
A Preliminaries on Self-Concordant Barriers

In this section we provide the necessary background on self-concordant barriers. For a more
comprehensive overview on the theory of self-concordant barriers and their role in interior-point
methods we refer to the book of Nesterov [2004], the lecture notes of Nemirovski [2004], as well as
the survey of Nemirovski and Todd [2008]. We start this section by introducing the central concept
of a self-concordant function.

A.1 Self-Concordant Functions

Definition A.1 (Self-Concordant Function). Let Q ⊆ Rd be a nonempty open and convex set. A
convex function f : Q→ R in C3 is called self-concordant on Q if it satisfies the following properties.

(i) (Barrier property) For every sequence (xi ∈ Q)∞i=1 converging to a boundary point of Q as
i→∞ it holds that f(xi)→∞;

(ii) (Differential inequality of self-concordance) f satisfies the inequality

|D3f(x)[u,u,u]| ≤ 2
(
D2f(x)[u,u]

)3/2
, (3)

for all x ∈ Q and u ∈ Rd.

In (3) we used the notation

Dkf(x)[u1, . . . ,uk] :=
∂k

∂s1 . . . ∂sk

∣∣∣∣
s1=···=sk=0

f(x+ s1u1 + · · ·+ skuk)

to denote the k-th-order differential of f at point x along the directions u1,u2, . . . ,uk. Self-
concordance, in the sense of Definition A.1, basically imposes a Lipschitz-continuity condition on
the Hessian of f , but with respect to the local norm induced by the Hessian itself [Nemirovski, 2004].
One may allow (3) to hold with a multiplicative factor Mf ≥ 0 on the right hand side, in which
case f is said to be self-concordant with parameter Mf ; unless explicitly specified otherwise, it will
be assumed that Mf = 1. As a concrete example, we point out that the logarithmic barrier for the
nonnegative ray, namely the univariate function f : (0,+∞) ∋ x 7→ − log x, is self-concordant (with
parameter Mf = 1).

A crucial fact is that self-concordance is preserved under any linear perturbation, as can be verified
directly from Definition A.1. We also point out a certain property which will be useful when
composing different functions, and is also an immediate consequence of Definition A.1.
Lemma A.2 ([Nemirovski, 2004]). Let fi be self-concordant on dom fi, for all i ∈ [[k]]. Then,
assuming that dom f := ∩ki=1 dom fi ̸= ∅, the function f(x) :=

∑k
i=1 fi(x) is self-concordant.

A.2 Useful Inequalities

Let f be a self-concordant function. In the sequel we will tacitly assume that f is nondegenerate,
in the sense that the Hessian ∇2f(x) is positive definite, for any x ∈ dom f . In this context, we
define ∥u∥f,x :=

√
u⊤∇2f(x)u to be the (primal) local norm of direction u induced by f at point

x ∈ dom f . (It is easy to verify that ∥u∥f,x indeed satisfies the axioms of a norm.) To lighten our
notation, we will oftentimes simply write ∥u∥x when the underlying self-concordant function is
clear from the context. The following inequality will be used to derive quadratic growth bounds with
respect to the minimum of a self-concordant function.
Lemma A.3 ([Nesterov, 2004]). Let f be a self-concordant function. Then, for any x, x̃ ∈ dom f ,

f(x̃) ≥ f(x) + ⟨∇f(x), x̃− x⟩+ ω (∥x̃− x∥x) ,
where ω(s) := s− log(1 + s).

It will be convenient to use a quadratic lower bound for ω(s), as implied by the following simple fact.
Fact A.4. Let ω(s) = s− log(1 + s). Then,

ω(s) ≥ s2

2(1 + s)
.

In particular, for s ∈ [0, 1] it holds that ω(s) ≥ s2

4 .
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Next, let us consider the optimization problem associated with the minimization of a self-concordant
function, namely

min{f(x) : x ∈ dom f}, (4)

for a self-concordant f . The Newton Decrement of f at point x ∈ dom f is defined as

λ(x, f) := ∥∇f(x)∥∗,x =
√
(∇f(x))⊤(∇2f(x))−1∇f(x).

The following result guarantees (existence and) uniqueness for the optimization problem (4).

Lemma A.5 ([Nesterov, 2004]). Let f be a self-concordant function such that λ(x, f) < 1, for some
x ∈ dom f . Then, the optimization problem (4) has a unique solution.

Assuming that X is a convex and compact set with nonempty interior, we will also use the following
important fact.

Lemma A.6 ([Nemirovski, 2004]). Let f : int(X )→ R be a self-concordant function with x∗ :=
argminx f(x), and some x ∈ int(X ). Then, if λ(x, f) ≤ 1

2 ,

∥x− x∗∥x ≤ 2λ(x, f);

∥x− x∗∥x∗ ≤ 2λ(x, f).

A.3 Self-Concordant Barriers

Next, we introduce the concept of a self-concordant barrier.

Definition A.7 (Self-Concordant Barrier). Let X ⊆ Rd be a convex and compact set with nonempty
interior int(X ) (domain). A function f : int(X )→ R is called a θ-self-concordant barrier for X if

(i) f is self-concordant on int(X ); and

(ii) for all x ∈ int(X ) and u ∈ Rd,

|Df(x)[u]| ≤ θ1/2
(
D2f(x)[u,u]

)1/2
. (5)

We note that (5) imposes that f is Lipshitz continuous with parameter θ1/2, but with respect to the
local Euclidean metric induced by the Hessian. As an example, it is immediate to see that the function
R(x) := − log x is a 1-self-concordant barrier for the nonnegative ray. The following lemma will be
useful when composing self-concordant barriers.

Lemma A.8 ([Nesterov, 2004]). Let fi be a θi-self-concordant barrier for the compact and convex
domain Xi ⊆ Rd, for all i ∈ [[k]]. If the set X := ∩i∈[[k]]Xi has nonempty interior, the function

f(x) :=
∑k

i=1 fi(x) is a
(∑k

i=1 θi

)
-self-concordant barrier for X .

Minkowski Function Finally, we will require the fact that a self-concordant barrier does not grow
overly quickly close to the boundary of X . In particular, the growth is only logarithmic as a function
of the inverse distance from the boundary. To formalize this, let us introduce the Minkowski function
on X , defined as follows.

π(x̃;x) = inf
{
s ≥ 0 : x+ s−1(x̃− x) ∈ X

}
.

We remark that π(x̃;x) ∈ [0, 1]. When x is the “center” of X , π(x̃;x) can be thought of as the
distance of x̃ from the boundary of X . In this context, we will use the following theorem.

Theorem A.9. For any θ-self-concordant barrierR on X and x, x̃ ∈ int(X ),

R(x̃)−R(x) ≤ θ log

(
1

1− π(x̃;x)

)
.
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B RVU Bounds under Self-Concordant Barriers

In this section we establish the RVU property [Syrgkanis et al., 2015] for (OFTRL) when the regularizer
is a self-concordant function. The main result of this section is Theorem 3.1, while Corollary 3.2 is
an instantiation on the probability simplex.

As usual, for the purpose of our analysis we consider the auxiliary be the leader (BTL) sequence,
defined for t ∈ N ∪ {0} as follows.

g(t) := argmax
g∈X

{
Ψ(t)(g) := η

〈
g,

t∑
τ=1

u(τ)

〉
−R(g)

}
. (BTL)

By convention, we have let g(0) := argming∈X R(g). We also remark that, as long as η∥u(t) −
m(t)∥∗,x(t) ≤ 1

2 and η∥m(t)∥∗,g(t−1) ≤ 1
2 , for all t ∈ [[T ]], both (BTL) and (OFTRL) are well-posed,

as can be verified using Lemma A.5 (see Lemma B.2). For convenience, and without any loss of
generality, in the sequel it is assumed that R is normalized so that minxR(x) = 0. We are now
ready to establish the following theorem.

Theorem B.1. Suppose thatR is a nondegenerate self-concordant function for int(X ), and let η > 0
be such that η∥u(t) −m(t)∥∗,x(t) ≤ 1

2 and η∥m(t)∥∗,g(t−1) ≤ 1
2 , for all t ∈ [[T ]]. Then, the regret of

(OFTRL) with respect to any x∗ ∈ int(X ) and under any sequence of utilities u(1), . . . ,u(T ) can be
bounded as

RegT (x∗) ≤ R(x
∗)

η
+

T∑
t=1

∥u(t) −m(t)∥∗,x(t)∥x(t) − g(t)∥x(t)

− 1

η

T∑
t=1

(
ω(∥x(t) − g(t)∥x(t)) + ω(∥x(t) − g(t−1)∥g(t−1))

)
,

where ω(·) is defined as in Lemma A.3.

Proof. The proof proceeds similarly to [Syrgkanis et al., 2015, Theorem 19]. The first observation is
that

⟨x∗ − x(t),u(t)⟩ = ⟨g(t) − x(t),u(t) −m(t)⟩+ ⟨g(t) − x(t),m(t)⟩+ ⟨x∗ − g(t),u(t)⟩.

Given that ⟨g(t)−x(t),u(t)−m(t)⟩ ≤ ∥u(t)−m(t)∥∗,x(t)∥x(t)−g(t)∥x(t) , by Hölder’s inequality,
it suffices to prove that for any T ∈ N and x∗ ∈ int(X ),

T∑
t=1

(⟨g(t) − x(t),m(t)⟩+ ⟨x∗ − g(t),u(t)⟩) ≤ R(x
∗)

η

− 1

η

T∑
t=1

(
ω(∥x(t) − g(t)∥x(t)) + ω(∥x(t) − g(t−1)∥g(t−1))

)
. (6)

We will establish this claim via induction. For convenience, we use as base for the induction the case
where T = 0, in which case (6) holds trivially sinceR(x∗) ≥ 0 for any x∗ ∈ int(X ).4 Now for the
inductive step, assume that for some T ∈ {0, 1, . . . },

T∑
t=1

(⟨g(t) − x(t),m(t)⟩ − ⟨g(t),u(t)⟩) ≤ −
T∑

t=1

⟨x∗,u(t)⟩+ R(x
∗)

η

− 1

η

T∑
t=1

(
ω(∥x(t) − g(t)∥x(t)) + ω(∥x(t) − g(t−1)∥g(t−1))

)
, (7)

4By convention, it is assumed that a sum over an empty set is 0.
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for any x∗ ∈ int(X ). We will prove the claim for T + 1. Indeed, applying (7) for x∗ = g(T ) and
adding on both sides the term ⟨g(T+1) − x(T+1),m(T+1)⟩ − ⟨g(T+1),u(T+1)⟩ yields that

T+1∑
t=1

(
⟨g(t) − x(t),m(t)⟩ − ⟨g(t),u(t)⟩

)
≤

−

〈
g(T ),

T∑
t=1

u(t)

〉
+
R(g(T ))

η
+ ⟨g(T+1) − x(T+1),m(T+1)⟩ − ⟨g(T+1),u(T+1)⟩

− 1

η

T∑
t=1

(
ω(∥x(t) − g(t)∥x(t)) + ω(∥x(t) − g(t−1)∥g(t−1))

)
. (8)

Now, by the first-order optimality condition of the optimization problem associated with (BTL), we
have that ∇Ψ(T )(g(T )) = 0. As a result, Lemma A.3 implies that

−Ψ(T )(x(T+1)) + Ψ(T )(g(T )) ≥ ω(∥x(T+1) − g(T )∥g(T )) =⇒

−

〈
x(T+1),

T∑
t=1

u(t)

〉
+
R(x(T+1))

η
+

〈
g(T ),

T∑
t=1

u(t)

〉
− R(g

(T ))

η
≥ 1

η
ω(∥x(T+1) − g(T )∥g(T )),

(9)

where we used the fact that −Ψ(T ) is a self-concordant function, which in turn follows directly from
the fact that linear perturbations do not affect self-concordance. Thus, plugging (9) to (8) yields that

T+1∑
t=1

(
⟨g(t) − x(t),m(t)⟩ − ⟨g(t),u(t)⟩

)
≤

−

〈
x(T+1),

T∑
t=1

u(t)

〉
+
R(x(T+1))

η
+ ⟨g(T+1) − x(T+1),m(T+1)⟩ − ⟨g(T+1),u(T+1)⟩

− 1

η

T∑
t=1

(
ω(∥x(t) − g(t)∥x(t)) + ω(∥x(t) − g(t−1)∥g(t−1))

)
− 1

η
ω(∥x(T+1) − g(T )∥g(T ))

= −

〈
x(T+1),m(T+1) +

T∑
t=1

u(t)

〉
+
R(x(T+1))

η
+ ⟨g(T+1),m(T+1)⟩ − ⟨g(T+1),u(T+1)⟩

− 1

η

T∑
t=1

(
ω(∥x(t) − g(t)∥x(t)) + ω(∥x(t) − g(t−1)∥g(t−1))

)
− 1

η
ω(∥x(T+1) − g(T )∥g(T )).

(10)

Similarly, by the first-order optimality condition of the optimization problem associated with
(OFTRL), we have that ∇Φ(T+1)(x(T+1)) = 0. Thus, by Lemma A.3 it follows that

−Φ(T+1)(g(T+1)) + Φ(T+1)(x(T+1)) ≥ ω(∥x(T+1) − g(T+1)∥x(T+1)),
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since −Φ(T+1) is self-concordant. Plugging this bound to (10) implies that

T+1∑
t=1

(
⟨g(t) − x(t),m(t)⟩ − ⟨g(t),u(t)⟩

)
≤

−

〈
g(T+1),m(T+1) +

T∑
t=1

u(t)

〉
+
R(g(T+1))

η
+ ⟨g(T+1),m(T+1)⟩ − ⟨g(T+1),u(T+1)⟩

− 1

η

T+1∑
t=1

(
ω(∥x(t) − g(t)∥x(t)) + ω(∥x(t) − g(t−1)∥g(t−1))

)
= −

〈
g(T+1),

T+1∑
t=1

u(t)

〉
+
R(g(T+1))

η

− 1

η

T+1∑
t=1

(
ω(∥x(t) − g(t)∥x(t)) + ω(∥x(t) − g(t−1)∥g(t−1))

)
≤ −

〈
x∗,

T+1∑
t=1

u(t)

〉
+
R(x∗)

η
− 1

η

T+1∑
t=1

(
ω(∥x(t) − g(t)∥x(t)) + ω(∥x(t) − g(t−1)∥g(t−1))

)
,

for any x∗ ∈ int(X ), where the last inequality follows since Ψ(T+1)(g(T+1)) ≥ Ψ(T+1)(x∗), for
any x∗ ∈ int(X ), by definition of g(T+1). This establishes the inductive step, completing the proof
of the theorem.

Next, to cast Theorem B.1 in the form of an RVU bound (in the sense of [Syrgkanis et al., 2015]), we
establish the stability of the iterates as formalized below.

Lemma B.2 (Stability). Let η > 0 be such that η∥u(t) −m(t)∥∗,x(t) ≤ 1
2 and η∥m(t)∥∗,g(t−1) ≤ 1

2 ,
for all t ∈ [[T ]]. Then, for any t ∈ [[T ]],

∥x(t) − g(t)∥x(t) ≤ 2η∥u(t) −m(t)∥∗,x(t) ;

∥x(t) − g(t−1)∥g(t−1) ≤ 2η∥m(t)∥∗,g(t−1) .

Proof. Fix any t ∈ [[T ]]. We observe that ∥x(t) − g(t)∥x(t) = ∥x(t) − argmin(−Ψ(t))∥x(t) , by
definition of (BTL). Further, we have that Ψ(t)(x) = Φ(t)(x) + η⟨x,u(t) −m(t)⟩, implying that
∇Ψ(t) = ∇Φ(t)+η(u(t)−m(t)). By the first-order optimaility condition of the optimization problem
associated with (OFTRL), it follows that ∇Φ(t)(x(t)) = 0, in turn implying that ∇Ψ(t)(x(t)) =
η(u(t) −m(t)). As a result, we have shown that λ(x(t),−Ψ(t)) = ∥∇Ψ(t)(x(t))∥∗,x(t) = η∥u(t) −
m(t)∥∗,x(t) ≤ 1

2 , by assumption. Thus, Lemma A.6 implies that

∥x(t) − g(t)∥x(t) = ∥x(t) − argmin(−Ψ(t))∥x(t) ≤ 2λ(x(t),−Ψ(t)) = 2η∥u(t) −m(t)∥∗,x(t) ,

concluding the first part of the claim. Similarly, we have that ∥x(t) − g(t−1)∥g(t−1) = ∥g(t−1) −
argmin(−Φ(t))∥g(t−1) , by definition of (OFTRL). Further, we observe that Φ(t)(x) = Ψ(t−1)(x) +

η⟨x,m(t)⟩, implying that ∇Φ(t) = ∇Ψ(t−1) + ηm(t). Moreover, by the first-order optimality
condition of the optimization problem associated with (BTL), we have that∇Ψ(t−1)(g(t−1)) = 0. In
turn, this implies that ∇Φ(t)(g(t−1)) = ηm(t). As a result, we have shown that λ(g(t−1),−Φ(t)) =
∥∇Φ(t)(g(t−1))∥∗,g(t−1) = η∥m(t)∥∗,g(t−1) ≤ 1

2 , by assumption. Thus, Lemma A.6 implies that

∥x(t)−g(t−1)∥g(t−1) = ∥g(t−1)−argmin(−Φ(t))∥g(t−1) ≤ 2λ(g(t−1),−Φ(t)) = 2η∥m(t)∥∗,g(t−1) .

We are now ready to establish Theorem 3.1, the statement of which is recalled below.
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Theorem 3.1 (RVU for Self-Concordant Regularizers). Suppose that R is a nondegenerate self-
concordant function for int(X ). Moreover, let η > 0 be such that η∥u(t) −m(t)∥∗,x(t) ≤ 1

2 and
η∥m(t)∥∗,g(t−1) ≤ 1

2 for all t ∈ [[T ]]. Then, the regret RegT (x∗) of (OFTRL) with respect to any
comparator x∗ ∈ int(X ) under any sequence of utilities u(1), . . . ,u(T ) can be bounded by

R(x∗)

η
+ 2η

T∑
t=1

∥u(t) −m(t)∥2∗,x(t) −
1

4η

T∑
t=1

(
∥x(t) − g(t)∥2x(t) + ∥x(t) − g(t−1)∥2g(t−1)

)
.

Proof. First, combining Theorem B.1 with the fact that ∥x(t) − g(t)∥x(t) ≤ 2η∥u(t) −m(t)∥∗,x(t)

(by Lemma B.2) yields that RegT (x∗) is upper bounded by

R(x∗)

η
+2η

T∑
t=1

∥u(t)−m(t)∥2∗,x(t) −
1

η

T∑
t=1

(
ω(∥x(t) − g(t)∥x(t)) + ω(∥x(t) − g(t−1)∥g(t−1))

)
.

Further, it follows from Lemma B.2 that ∥x(t) − g(t)∥x(t) ≤ 1 and ∥x(t) − g(t−1)∥g(t−1) ≤ 1. Thus,
Fact A.4 implies that RegT (x∗) is upper bounded by

R(x∗)

η
+ 2η

T∑
t=1

∥u(t) −m(t)∥2∗,x(t) −
1

4η

T∑
t=1

(
∥x(t) − g(t)∥2x(t) + ∥x(t) − g(t−1)∥2g(t−1)

)
.

For our purposes, it will be convenient to cast Theorem 3.1 in the following form, using the additional
assumption that the Hessian∇2R is stable.
Corollary B.3. Suppose that R is a nondegenerate self-concordant function for int(X ) such that
∇2R(x̃) ⪯ 2∇2R(x) for any x, x̃ ∈ int(X ) with ∥x− x̃∥x̃ ≤ 1

4 . Moreover, let η > 0 be such that
η∥u(t) −m(t)∥∗,x(t) ≤ 1

8 and η∥m(t)∥∗,g(t−1) ≤ 1
2 for all t ∈ [[T ]]. Then, the regret of (OFTRL)

under any sequence of utilities u(1), . . . ,u(T ) can be bounded as

RegT (x∗) ≤ R(x
∗)

η
+ 2η

T∑
t=1

∥u(t) −m(t)∥2∗,x(t) −
1

16η

T∑
t=1

∥x(t) − x(t−1)∥2x(t−1) .

Proof. First, by Lemma B.2 we know that ∥x(t−1)−g(t−1)∥x(t−1) ≤ 2η∥u(t−1)−m(t−1)∥∗,x(t−1) ≤
1
4 , for any t ∈ N. Thus, by assumption, it follows that ∇2R(x(t−1)) ⪯ 2∇2R(g(t−1)), in turn
implying that ∥x(t) − g(t−1)∥2

x(t−1) ≤ 2∥x(t) − g(t−1)∥2
g(t−1) . Further, the triangle inequality for

the norm ∥ · ∥x(t−1) implies that

∥x(t) − x(t−1)∥2x(t−1) ≤ 2∥x(t) − g(t−1)∥2x(t−1) + 2∥g(t−1) − x(t−1)∥2x(t−1)

≤ 4∥x(t) − g(t−1)∥2g(t−1) + 4∥x(t−1) − g(t−1)∥2x(t−1) ,

where we used Young’s inequality in the first line, and the fact that ∥x(t)−g(t−1)∥2
x(t−1) ≤ 2∥x(t)−

g(t−1)∥2
g(t−1) in the second line. Thus, summing over all t ∈ [[T ]] yields that

T∑
t=1

∥x(t) − x(t−1)∥2x(t−1) ≤ 4

T∑
t=1

∥x(t) − g(t−1)∥2g(t−1) + 4

T∑
t=1

∥x(t−1) − g(t−1)∥2x(t−1)

≤ 4

T∑
t=1

∥x(t) − g(t−1)∥2g(t−1) + 4

T∑
t=1

∥x(t) − g(t)∥2x(t) ,

since x(0) = g(0). Finally, plugging this bound to Theorem 3.1 concludes the proof.

Corollary B.4 (Stability of the Iterates). Suppose that R is a self-concordant function for int(X )
such that∇2R(x̃) ⪯ 2∇2R(x) for any x, x̃ ∈ int(X ) with ∥x− x̃∥x̃ ≤ 1

4 . Moreover, let η > 0 be
such that η∥u(t) −m(t)∥∗,x(t) ≤ 1

8 and η∥m(t)∥∗,g(t−1) ≤ 1
2 for all t ∈ [[T ]]. Then,

∥x(t) − x(t−1)∥x(t−1) ≤ 4η∥m(t)∥∗,g(t−1) + 2η∥u(t−1) −m(t−1)∥∗,x(t−1) .
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Proof. Similarly to the proof of Corollary B.3, we obtain that

∥x(t) − x(t−1)∥x(t−1) ≤ ∥x(t) − g(t−1)∥x(t−1) + ∥g(t−1) − x(t−1)∥x(t−1)

≤ 2∥x(t) − g(t−1)∥g(t−1) + ∥x(t−1) − g(t−1)∥x(t−1)

≤ 4η∥m(t)∥∗,g(t−1) + 2η∥u(t−1) −m(t−1)∥∗,x(t−1) .

B.1 Log-Barrier Regularizer on the Simplex

Next, we instantiate our general RVU bound for the probability simplex. To this end, let us first point
out that, leveraging Lemma A.8 (and Lemma A.2), we can construct a self-concordant barrier for any
polytope defined by a set of inequalities Ax ≥ b, for a matrix A ∈ Rk×d and a vector b ∈ Rk, as
pointed out below.
Definition B.5 (Log-Barrier Regularizer for Polytopes). Consider any polytope defined by a set of
inequalities Ax ≥ b, for a matrix A ∈ Rk×d and a vector b ∈ Rk. The log-barrier function R is
defined as

R(x) := −
k∑

r=1

log(A[r, :]x− b[r]). (11)

Indeed, Lemma A.8 implies thatR is a k-self-concordant barrier as it can be expressed as the sum
of k 1-self-concordant barriers. Now let us focus on constructing a self-concordant barrier for the
(d− 1)-dimensional simplex ∆d :=

{
x ∈ Rd

≥0 :
∑d

r=1 x[r] = 1
}

. To address the fact that ∆d has

empty interior, we will restrict the problem to the domain ∆◦ :=
{
x ∈ Rd−1

≥0 :
∑d−1

r=1 x[r] ≤ 1
}

. For

notational convenience, we will also let x[d] = 1−
∑d−1

r=1 x[r]. Thus, using the general log-barrier
regularizer for polytopes given in (11), we arrive at the log-barrier regularizer for ∆◦:

R(x) := −
d−1∑
r=1

log(x[r])− log

(
1−

d−1∑
r=1

x[r]

)
. (12)

Naturally,R is a d-self-concordant barrier since it can be expressed as the sum of d 1-self-concordant
barriers. It is important to stress that the regularizer given in (12) takes as input a (d− 1)-dimensional
vector. To reconcile this with the fact that the regret minimizer should receive a d-dimensional utility
vector u ∈ Rd, in the sequel we will use a simple transformation of the observed utilities (while
preserving the incurred regret). But first, let us also introduce an auxiliary regularizer for the purpose
of our analysis; namely,

R̃(x) := −
d∑

r=1

logx[r]. (13)

We are going to relate the local norm induced by the log-barrier (12) to that induced by the auxiliary
regularizer (13). First, we characterize the primal local norm induced byR and R̃.
Claim B.6. For any x, x̃ ∈ int(∆◦),

∥x− x̃∥2R,x =

d∑
r=1

(
x[r]− x̃[r]

x[r]

)2

.

Proof. Let us first compute the Hessian ofR. A direct calculation gives that for r ∈ [[d− 1]],

∂2R
∂x[r]2

=
1

(x[r])2
+

1(
1−

∑d−1
r=1 x[r]

)2 =
1

(x[r])2
+

1

(x[d])2
,

where recall that x[d] = 1−
∑d−1

r=1 x[r] (by convention). Further, for r′ ̸= r ∈ [[d− 1]] we have that

∂2R
∂x[r]∂x[r′]

=
∂2R

∂x[r′]∂x[r]
=

1

(x[d])2
.
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Thus, the Hessian ofR reads

∇2R = diag

(
1

(x[1])2
, . . . ,

1

(x[d− 1])2

)
+

1

(x[d])2
1d−11

⊤
d−1. (14)

As a result,

∥x− x̃∥2R,x = (x− x̃)⊤ diag

(
1

(x[1])2
, . . . ,

1

(x[d− 1])2

)
(x− x̃) +

(1⊤
d−1(x− x̃))2

(x[d])2

=

d−1∑
r=1

(
x[r]− x̃[r]

x[r]

)2

+

(∑d−1
r=1 x[r]−

∑d−1
r=1 x̃[r]

x[d]

)2

=

d−1∑
r=1

(
x[r]− x̃[r]

x[r]

)2

+

(
x[d]− x̃[d]

x[d]

)2

=

d∑
r=1

(
x[r]− x̃[r]

x[r]

)2

.

Next, we characterize the dual norm induced by the regularizerR. To this end, let us first explain how
the regret minimizer over the domain ∆◦ should operate. Upon observing a utility vector u ∈ Rd,
we construct the vector ũ ∈ Rd−1 so that ũ[r] = u[r]− u[d], for all r ∈ [[d− 1]]. It is easy to see
that the regret incurred is preserved through this transformation.

Claim B.7. For any ũ ∈ Rd−1 and x ∈ int(∆◦),

∥ũ∥∗,R,x = ∥u− c∗1d∥∗,R̃,x,

where c∗ is the scalar that minimizes the norm in the right hand side.

Proof. First, using the Sherman–Morrison formula we find that the inverse of the Hessian ofR given
in (14) can be expressed as

(∇2R)−1 = diag(x̃[1], . . . , x̃[d− 1])− 1∑d
r=1(x[r])

2
x̃x̃⊤,

where x̃ := ((x[1])2, . . . , (x[d− 1])2). Thus, by definition of ũ we have that

∥ũ∥∗,R,x =

d−1∑
r=1

(x[r])2(u[r]− u[d])2 −
(
∑d−1

r=1(x[r])
2(u[r]− u[d]))2∑d

r=1(x[r])
2

=

d∑
r=1

(x[r])2(u[r]− u[d])2 −
(
∑d

r=1(x[r])
2u[r]− u[d]

∑d
r=1(x[r])

2)2∑d
r=1(x[r])

2

=

d∑
r=1

(x[r])2(u[r]− u[d])2 −
(
∑d

r=1(x[r])
2u[r])2∑d

r=1(x[r])
2

+ 2u[d]

d∑
r=1

(x[r])2u[r]− (u[d])2
d∑

r=1

(x[r])2

=

d∑
r=1

(x[r]u[r])2 −
(
∑d

r=1(x[r])
2u[r])2∑d

r=1(x[r])
2

, (15)

by simple algebraic calculations. Now let us define the scalar c∗ as

c∗ :=

∑d
r=1(x[r])

2u[r]∑d
r=1(x[r])

2
.
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Then, continuing from (15),

∥ũ∥∗,R,x =

d∑
r=1

(x[r])2

(u[r])2 − 2

(∑d
r′=1(x[r

′])2u[r′]∑d
r′=1(x[r

′])2

)
u[r] +

(∑d
r′=1(x[r

′])2u[r′]∑d
r′=1(x[r

′])2

)2


=

r∑
r=1

(x[r])2 (u[r]− c∗)
2
= ∥u− c∗1d∥∗,R̃,x. (16)

But, it is easy to see that c∗ is the minimizer of (16). This concludes the proof.

An analogous argument shows that ∥ũ(t)− ũ(t−1)∥∗,R,x = ∥u(t)−u(t−1)− c∗1d∥∗,R̃,x ≤ ∥u
(t)−

u(t−1)∥∗,R̃,x. Finally, combining Claim B.6 and Claim B.7 with Theorem 3.1 and Corollary B.3
directly leads to the RVU bound of Corollary 3.2.

C Omitted Proofs from Section 4

In this section we provide the omitted proofs from Section 4. We start with the proof of Lemma 4.2.
To this end, we first apply Corollary 3.2 for each individual regret minimizer Ra, leading to the
following guarantee for η ≤ 1

16 .

RegTa (x
∗
a) ≤

R(x∗
a)

η
+ 2η

T∑
t=1

∥u(t)x(t)[a]− u(t−1)x(t−1)[a]∥2
∗,x(t)

a

− 1

16η

T∑
t=1

∥x(t)
a − x(t−1)

a ∥2
x

(t−1)
a

, (17)

for any x∗
a ∈ relint(∆(A)); it is assumed that each regret minimizer Ra is employing the same

learning rate η > 0. Next, the triangle inequality along with Young’s inequality imply that

∥u(t)x(t)[a]− u(t−1)x(t−1)[a]∥2
∗,x(t)

a
≤ 2(x(t)[a])2∥u(t) − u(t−1)∥2

∗,x(t)
a

+ 2(x(t)[a]− x(t−1)[a])2∥u(t−1)∥2
∗,x(t)

a
,

for any a ∈ A. Summing this inequality over all a ∈ A yields that∑
a∈A
∥u(t)x(t)[a]− u(t−1)x(t−1)[a]∥2

∗,x(t)
a
≤ 2∥u(t) − u(t−1)∥2∞ + 2∥x(t) − x(t−1)∥22. (18)

Next, let us address the diameter term in (17). Let xc := argminxR(x), so that R(xc) = 0. If
π(x∗

a;xc) ≤ 1− 1
T , then, by Theorem A.9,

R(x∗
a) ≤ |A| log

(
1

1− π(x∗
a;xc)

)
≤ m log T,

where we used the notation m := |A|. Otherwise, we define x̃∗
a := (1− 1/T )x∗

a + (1/T )xc, and we
observe that

RegTa (x
∗
a) ≤ RegTa (x̃

∗
a) +

T∑
t=1

⟨x∗
a − x̃∗

a,x
(t)[a]u(t)⟩ ≤ RegTa (x̃

∗
a) +

2

T

T∑
t=1

x(t)[a]∥u(t)∥∞.

Thus, from (17) we conclude that

RegTa ≤
m log T

η
+

2

T

T∑
t=1

x(t)[a] + 2η

T∑
t=1

∥u(t)x(t)[a]− u(t−1)x(t−1)[a]∥2
∗,x(t)

a

− 1

16η

T∑
t=1

∥x(t)
a − x(t−1)

a ∥2
x

(t−1)
a

, (19)

since ∥u(t)∥∞ ≤ 1. Next, we will use the fact that the log-barrier regularizer guarantees multiplicative
stability, in the following formal sense.
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Corollary C.1 (Multiplicative Stability). In the setting of Corollary B.4, suppose that
∥u(t)∥∞, ∥m(t)∥∞ ≤ 1 for all t ∈ [[T ]]. If η ≤ 1

16 , then for 2 ≤ t ≤ T ,√√√√ d∑
r=1

(
1− x(t)[r]

x(t−1)[r]

)2

≤ 6η∥u(t−1)∥∞ + 2η∥u(t−2)∥∞.

Proof. The claim follows directly from Corollary B.4 with m(t) = u(t−1), using the fact that
∥u∥∗,x(t) ≤ ∥u∥∞.

Now let

µ(t)
a := max

a′∈A

∣∣∣∣∣1− x
(t)
a [a′]

x
(t−1)
a [a′]

∣∣∣∣∣ ,
for each a ∈ A. Corollary C.1 implies that

µ(t)
a ≤ 6η∥u(t−1)x(t−1)[a]∥∞ + 2η∥u(t−2)x(t−2)[a]∥∞

= 6ηx(t−1)[a]∥u(t−1)∥∞ + 2ηx(t−2)[a]∥u(t−2)∥∞.

Thus, summing over all a ∈ A yields that∑
a∈A

µ(t)
a ≤ 6η

∑
a∈A

x(t−1)[a]∥u(t−1)∥∞ + 2η
∑
a∈A

x(t−2)[a]∥u(t−2)∥∞ ≤ 8η, (20)

for t ≥ 2, where we used that x(t−1),x(t−2) ∈ ∆(A), as well as the normalization assumption
∥u∥∞ ≤ 1; it is also immediate to see that

∑
a∈A µ

(1)
a ≤ 8η.

For the proof of Lemma 4.2 we will require the Markov chain tree theorem. In particular, consider an
m-node ergodic (i.e., aperiodic and irreducible) Markov chain represented through a row-stochastic
matrix Q. The Markov chain tree theorem establishes a closed-form solution for the (unique)
stationary distribution π; that is, the vector π ∈ ∆m for which π⊤Q = π⊤. To this end, we
formalize the notion of a directed tree.
Definition C.2 (Directed Tree). A directed graph T = (V,E) is a directed tree rooted at node a if (i)
it containts no (directed) cycles; (ii) every node V \ {a} has exactly one outgoing edge; and (iii) the
root node a has no outgoing edges.

We will denote with Ta the set of all possible directed m-node trees rooted at node a. Finally, before
we state the Markov chain tree theorem, we let Σa be defined as

Σa =
∑
T ∈Ta

∏
(u,v)∈E(T )

Q[u, v]. (21)

Theorem C.3 (Markov Chain Tree Theorem; e.g., [Anantharam and Tsoucas, 1989]). The stationary
distribution π ∈ ∆m of an m-state ergodic markov chain with row-stochastic transition matrix Q is
such that

π[a] =
Σa

Σ
,

where Σ :=
∑

a Σa, and each Σa is defined as in (21).

We are now ready to prove Lemma 4.2.
Lemma 4.2. Suppose that each regret minimizer Ra employs (OFTRL) with log-barrier regulariza-
tion and η ≤ 1

16 . Then, for any t ∈ N,

∥x(t) − x(t−1)∥21 ≤ 64|A|
∑
a∈A
∥x(t)

a − x(t−1)
a ∥2

x
(t−1)
a

.

Proof. Consider any t ∈ N. From the Markov chain tree theorem (Theorem C.3) we know that

x[a] =
Σa

Σ
, ∀a ∈ A,
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where Σa :=
∑

T ∈Ta

∏
(u,v)∈E(T ) Q[u, v] and Σ =

∑
a∈A Σa. Fix some action a ∈ A and a

directed tree T ∈ Ta rooted at node a. Then,∏
(u,v)∈E(T )

Q(t)[u, v] =
∏

(u,v)∈E(T )

x(t)
u [v] ≤

∏
(u,v)∈E(T )

(1 + µ(t)
u )x(t−1)

u [v],

where we used the fact that

µ(t)
u ≥

x
(t)
u [v]

x
(t−1)
u [v]

− 1 =⇒ x(t)
u [v] ≤ (1 + µ(t)

u )x(t−1)
u [v],

Thus, ∏
(u,v)∈E(T )

Q(t)[u, v] ≤
∏
u̸=a

(1 + µ(t)
u )

∏
(u,v)∈E(T )

Q(t−1)[u, v],

where we used the fact that T is a directed tree rooted at a. Thus, summing over all T ∈ Ta yields
that

Σ(t)
a =

∑
T ∈Ta

∏
(u,v)∈E(T )

Q(t)[u, v] ≤ Σ(t−1)
a

∏
a′∈A

(1 + µ
(t)
a′ )

≤ Σ(t−1)
a exp

{∑
a′∈A

µ
(t)
a′

}
. (22)

This also implies that

Σ(t) =
∑
a∈A

Σ(t)
a ≤ exp

{∑
a′∈A

µ
(t)
a′

}∑
a∈A

Σ(t−1)
a = exp

{∑
a′∈A

µ
(t)
a′

}
Σ(t−1). (23)

Similarly, ∏
(u,v)∈E(T )

Q(t)[u, v] =
∏

(u,v)∈E(T )

x(t)
u [v] ≥

∏
(u,v)∈E(T )

(1− µ(t)
u )x(t−1)

u [v],

where we used the fact that

µ(t)
u ≥ 1− x

(t)
u [v]

x
(t−1)
u [v]

=⇒ x(t)
u [v] ≥ (1− µ(t)

u )x(t−1)
u [v].

Thus, summing over all T ∈ Ta implies that

Σ(t)
a =

∑
T ∈Ta

∏
(u,v)∈E(T )

Q(t)[u, v] ≥ Σ(t−1)
a

∏
a′∈A

(1− µ
(t)
a′ )

≥ Σ(t−1)
a exp

{
−2

∑
a′∈A

µ
(t)
a′

}
, (24)

where we used the inequality 1 − x ≥ e−2x, for all x ∈ [0, 1
2 ], applicable since (by (20))∑

a′∈A µ
(t)
a′ ≤ 8η ≤ 1

2 for η ≤ 1
16 . This also implies that

Σ(t) =
∑
a∈A

Σ(t)
a ≥ exp

{
−2

∑
a′∈A

µ
(t)
a′

}∑
a∈A

Σ(t−1)
a = exp

{
−2

∑
a′∈A

µ
(t)
a′

}
Σ(t−1). (25)

As a result, from (22) and (25) it follows that for any a ∈ A,

Σ
(t)
a

Σ(t)
− Σ

(t−1)
a

Σ(t−1)
≤

Σ
(t−1)
a exp

{∑
a′∈A µ

(t)
a′

}
Σ(t−1) exp

{
−2
∑

a′∈A µ
(t)
a′

} − Σ
(t−1)
a

Σ(t−1)
=

Σ
(t−1)
a

Σ(t−1)

(
exp

{
3
∑
a′∈A

µ
(t)
a′

}
− 1

)

≤ Σ
(t−1)
a

Σ(t−1)

(
8
∑
a′∈A

µ
(t)
a′

)
,
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where we used the inequality ex − 1 ≤ 8
3x for all x ∈ [0, 3

2 ], applicable since
∑

a′∈A µ
(t)
a′ ≤ 1

2 .
Similarly, (24) and (23) imply that for any a ∈ A,

Σ
(t−1)
a

Σ(t−1)
− Σ

(t)
a

Σ(t)
≤ Σ

(t−1)
a

Σ(t−1)
−

Σ
(t−1)
a exp

{
−2
∑

a′∈A µ
(t)
a′

}
Σ(t−1) exp

{∑
a′∈A µ

(t)
a′

} =
Σ

(t−1)
a

Σ(t−1)

(
1− exp

{
−3

∑
a′∈A

µ
(t)
a′

})

≤ Σ
(t−1)
a

Σ(t−1)

(
3
∑
a′∈A

µ
(t)
a′

)
.

As a result, we have established that∣∣∣x(t)[a]− x(t−1)[a]
∣∣∣ = ∣∣∣∣∣Σ(t)

a

Σ(t)
− Σ

(t−1)
a

Σ(t−1)

∣∣∣∣∣ ≤ 8
Σ

(t−1)
a

Σ(t−1)

∑
a′∈A

µ
(t)
a′ = 8x(t−1)[a]

∑
a′∈A

µ
(t)
a′ ,

in turn implying that

∥x(t) − x(t−1)∥1 ≤ 8

(∑
a′∈A

µ
(t)
a′

)(∑
a∈A

x(t−1)[a]

)
= 8

∑
a′∈A

µ
(t)
a′ , (26)

since x(t−1) ∈ ∆(A). Thus,

∥x(t) − x(t−1)∥21 ≤ 64

(∑
a∈A

µ(t)
a

)2

≤ 64|A|
∑
a∈A

(
µ(t)
a

)2
,

by Jensen’s inequality. Finally,

(
µ(t)
a

)2
= max

a′∈A

(
1− x

(t)
a [a′]

x
(t−1)
a [a′]

)2

≤
∑
a′∈A

(
1− x

(t)
a [a′]

x
(t−1)
a [a′]

)2

= ∥x(t)
a − x(t−1)

a ∥2
x

(t−1)
a

,

and combining this bound with (26) concludes the proof.

Theorem 4.3 (RVU Bound for Swap Regret). Suppose that each Ra employs (OFTRL) with log-
barrier regularization and η ≤ 1

128
√
m

. Then, for T ≥ 2, the swap regret of Rswap is bounded
as

SwapRegT ≤ 2m2 log T

η
+ 4η

T∑
t=1

∥u(t) − u(t−1)∥2∞ −
1

2048mη

T∑
t=1

∥x(t) − x(t−1)∥21.

Proof. Combining (19), (18), Theorem 4.1, and Lemma 4.2 implies that SwapRegTi is upper bounded
by

2m2 log T

η
+4η

T∑
t=1

∥u(t)−u(t−1)∥2∞+4η

T∑
t=1

∥x(t)−x(t−1)∥22−
1

1024mη

T∑
t=1

∥x(t)−x(t−1)∥21.

Further, for η ≤ 1
128

√
m

it follows that

4η∥x(t) − x(t−1)∥22 ≤ 4η∥x(t) − x(t−1)∥21 ≤
1

2048mη
∥x(t) − x(t−1)∥21.

In turn, this implies that

SwapRegTi ≤
2m2 log T

η
+ 4η

T∑
t=1

∥u(t) − u(t−1)∥2∞ −
1

2048mη

T∑
t=1

∥x(t) − x(t−1)∥21,

concluding the proof.
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Corollary 4.5 (Near-Optimal Individual Swap Regret). Suppose that all players use
BM-OFTRL-LogBar with η = 1

128(n−1)maxi∈[[n]]{
√
mi} . Then, the individual swap regret SwapRegTi

up to time T ≥ 2 of each player i ∈ [[n]] can be bounded as

SwapRegTi ≤ 256 max
j∈[[n]]

{√mj}

(n− 1)m2
i +

n∑
j=1

m2
j

 log T.

Proof. By Theorem 4.3 and Theorem 4.4,

SwapRegTi ≤
2m2

i log T

η
+ 4η(n− 1)

∑
j ̸=i

T∑
t=1

∥x(t)
j − x

(t−1)
j ∥21

≤ 2m2
i log T

η
+ 32768η(n− 1) max

j∈[[n]]
{mj}

n∑
j=1

m2
j log T

= 256 max
j∈[[n]]

{√mj}

(n− 1)m2
i +

n∑
j=1

m2
j

 log T.

Corollary 4.6 (Adversarial Robustness). There exist dynamics such that when all players follow
them the individual swap regret of each player grows as in Corollary 4.5. Moreover, when faced
against adversarial utilities, such that ∥u(t)

i ∥∞ ≤ 1 for all t ∈ [[T ]], the algorithm guarantees that

SwapRegTi ≤ 256 max
j∈[[n]]

{√mj}

(n− 1)m2
i +

n∑
j=1

m2
j

 log T + 2
√
mi logmiT + 2.

Proof. Each player i ∈ [[n]] initially follows the BM-OFTRL-LogBar dynamics with learning rate
η = 1

128(n−1)maxj∈[[n]]{
√
mj} . Next, player i keeps track of the quantity

∑t
τ=1 ∥u

(τ)
i − u

(τ−1)
i ∥2∞.

If for all 2 ≤ t ≤ T it holds that
t∑

τ=1

∥u(τ)
i − u

(τ−1)
i ∥2∞ ≤ 8192(n− 1) max

j∈[[n]]
{mj}

n∑
j=1

m2
j log t, (27)

then the swap regret of player i ∈ [[n]] enjoys the guarantee of Corollary 4.5, as follows directly from
Theorem 4.3. In particular, (27) will hold as long as all players follow the prescribed dynamics, by
virtue of Theorem 4.4. Otherwise, let t ≥ 2 be the first iteration for which (27) is violated. The
overall swap regret accumulated up to time t− 1 is at most the guarantee of Corollary 4.5, as follows
directly from Theorem 4.3, while the swap regret at time t is at most 2 since ∥u(t)

i ∥∞ ≤ 1. Next, the

player switches to BM-MWU with learning rate η =
√

mi logmi

T . Thereafter, the accumulated swap
regret will be bounded by 2

√
mi logmiT . This completes the proof.

Finally, we conclude this section with a refinement for games with a large number of players. In
particular, we will assume that the utility of each player only depends on the actions of a small
number of other players (Item 1), and that each player’s actions only affect the utility of a small
number of other players (Item 2). Understanding whether the linear dependence of Corollary 4.5 on
n is necessary in general games is left as an interesting open question.
Theorem C.4 (Refinement for Large Games). Suppose that all players use BM-OFTRL-LogBar.
Furthermore, assume that the utility of player i ∈ [[n]] depends on a subset of players Ni ⊆ [[n]], so
that

1. |Ni| ≤ c ≤ n− 1; and

2. maxi∈[[n]] |{j ̸= i : i ∈ Nj}| ≤ c.
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Then, for η = 1
128cmaxj∈[[n]]{

√
mj} ,

n∑
i=1

SwapRegTi ≤ 256c max
j∈[[n]]

{√mj}
n∑

j=1

m2
j log T.

Moreover, for η = 1
128

√
cnmaxj∈[[n]]{

√
mj}
≤ 1

128cmaxj∈[[n]]{
√
mj} ,

SwapRegTi ≤ 256 max
j∈[[n]]

{√mj}

√cnm2
i +

√
c

n

n∑
j=1

m2
j

 log T.

In particular, if mi = m for all i ∈ [[n]],

SwapRegTi ≤ 512
√
cnm5/2 log T.

Proof. The proof proceeds similarly to the proof of Theorem 4.4. First, we have that

(
∥u(t)

i − u
(t−1)
i ∥∞

)2
≤

∑
j∈Ni

∥x(t)
j − x

(t−1)
j ∥1

2

≤ c
∑
j ̸=i

∥x(t)
j − x

(t−1)
j ∥21,

since |Ni| ≤ c. Thus, using Theorem 4.3,
∑n

i=1 SwapReg
T
i can be upper bounded by

2
log T

η

n∑
i=1

m2
i + 4ηc

n∑
i=1

∑
j∈Ni

T∑
t=1

∥x(t)
j − x

(t−1)
j ∥21 −

n∑
i=1

1

2048miη

T∑
t=1

∥x(t)
i − x

(t−1)
i ∥21

≤2 log T
η

n∑
i=1

m2
i +

n∑
i=1

(
4ηc2 − 1

2048miη

) T∑
t=1

∥x(t)
i − x

(t−1)
i ∥21 (28)

≤2 log T
η

n∑
i=1

m2
i −

1

4096η

n∑
i=1

1

mi

T∑
t=1

∥x(t)
i − x

(t−1)
i ∥21, (29)

where (28) uses the assumption that |{j ̸= i : i ∈ Nj}| ≤ c, for any player i ∈ [[n]], and (29) follows
since η ≤ 1

128c
√
mi

for all i ∈ [[n]]. As a result, for η = 1
128cmax{√mj} ,

n∑
i=1

SwapRegTi ≤ 256c max
j∈[[n]]

{√mj}
n∑

j=1

m2
j log T.

Furthermore, given that
∑n

i=1 SwapReg
T
i ≥ 0,

1

maxj∈[[n]]{mj}

n∑
i=1

T∑
t=1

∥x(t)
i − x

(t−1)
i ∥21 ≤

n∑
i=1

1

mi

T∑
t=1

∥x(t)
i − x

(t−1)
i ∥21 ≤ 8192

n∑
i=1

m2
i log T.

Thus, for η = 1
128

√
cnmaxj∈[[n]]{

√
mj}
≤ 1

128cmaxj∈[[n]]{
√
mj} ,

SwapRegTi ≤ 256
√
cn max

j∈[[n]]
{√mj}m2

i log T + 256

√
c

n
max
j∈[[n]]

{√mj}
n∑

j=1

m2
j log T.

Hence, when c is a small constant this theorem implies an improvement of Θ(n) for the sum of the
players’ swap regrets, as well as an Θ(

√
n) factor for each individual swap regret.
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D Experiments

In this section we include additional experiments in order to corroborate some of our theoretical
results. First, regarding Figure 1 in the main body, we considered a bimatrix (general-sum) game
described with the following payoff matrices.

A =

(
0 0.5 1.5
1.5 0 1
0.5 1.5 0

)
; B =

(
0 1.5 1
1 0 1.5
1.5 1 0

)
. (30)

This game is a slight variant of Shapley’s game [Shapley, 1964], a general-sum two-player game
used by Shapley in order to illustrate that fictitious play does not converge to Nash equilibria in
general-sum games. Shapley’s game is not suited to illustrate the cycling behavior of the dynamics
in our case since it has a unique Nash equilibrium, occurring when both players play uniformly
at random; as such, (OFTRL) is initialized at the equilibrium. On the other hand, the (unique)
equilibrium of the game described in (30) occurs when x∗ = ( 13 ,

1
3 ,

1
3 ) and y∗ = ( 14 ,

2
5 ,

7
20 ) [Avis

et al., 2010]. As illustrated in Figure 1, BM-OFTRL-LogBar does not appear to converge to a Nash
equilibrium—at least in a last-iterate sense. In contrast, we conjecture that the last iterate of (OFTRL)
with log-barrier regularization converges to the set of Nash equilibria in zero-sum games, and this
property seems plausible even under the BM construction.

Moreover, we conduct experiments on random 3 × 3 bimatrix (normal-form) general-sum games.
Specifically, each entry of the payoff matrices is an independent random variable drawn from the
uniform distribution in [−1, 1]. In Figure 2 we illustrate the swap regret of the BM-OFTRL-LogBar
algorithm with a time-invariant learning rate η = 0.1.
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Figure 2: The swap regret experienced by each player for T = 104 iterations when both players
employ BM-OFTRL-LogBar with η = 0.1. Each plot corresponds to a random 3× 3 bimatrix game.
The x-axis represents the iteration, in logarithmic scale, while the y-axis shows the swap regret
experienced by each player at the given iteration. These results corroborate the O(log T ) rates
established in Corollary 4.5, showing that our analysis is essentially tight.

29


	Preliminaries on Self-Concordant Barriers
	Self-Concordant Functions
	Useful Inequalities
	Self-Concordant Barriers

	RVU Bounds under Self-Concordant Barriers
	Log-Barrier Regularizer on the Simplex

	Omitted Proofs from Section 3
	Experiments

