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A APPENDIX: DERIVATION OF LOSS FUNCTION

Recall that we specify a sequence of noisy samples xg
Ng

∗+1
, . . . ,xgN by applying the forward process

on xg . The superscript in Ng
∗ is suppressed for notation brevity. Suppose the coarse-grained data

xgN∗
∼ q(xg), where the subscript notation N∗ indicates that the observed xg is treated as a sample

from the distribution. (In the diffusion model, the subscript is typically denoted as 0, but we start
with N∗ to simplify the derivation).
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Then, the training objective can be performed by optimizing the usual variational lower bound shown
below:
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It is obvious that the objective LVLB is equivalent to the that of diffusion model in Ho et al. (2020)
when employing diffusion models on xg with N − N∗ steps. The forward process is defined as
q(xg(N∗+1):N |xgN∗

) =
∏N
n=N∗

q(xgn|x
g
n−1), where q(xgn|x

g
n−1) := N (

√
1− βgnx

g
n−1, β

g
nI). The

{βgn}Nn=N∗
share values with the variance schedule {β1

n}Nn=1 of the finest-grained data from index
N∗. And, the reverse process is defined by the θ-parameterized trajectory. Then following the same
technique in Ho et al. (2020), the LVLB can reduce to the usual loss of diffusion models.

B APPENDIX: EXPERIMENTS

B.1 BENCHMARK EXPERIMENTS

The results of the benchmark experiments, evaluated based on the metrics NRMSEsum and
NMAEsum, are presented in Table 4 and Table 5 respectively. In the experiments, we include four
extra baseline models for a more comprehensive comparison: TimeDiff (Shen & Kwok, 2023),
D3VAE (Li et al., 2022), PatchTST (Nie et al., 2022), and AutoFormer (Wu et al., 2021).

Table 4: Comparison of NRMSEsum (smaller is better) of models on six real-world datasets. The
reported mean and standard error are obtained from 10 re-training and evaluation independent runs.

Method Solar Electricity Traffic KDD-cup Taxi Wikipedia

Vec-LSTM ind-scaling 0.9952±0.0077 0.1439±0.0228 0.1451±0.0248 0.4461±0.1833 0.6398±0.0390 0.1618±0.0162

GP-Scaling 0.9004±0.0095 0.0811±0.0062 0.1469±0.0181 0.3445±0.0621 0.3598±0.0285 0.1710±0.1006

GP-Copula 0.8279±0.0053 0.0512±0.0009 0.1282±0.0033 0.2605±0.0227 0.3125±0.0113 0.0930±0.0076

Autoformer 0.7046±0.0000 0.0475±0.0000 0.0951±0.0000 0.8984±0.0000 0.3498±0.0000 0.1052±0.0000

PatchTST 0.7270±0.0000 0.0474±0.0000 0.1897±0.0000 0.5137±0.0000 0.3690±0.0000 0.0915±0.0000

D3VAE 0.7472±0.0508 0.1640±0.0928 0.4722±0.1197 0.5628±0.0419 0.7624±0.5598 2.2094±2.1646

TimeDiff 1.5985±0.0359 0.3714±0.0073 0.5520±0.0087 0.4955±0.0147 0.5479±0.0084 0.1412±0.0099

TimeGrad 0.6953±0.0845 0.0348±0.0057 0.0653±0.0244 0.4092±0.1332 0.2365±0.0386 0.0870±0.0106

TACTiS 0.8532±0.0851 0.0427±0.0023 0.2270±0.0159 0.6513±0.1767 0.3387±0.0097 -
MG-TSD 0.6178±0.0418 0.0241±0.0030 0.0563±0.0230 0.3001±0.0997 0.2334±0.0313 0.0810±0.0057
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Table 5: Comparison of NMAEsum (smaller is better) of models on six real-world datasets. The
reported mean and standard error are obtained from 10 re-training and evaluation independent runs.

Method Solar Electricity Traffic KDD-cup Taxi Wikipedia

Vec-LSTM ind-scaling 0.5091±0.0027 0.1261±0.0211 0.1042±0.0228 0.4193±0.1902 0.4974±0.0351 0.1416±0.0180

GP-Scaling 0.4945±0.0065 0.0648±0.0046 0.0975±0.0163 0.2892±0.0550 0.2867±0.0264 0.1452±0.1029

GP-Copula 0.4302±0.0046 0.0312±0.0007 0.0769±0.0022 0.2140±0.0124 0.2390±0.0098 0.0659±0.0061

Autoformer 0.6368±0.0000 0.0388±0.0000 0.0684±0.0000 0.7658±0.0000 0.2652±0.0000 0.1239±0.0000

PatchTST 0.4351±0.0000 0.0350±0.0000 0.1219±0.0000 0.4497±0.0000 0.2887±0.0000 0.0625±0.0000

D3VAE 0.4457±0.0377 0.1434±0.0892 0.3992±0.1177 0.4874±0.0520 0.6080±0.5061 2.0151±2.0005

TimeDiff 1.3343±0.0305 0.3519±0.0075 0.4782±0.0058 0.3630±0.0127 0.4521±0.0102 0.1146±0.0106

TimeGrad 0.3694±0.0400 0.0266±0.0049 0.0410±0.0089 0.3614±0.1334 0.1365±0.0193 0.0631±0.008

TACTiS 0.4448±0.0313 0.0310±0.0015 0.1352±0.0159 0.6078±0.1718 0.2244±0.0036 -
MG-TSD 0.3347±0.0220 0.0178±0.0018 0.0370±0.0140 0.2463±0.0865 0.1300±0.0150 0.0601±0.0057

B.2 MORE EXPERIMENT SETTINGS

B.2.1 PERFORMANCE FOR LONG-TERM FORECASTING

To evaluate the performance of MG-TSD for long-term forecasting, we maintain a fixed context
length of 24 and extend the prediction length to 24, 48, 96, and 144. The results of the datasets
Solar and Eelectrity are displayed in Figure 5.

The results in Figure 5 indicate that MG-TSD performs well for long-time forecasting. The results
indicate that as the prediction length increases, the performance of our proposed method stays robust,
exhibiting no sudden decline. Furthermore, our method consistently outperforms the competitive
baseline. This performance advantage is anticipated to persist in future trends, with no indication of
convergence between the approaches.

(a) Solar: Performance Evaluation Across Different Prediction Lengths (b) Electricity: Performance Evaluation Across Different Prediction Lengths

Figure 5: Performance evaluation across different prediction horizons for MG-TSD with TimeGrad
as the baseline Model. The context length is fixed at 24h and the prediction length is tested at
24h, 48h, 96h, and 144h. The average CRPS, NRMSE, and NMAE metrics are computed for both
MG-TSD and the baseline over 10 independent runs, with error bars indicating the corresponding
standard deviations.

B.2.2 TIME AND MEMORY USAGE OF THE MG-TSD MODEL DURING TRAINING

Experiments have been conducted to evaluate the time and memory usage of the MG-TSD model
during training across various granularities. These experiments were executed using a single A6000
card with 48G memory capacity. The Solar dataset was utilized in this context, with a batch size of
128, an input size of 552, 100 diffusion steps, and 30 epochs.

As illustrated in Figure 6, there is a linear increase in memory consumption with an increase in
granularity. A slight surge in training time is also observed. These findings are coherent with the
architecture of our model. In particular, each additional granularity results in the introduction of
an extra RNN in the Temporal Process Module and an increase in computation within the Guided
Diffusion Process Module. As per theoretical expectations, these resource consumptions should
exhibit linear growth. The slight increase in training time can be ascribed to the design of the
Multi-granularity Data Generator Module which enables parallel forward processes across different
granularities, thus promoting acceleration. Moreover, it is pertinent to mention that an excessive
increase in granularity may not notably boost the final prediction results, hence the granularity will
be kept within a certain range. Therefore, the consumption of memory will not rise indefinitely.
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Figure 6: Comparison of Time and Memory Consumption at Different Granularity Levels in MG-
TSD Model Training

B.2.3 VARIATIONS IN THE FREQUENCY DOMAIN OF TIME SERIES DATA: THE IMPACT OF
GRANULARITY AND DENOISING STEPS

We sampled series from Solar dateset and we conducted a Fast Fourier Transform to extract the sea-
sonality components of the series, as well as the samples of different granularities and corresponding
noisy samples along the forward diffusion process.
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Figure 7: Variations in the frequency domain of time series data: the impact of granularity and
denoising steps.

As depicted in Figure 7(a), as granularity becomes coarser, the components of all outstanding fre-
quencies get lower, while the high-frequency peak (around 125 and 80) diminishes quicker than
lower-frequency peak (around 45). Figure 7(b) demonstrates the distribution of frequency compo-
nents of the same noisy series with gradually ascending forward diffusion steps and the same pattern
is observable. This empirical study indicates the connection between the forward diffusion process
and the smoothing process from fine-grained data to coarse-grained data, both of which result in
losing finer informative features.

C APPENDIX: IMPLEMENTATION DETAILS

C.1 BENCHMARK DATASETS

For our experiments, we use Solar, Electricity, Traffic, Taxi, KDD-cup and
Wikipedia open-source datasets, with their properties listed in Table 6.

The dataset can be obtained through the links below.

(i) Solar: https://www.nrel.gov/grid/solar-power-data.html
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(ii) Electricity: https://archive.ics.uci.edu/dataset/321/electricit
yloaddiagrams20112014

(iii) Traffic: https://archive.ics.uci.edu/dataset/204/pems+sf

(iv) Taxi: https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.pa
ge

(v) KDD-cup: https://www.kdd.org/kdd2018/kdd-cup

(vi) Wikipedia: https://github.com/mbohlkeschneider/gluon-ts/tree/mv
_release/datasets

Name Frequency Number of series Context length Prediction length Multi-granularity dictionary
Solar 1 hour 137 24 24 [1 hour, 4 hour, 12 hour, 24hour, 48 hour]

Electricity 1 hour 370 24 24 [1 hour, 4 hour, 12 hour, 24 hour, 48 hour]
Traffic 1 hour 963 24 24 [1 hour, 4 hour, 12 hour, 24 hour, 48 hour]
Taxi 30 min 1214 24 24 [30 min , 2 hour, 6 hour, 12 hour, 24 hour]

KDD-cup 1 hour 270 48 48 [1 hour, 4 hour, 12 hour, 24hour, 48 hour]
Wikipedia 1 day 2000 30 30 [1 day, 4 day, 7 day, 14 day]

Table 6: Detailed information of the datasets used in our benchmark including data frequency and
number of times series (dimension), including the information about context length and prediction
length and the multi-granularity dictionary utilized in the multivariate time series forecasting task.

C.2 LIBRARIES USED

The MG-TSD code in this study is implemented using PyTorch (Paszke et al., 2019). It utilizes the
PytorchTS library (Rasul, 2021), which enables convenient integration of PyTorch models with the
GluonTS library (Alexandrov et al., 2020b) on which we heavily rely for data preprocessing, model
training, and evaluation in our experiments.

The code for the baseline methods is obtained from the following sources.

(i) Vec-LSTM-ind-scaling: models the dynamics via an RNN and outputs the parameters of an
independent Gaussian distribution with mean-scaling.
Code: https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release;

(ii) GP-scaling: a model that unrolls an LSTM with scaling on each individual time series before
reconstructing the joint distribution via a low-rank Gaussian.
Code: https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release

(iii) GP-Copula: a model that unrolls an LSTM on each individual time series. The joint emission
distribution is then represented by a low-rank plus diagonal covariance Gaussian copula.
Code: https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release;

(iv) LSTM-MAF: a model which utilizes LSTM for modeling the temporal conditioning and em-
ploys Masked Autoregressive Flow (Papamakarios et al., 2017) for the distribution emission.
Code: https://github.com/zalandoresearch/pytorch-ts/tree/master/pt
s/model/tempflow

(v) Transformer-MAF: a model which utilizes Transformer (Vaswani et al., 2017) for modeling the
temporal conditioning and employs Masked Autoregressive Flow (Papamakarios et al., 2017) for
the distribution emission model.
Code: https://github.com/zalandoresearch/pytorch-ts/tree/master/pt
s/model/transformer_tempflow

(vi) TimeGrad: an auto-regressive model designed for multivariate probabilistic time series fore-
casting, assisted by an energy-based model.
Code: https://github.com/zalandoresearch/pytorch-ts

(vii) TACTiS: a non-parametric copula model based on transformer architecture.
Code: https://github.com/servicenow/tactis
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(viii) D3VAE: a bidirectional variational auto-encoder(BVAE) equipped with diffusion, denoise, and
disentanglement.
Code: https://github.com/ramber1836/d3vae.

(ix) TimeDiff: a predictive framework trained by blending hidden contextual elements with future
actual outcomes for sample conditioning.
Code: There is no publicly available code; we obtained the code by emailing the author.

(x) Autoformer: redefines the Transformer with a deep decomposition architecture, including se-
quence decomposition units, self-correlation mechanisms, and encoder-decoders.
Code: https://github.com/thuml/Autoformer

(xi) PatchTST: an efficient design of Transformer-based models for multivariate time series fore-
casting and self-supervised representation learning.
Code: https://github.com/yuqinie98/PatchTST

C.3 HYPER-PARAMETER SETTING FOR EACH MODEL

Dataset Num gran Gran dict Share ratio Loss weight

Solar
Electricity
Traffic
KDD-cup

2 [1h,4h]
[1h,12h]

[1,0.9]
[0.9,0.1][1,0.8]

[1,0.6]

3 [1h,4h,12h]
[1h,4h,24h]

[1,0.9,0.8] [0.8, 0.1, 0.1]
[1,0.8,0.8] [0.9, 0.05, 0.05]
[1,0.8,0.6] [0.85, 0.10, 0.05]

4 [1h,4h,12h,24h]
[1h,4h,12h,48h]

[1,0.9,0.8,0.8]
[0.8, 0.1, 0.05, 0.05]

[0.7,0.1,0.1,0.1]
[1,0.9,0.8,0.6]
[1,0.8,0.6,0.6]
[1,0.8,0.6,0.4]

5 [1h,4h,8h,12h,24h]
[1h,4h,12h,24h,48h]

[1,0.9,0.8,0.6,0.6]
[0.8,0.1,0.05,0.04,0.01]

[0.8,0.05,0.05,0.05,0.05]
[0.6,0.1,0.1,0.1,0.1]

[1,0.9,0.8,0.6,0.4]
[1,0.8,0.6,0.6,0.6]
[1,0.8,0.6,0.6,0.4]
[1,0.8,0.6,0.4,0.4]

Taxi 2

[30m,2h]
[1,0.8]
[1,0.6] [0.9,0.1][30m,6h]

[30m,12h]
[30m,24h]

Wikipedia 3
[1d,4d]
[1d,7d]

[1d,14d]

[1,0.8]
[1,0.6] [0.9,0.1]

Table 7: Tested hyper-parameter values for the MG-TSD Model. The reported results in the paper
are based on a parameter search within these choices.

D APPENDIX: METRICS

More details about the metrics we adopt can be found in Gluonts documentation (Alexandrov et al.,
2020a). We briefly summarize them as below:

CRPSsum : From de Bézenac et al. (2020), CRPS is a univariate strictly proper scoring rule which
measures the compatibility of a cumulative distribution function F with an observation x ∈ R as

CRPS(F, x) =
∫
R
(F (y)− 1(x ≤ y))2dy

where I{x ≤ y} is the indicator function, which is 1 if x ≤ y and 0 otherwise. The CRPS attains the
minimum value when the predictive distribution F same as the data distribution. CRPSsum extends
CRPS to multivariate time series with a simple modification.

CRPSsum = Et[CRPS(F−1
sum,

∑
i

xit)],
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where F−1
sum is calculated by summing samples across dimensions and then sorted to get quantiles. A

smaller CRPSsum indicates better performance.

NMAE: NMAE is a normalized version of the Mean Absolute Error (MAE) that takes into consid-
eration the scale of the target values. The formula for NMAE is as follows:

NMAE =
mean(|(Ŷ − Y )|)

mean(|Y |)

Similarly, in this formula, Ŷ represents the predicted time series, and Y represents the true target
time series. NMAE calculates the average absolute difference between predictions and true values,
normalized by the mean absolute magnitude of the target values. A smaller NMAE implies more
accurate predictions.

NRMSE: NRMSE is a normalized adaptation of the Root Mean Squared Error (RMSE) that factors
in the scale of the target values. The formula for NRMSE is as follows:

NRMSE =

√
mean((Ŷ − Y )2)

mean(|Y |)

Here, Ŷ represents the predicted time series, and Y represents the true target time series. NRMSE
measures the average squared difference between predictions and true values, normalized by the
mean absolute magnitude of the target values. A smaller NRMSE indicates more accurate predic-
tions.
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E APPENDIX: MORE ILLUSTRATIVE PLOTS
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Figure 8: MG-TSD and TimeGrad prediction intervals and test set ground-truth for Solar data of
some illustrative dimensions of 370 dimensions from first rolling-window.
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