribution. CRPSsum extends
CRPS to multivariate time series with a simple modification.

CRPSsum = Et[CRPS(F−1
sum,

∑
i

xit)],

17

https://github.com/ramber1836/d3vae
https://github.com/thuml/Autoformer
https://github.com/yuqinie98/PatchTST

Published as a conference paper at ICLR 2024

where F−1
sum is calculated by summing samples across dimensions and then sorted to get quantiles. A

smaller CRPSsum indicates better performance.

NMAE: NMAE is a normalized version of the Mean Absolute Error (MAE) that takes into consid-
eration the scale of the target values. The formula for NMAE is as follows:

NMAE =
mean(|(Ŷ − Y)|)

mean(|Y |)

Similarly, in this formula, Ŷ represents the predicted time series, and Y represents the true target
time series. NMAE calculates the average absolute difference between predictions and true values,
normalized by the mean absolute magnitude of the target values. A smaller NMAE implies more
accurate predictions.

NRMSE: NRMSE is a normalized adaptation of the Root Mean Squared Error (RMSE) that factors
in the scale of the target values. The formula for NRMSE is as follows:

NRMSE =

√
mean((Ŷ − Y)2)

mean(|Y |)

Here, Ŷ represents the predicted time series, and Y represents the true target time series. NRMSE
measures the average squared difference between predictions and true values, normalized by the
mean absolute magnitude of the target values. A smaller NRMSE indicates more accurate predic-
tions.

18

Published as a conference paper at ICLR 2024

E APPENDIX: MORE ILLUSTRATIVE PLOTS

00
:00

00
:00

00
:0006

:00
12

:00
18

:00
06

:00
12

:00
18

:00
0

50

100

150

200

250
Dim 0

00
:00

00
:00

00
:0006

:00
12

:00
18

:00
06

:00
12

:00
18

:00
0

50

100

150
Dim 1

00
:00

00
:00

00
:0006

:00
12

:00
18

:00
06

:00
12

:00
18

:00
0

25

50

75

100

125
Dim 2

00
:00

00
:00

00
:0006

:00
12

:00
18

:00
06

:00
12

:00
18

:00
0

20

40

60

80
Dim 3

00
:00

00
:00

00
:0006

:00
12

:00
18

:00
06

:00
12

:00
18

:00
0

50

100

150

200

Dim 4

00
:00

00
:00

00
:0006

:00
12

:00
18

:00
06

:00
12

:00
18

:00
0

100

200

300

400
Dim 5

00
:00

00
:00

00
:0006

:00
12

:00
18

:00
06

:00
12

:00
18

:00
0

25

50

75

100

125
Dim 6

00
:00

00
:00

00
:0006

:00
12

:00
18

:00
06

:00
12

:00
18

:00
0

20

40

60

80

100
Dim 7

00
:00

00
:00

00
:0006

:00
12

:00
18

:00
06

:00
12

:00
18

:00
0

20

40

60
Dim 8

00
:00

00
:00

00
:0006

:00
12

:00
18

:00
06

:00
12

:00
18

:00
0

20

40

60

80

Dim 9

00
:00

00
:00

00
:0006

:00
12

:00
18

:00
06

:00
12

:00
18

:00
0

25

50

75

100

125

Dim 10

00
:00

00
:00

00
:0006

:00
12

:00
18

:00
06

:00
12

:00
18

:00
0

20

40

60

80
Dim 11

00
:00

00
:00

00
:0006

:00
12

:00
18

:00
06

:00
12

:00
18

:00
0

20

40

60

Dim 12

00
:00

00
:00

00
:0006

:00
12

:00
18

:00
06

:00
12

:00
18

:00
0

20

40

60
Dim 13

00
:00

00
:00

00
:0006

:00
12

:00
18

:00
06

:00
12

:00
18

:00
0

25

50

75

100

125
Dim 14

00
:00

00
:00

00
:0006

:00
12

:00
18

:00
06

:00
12

:00
18

:00
0

20

40

60

Dim 15

Observations
TimeGrad: median prediction

MG-TSD: median prediction of 1h
MG-TSD: median prediction of 4h

TimeGrad: 50.0% prediction interval
MG-TSD: 50.0% prediction interval

Figure 8: MG-TSD and TimeGrad prediction intervals and test set ground-truth for Solar data of
some illustrative dimensions of 370 dimensions from first rolling-window.

19

	Introduction
	Background
	Denoising diffusion probabilistic models
	TimeGrad Model
	Problem formulation

	Method
	MG-TSD model architecture
	Multi-granularity Guided Diffusion
	Coarse-grained guidance
	Multi-granularity Guidance

	Experiments
	Settings
	Results
	Ablation Study
	Case Study

	Conclusion
	Appendix: Derivation of loss function
	Appendix: Experiments
	Benchmark experiments
	More experiment settings
	Performance for long-term forecasting
	Time and memory usage of the MG-TSD model during training
	Variations in the Frequency Domain of Time Series Data: The Impact of Granularity and Denoising Steps

	Appendix: Implementation details
	Benchmark datasets
	Libraries used
	Hyper-parameter setting for each model

	Appendix: Metrics
	Appendix: More illustrative plots

