A Preliminaries on Self-Concordant Barriers

In this section we provide the necessary background on self-concordant barriers. For a more
comprehensive overview on the theory of self-concordant barriers and their role in interior-point
methods we refer to the book of [Nesterov| [2004], the lecture notes of Nemirovski [2004], as well as
the survey of [Nemirovski and Todd! [2008]]. We start this section by introducing the central concept
of a self-concordant function.

A.1 Self-Concordant Functions

Definition A.1 (Self-Concordant Function). Let @ C R? be a nonempty open and convex set. A
convex function f : Q) — R in C? is called self-concordant on Q if it satisfies the following properties.

(i) (Barrier property) For every sequence (x; € )$2; converging to a boundary point of () as
i — oo it holds that f(x;) — oo;

(ii) (Differential inequality of self-concordance) f satisfies the inequality
. 3/2
D f (@), u, u]| < 2(D*f(@)fu,ul)*, 3)
forall x € Q and u € R%.

In (3) we used the notation
ok
0s1...0s

to denote the k-th-order differential of f at point x along the directions uy,us, ..., us. Self-
concordance, in the sense of Definition basically imposes a Lipschitz-continuity condition on
the Hessian of f, but with respect to the local norm induced by the Hessian itself [Nemirovskil [2004].
One may allow (3) to hold with a multiplicative factor M; > 0 on the right hand side, in which
case f is said to be self-concordant with parameter M ; unless explicitly specified otherwise, it will
be assumed that My = 1. As a concrete example, we point out that the logarithmic barrier for the
nonnegative ray, namely the univariate function f : (0,4+00) 3 x — —log x, is self-concordant (with
parameter My = 1).

DFf(x)[uy, ... ug] = flx+ s1uy + -+ + spug)

s1=:=8,=0

A crucial fact is that self-concordance is preserved under any linear perturbation, as can be verified
directly from Definition [A.T] We also point out a certain property which will be useful when
composing different functions, and is also an immediate consequence of Definition

Lemma A.2 ([Nemirovski, [2004]). Let f; be self-concordant on dom f;, for all i € [k]. Then,
assuming that dom f = N¥_, dom f; # 0, the function f(x) = Zle fi(x) is self-concordant.

A.2 Useful Inequalities

Let f be a self-concordant function. In the sequel we will tacitly assume that f is nondegenerate,
in the sense that the Hessian V2 f (=) is positive definite, for any € dom f. In this context, we

define ||ul| s,z = \/u ' V2 f(x)u to be the (primal) local norm of direction v induced by f at point
x € dom f. (It is easy to verify that |u|| ; » indeed satisfies the axioms of a norm.) To lighten our
notation, we will oftentimes simply write ||u|| when the underlying self-concordant function is
clear from the context. The following inequality will be used to derive quadratic growth bounds with
respect to the minimum of a self-concordant function.

Lemma A.3 ([Nesterov, [2004])). Let f be a self-concordant function. Then, for any x,x € dom f,
f(@) > f(x) + (Vf(z), T —x) +w(|z—z|),
where w(s) = s —log(1 + s).
It will be convenient to use a quadratic lower bound for w(s), as implied by the following simple fact.
Fact Ad. Let w(s) = s —log(1l + s). Then,
2

w(s) > Mts)

In particular, for s € [0,1] it holds that w(s) > °f.
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Next, let us consider the optimization problem associated with the minimization of a self-concordant
function, namely

min{f(x) : ¢ € dom f}, 4)

for a self-concordant f. The Newton Decrement of f at point € dom f is defined as

&, f) = V(@) = (V@) T (V2 (@) "1V f ().

The following result guarantees (existence and) uniqueness for the optimization problem ().

Lemma A.5 ([Nesterov, 2004]). Let f be a self-concordant function such that \(x, f) < 1, for some
x € dom f. Then, the optimization problem (@) has a unique solution.

Assuming that X is a convex and compact set with nonempty interior, we will also use the following
important fact.

Lemma A.6 ([Nemirovski, [2004])). Let f : int(X) — R be a self-concordant function with x* =
arg ming, f(x), and some = € int(X). Then, if \(z, f) < 3,

|z — 2" < 2X(, f);

& — |

A.3 Self-Concordant Barriers

Next, we introduce the concept of a self-concordant barrier.
Definition A.7 (Self-Concordant Barrier). Let ¥ C R? be a convex and compact set with nonempty
interior int(X’) (domain). A function f : int(X’) — R is called a 6-self-concordant barrier for X if

(i) f is self-concordant on int(X); and

(ii) forall z € int(X) and u € R,

1/2

IDf(@)[u]] < 6'2 (D*f(x)[u, u]) (5)

We note that (3)) imposes that f is Lipshitz continuous with parameter 6'/2, but with respect to the
local Euclidean metric induced by the Hessian. As an example, it is immediate to see that the function
R(z) := —log x is a 1-self-concordant barrier for the nonnegative ray. The following lemma will be
useful when composing self-concordant barriers.

Lemma A.8 ([Nesterov, [2004])). Let f; be a 0;-self-concordant barrier for the compact and convex
domain X; C RY, for all i € [k]. If the set X = Nie[x]Xi has nonempty interior, the function

flx) = Zle fi(x)isa (Zle 91-) -self-concordant barrier for X.

Minkowski Function Finally, we will require the fact that a self-concordant barrier does not grow
overly quickly close to the boundary of X'. In particular, the growth is only logarithmic as a function
of the inverse distance from the boundary. To formalize this, let us introduce the Minkowski function
on X, defined as follows.

w(i;w):inf{sZO:ers*l(i—m) GX}.

We remark that 7(Z; ) € [0,1]. When x is the “center” of X', 7(Z; ) can be thought of as the
distance of & from the boundary of X. In this context, we will use the following theorem.

Theorem A.9. For any 6-self-concordant barrier R on X and @, € int(X),

R(F) - R(x) < Olog (1;@@) .
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B RVU Bounds under Self-Concordant Barriers

In this section we establish the RVU property [Syrgkanis et al.,2015] for (OFTRL) when the regularizer
is a self-concordant function. The main result of this section is Theorem 3.1} while Corollary [3.2]is
an instantiation on the probability simplex.

As usual, for the purpose of our analysis we consider the auxiliary be the leader (BTL) sequence,
defined for ¢t € NU {0} as follows.

gex

g\ = arg max {\I/(t) =7 <g, Z ) > )} . (BTL)

By convention, we have let g(©) := arg ming€X R(g). We also remark that, as long as 7|ju(*) —

mW|, v < 3 and nHm( M, ge-n < 3. forallt € [TT, both (BTL) and (OFTRL) are well-posed,
as can be Verlﬁed using Lemma@] (see Lemma [B.2). For convenience, and without any loss of
generality, in the sequel it is assumed that R is normalized so that min, R(x) = 0. We are now
ready to establish the following theorem.

Theorem B.1. Suppose that R is a nondegenerate self-concordant function for int(X), and let ) > 0
be such that n||u® — m®) w0 < % and n|m® 4, gct-1 < 1 forallt € [T]. Then, the regret of

(OFTRL)) with respect to any x* € int(X') and under any sequence of utilities uV . u) can be
bounded as

R(z*) —
Reg’ (z*) < ; + 3 [lut —mO| o2 — g0
t=1
1 T
--> (w(||w(t) — 9 oo) +w (|2 - g(t_l)llgu—l))) :
i3

where w(-) is defined as in LemmalA.3]

Proof. The proof proceeds similarly to [Syrgkanis et al., 2015, Theorem 19]. The first observation is
that

(x* — m(t)’u(t)> - <g(t) —z® M — m(t)> + <g(t) — W, m(t)> + (x* — g(t)’u(t)>.

Given that (g — 2™, u® —m®) < [[u® —m®O||, o [|e® — g®]| 4, by Holder’s inequality,
it suffices to prove that for any 7' € N and * € int(X),

T *
S (g - 20, m®) + (2" — g®, u®)) < R(z")
1

~
=

T
zj( (29 = g®llaw) + w2 = g Vgen)) . ©)

We will establish this claim via induction. For convenience, we use as base for the induction the case
where T’ = 0, in which case () holds trivially since R(z*) > 0 for any =* € int(X')[| Now for the
inductive step, assume that for some T € {0, 1,... },

T

zT: — a2, mO) — (g0 u®)) < — 3 (@, u®) + R(z")

t=1 t=1 n

1

M’ﬂ

(@2 = g lg10) + w(ll2® = g Vllgev)), D)

3

t=1

“By convention, it is assumed that a sum over an empty set is 0.
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for any z* € int(X'). We will prove the claim for T’ + 1. Indeed, applying (7)) for z* = g(™) and
adding on both sides the term (g(T+1) — g(T+1) g (THD) _ (g(T+1) 4,(T+1)) yields that

(<g(t) —2®,m®) — <g<t>)u<t>>> <

(T) - (t) R(g") (T+1) (T+1) o (T+1) (T+1) , (T+1)
—(g ,ZU +T+<g — ,m >_<g U >
1
n

T
= L5 (ol = g0 + w2 — g Dln)) ®

Now, by the first-order optimality condition of the optimization problem associated with (BTL), we
have that V¥(T) (g(T)) = 0. As a result, Lemmaimplies that

— M (2 Ty L ¥ (gD > ([|lT+) — g(T)Hg<T>) —

+
<(T“)Zu“)> e <(T)Z (”> RETD 5 L) - g0 ),
n

n n
(€))

where we used the fact that —¥(?) is a self-concordant function, which in turn follows directly from
the fact that linear perturbations do not affect self-concordance. Thus, plugging (@) to (8) yields that

i( —a®, m®) (g <t>7u<t>>> <

R(z(T+D)
< (T+1) Z“ t)> Rz p ) 4 (gTHD) — (T+D) T+ _ (g(T+1) 4, (T+1))

1
- = Z ( (2 — gl p) + w(||zt® — g(t_1)||g<t—1>)) - ;w(Hm(T“) — g gm)

T

R(x(T+D)

- _ <w(T+1)7 mT+) | Zu(t)> n (”377) + (T (THD) _ (g(T+D) 4, (T+1))
t=1

_ 1
> (2 —glo) +wllla® = g Pllgan)) = (o™~ g yer).

1
77 t=1

(10)

Similarly, by the first-order optimality condition of the optimization problem associated with
(OFTRD), we have that V®(T+1 (2(T+1)) = 0. Thus, by Lemma|A.3]it follows that

—@TH(gTHD) 4 I THD) 2 w(aTHD — g7 i),
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since —®(T+1) is self-concordant. Plugging this bound to (T0) implies that

T+1

(<g<t> —a®, m®) _ <g<t)7u<t>>) <
1

+

t

T+1 T+1 2 t R(Q(TH)) T+1 T+1 T+1 T+1
_ g( + ),m( + H‘Z““ +T+<g( + ),m( + )>_<g( + ),u( + )>
t=1

1 T+1
=23 (@18~ gOll) + ols® - g lyon)
t=1

T+1
R (T+1)
__ <g(T+1>7 3 u(t)> L Rle™)
t=1

n
1 T+1
IS (01 - g0 +lla® — gDy
t=1

T+1 R(z*) 1 T+1
<- <w > u(“> F2 =3 (e = g9 0) + e — g gen)
t=1 t=1

for any 2* € int(X’), where the last inequality follows since U7+ (g(T+1)) > w(T+1) (%), for
any x* € int(X), by definition of g(T*1). This establishes the inductive step, completing the proof
of the theorem. O

Next, to cast Theorem@ in the form of an RVU bound (in the sense of [Syrgkanis et al.,[2015]]), we
establish the stability of the iterates as formalized below.

Lemma B.2 (Stability). Let n > 0 be such that nflu® —m® |, «» < % andn|m®|, jo v < 1,
forallt € [T]. Then, for any t € [T],

Hm(t) - g(t)”m(t) < 277Hu(t) - m(t)”*,m(t);

2@ — gD ga-n < 2nlmP |, e

Proof. Fix any t € [T]. We observe that ||z — g®|| ) = || — argmin(—T®)|| ), by
definition of (BTL). Further, we have that ¥ (z) = ®®) (z) + n(x,u® — m®), implying that
VIO = VoW 4y(u® —m("). By the first-order optimaility condition of the optimization problem
associated with (OFTRL), it follows that V®®) ((*)) = 0, in turn implying that VI ®) (2®)) =
n(u® —m®). As aresult, we have shown that A(z®, —0®)) = |[V&® (M), o) = nlu® —
m® ||*7w(t) < %, by assumption. Thus, Lemmaimplies that

12 — g = [ — argmin(—¥D)[|z0 < 222, —¥O) = 2|l — MmO, 40,

concluding the first part of the claim. Similarly, we have that [|z(") — g(=D|| () = ||gt~!) —

arg min(—®®)|| -1, by definition of (OFTRL). Further, we observe that () () = ¥~ (x) +
n{x, m(t)>, implying that V®®) = V&= 1 pm() . Moreover, by the first-order optimality
condition of the optimization problem associated with (BTL), we have that V¥*~1) (g(t=1)) = 0. In
turn, this implies that V®®) (g(t=1) = nm (). As a result, we have shown that \(g®*=1), —d®)) =
VOO (gD, ge-1y = nllmB |, g1y < 3, by assumption. Thus, Lemmaimplies that

2 —g" |y = [lg" ™V —argmin(—@M) || jo-1) < 2M(g" Y, —@W) = 2|mD |, o).
O

We are now ready to establish Theorem [3.1] the statement of which is recalled below.
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Theorem 3.1 (RVU for Self-Concordant Regularizers). Suppose that R is a nondegenerate self-
concordant function for int(X). Moreover, let n > 0 be such that nl|u® — m®||, ) < I and

n||m® l.gt-v < 3 forallt € [T]. Then, the regret Reg” (z*) of (OFTRL) with respect to any

comparator x* € int(X) under any sequence of utilities u® ... uT) can be bounded by
T T
R(x*) 1 _
— 2> Ju® —m®|2 - ™ (Hmu) —gW )2 + |z — g 1>H3(H)) .
t=1 t=1

Proof. First, combining Theoremwith the fact that ||2®) — g ||« < 2n)lu® —m® |
(by Lemma [B.2) yields that Reg” (*) is upper bounded by
T

T
R(x*) 1 _
B 4o s —m O o = = 37 (o = ) + (2 — g Dgen))
N t=1 =
Further, it follows from Lemmathat [z — gy < Land[|x® — g~V 1) < 1. Thus,
Factimplies that Reg” (x*) is upper bounded by

T

T

R(z*) 1 _

Lt 2 Ju® —m®|2 - i 3 (me — g2 + [lz® — g 1>HZ(M) .
t=1 t=1

O

For our purposes, it will be convenient to cast Theorem [3.1]in the following form, using the additional
assumption that the Hessian V2R is stable.

Corollary B.3. Suppose that R is a nondegenerate self-concordant function for int(X') such that
V2R(Z) = 2V2R(z) for any T, & € int(X) with || — ||z < L. Moreover, let ) > 0 be such that

nlu® —m® |, o < § and n|mO|, yo-v < & forallt € [T]. Then, the regret of

under any sequence of utilities ™V, . .., u(T) can be bounded as
T T
R(x*) 1
Ree? () < %) 9 ® _ 2 = (1) _ =12
eg’ (z*) < ; + 7721 [l LN 167 ?:1 | T l|5ce-1)

Proof. First, byLemmaWeknowthatHx(t_l)—g(t_l)wal) < 2wtV —mED|, o <
1, for any t € N. Thus, by assumption, it follows that V2R (z*~1) < 2V2R(g(*~Y), in turn
implying that ||z — gt~V |2, | < 2[|a® — g(t=1 Hf;(t—l)- Further, the triangle inequality for
the norm || - || ,:—1) implies that

lz® — D)2,y <200 — g2y +2)g" T —2tY2 L,

<Afla® — g V2 + 42D =gt YR,

where we used Young’s inequality in the first line, and the fact that [|z(*) — (=12, < 2||z® —
gtv 12— in the second line. Thus, summing over all ¢ € [T yields that

T T T
Z ||x(t) _ m(t—l)”i“il) < 42 ||$(t) _ g(t—1)|‘3(t71) + 42 Hw(t—l) _ g(t_l)Hiu—m
t=1 t=1 t=1

T T
<4y Je® =g VN2 4y 2 g2,
t=1 t=1
since (9 = ¢g(©)_ Finally, plugging this bound to Theoremconcludes the proof. O
Corollary B.4 (Stability of the Iterates). Suppose that R is a self-concordant function for int(X)
such that V*R(z) < 2V2R(x) for any =, & € int(X) with | — |z < L. Moreover; let n > 0 be
such that n||u® —m®|, . < L and 77Hm(t)H*7g(t_1> < L forallt € [T]. Then,

2™ — 2|0 < dnllmD |, g + 2pflul™ —mETD .
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Proof. Similarly to the proof of Corollary [B.3] we obtain that
[ — 2|0 < 20 — g | + [lg " — 2Dy
< 2 — g e+ 2 — gV
< 4n||m(t)||*,g(t*1) + 277Hu(t_1) - m(t_l)”*,m(t*U'

B.1 Log-Barrier Regularizer on the Simplex

Next, we instantiate our general RVU bound for the probability simplex. To this end, let us first point
out that, leveraging Lemma[A 8] (and Lemma[A.2)), we can construct a self-concordant barrier for any
polytope defined by a set of inequalities Az > b, for a matrix A € R¥*? and a vector b € R*, as
pointed out below.

Definition B.5 (Log-Barrier Regularizer for Polytopes). Consider any polytope defined by a set of
inequalities Aa > b, for a matrix A € R¥*? and a vector b € R*. The log-barrier function R is
defined as

k
R(x) = — Z log(A[r,:]z — b[r]). (11)

Indeed, Lemma[A.8|implies that R is a k-self-concordant barrier as it can be expressed as the sum
of k 1-self-concordant barriers. Now let us focus on constructing a self-concordant barrier for the
(d — 1)-dimensional simplex A9 = {ar: eRY,: S ] = 1}. To address the fact that A? has

empty interior, we will restrict the problem to the domain A° := {cc € R‘gl : Zf;i x[r] < 1}. For

notational convenience, we will also let x[d] = 1 — Zf;i a[r]. Thus, using the general log-barrier

regularizer for polytopes given in (IT)), we arrive at the log-barrier regularizer for A°:

r=1

d—1 d—1
R(x) = — Zlog(w[r]) — log (1 - Zw[r}) . (12)

Naturally, R is a d-self-concordant barrier since it can be expressed as the sum of d 1-self-concordant
barriers. It is important to stress that the regularizer given in takes as input a (d — 1)-dimensional
vector. To reconcile this with the fact that the regret minimizer should receive a d-dimensional utility
vector u € RY, in the sequel we will use a simple transformation of the observed utilities (while
preserving the incurred regret). But first, let us also introduce an auxiliary regularizer for the purpose
of our analysis; namely,

d
R(x) :=—) loga[r]. (13)
r=1

We are going to relate the local norm induced by the log-barrier to that induced by the auxiliary
regularizer (I3)). First, we characterize the primal local norm induced by R and R.
Claim B.6. For any x, T € int(A°),

”w iHZ _ zd: :B[T] _ 5[7‘] 2

R, — — :13[7’] .

Proof. Let us first compute the Hessian of R. A direct calculation gives that for r € [d — 1],
O*R 1 1 1 1

T A gy e O

r=1
where recall that z[d] = 1 — Zf;% a[r] (by convention). Further, for ' # r € [d — 1] we have that
>R R 1

ox[r|oz[r’]  dz[r'|ox[r]  (x[d])?’
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Thus, the Hessian of ‘R reads

R = dia ! J
ViR = ot (e )+ e (9

As a result,

e — 5. = (@ —5>Tdiag(

O

Next, we characterize the dual norm induced by the regularizer R. To this end, let us first explain how
the regret minimizer over the domain A° should operate. Upon observing a utility vector u € R%,
we construct the vector u € R4~ so that a[r] = u[r] — u[d], for all r € [d — 1]. Itis easy to see
that the regret incurred is preserved through this transformation.

Claim B.7. For any u € RY! and = € int(A°),
||ﬂ||*,R7w = ||u - c*]‘d”*’ﬁ’m’
where c* is the scalar that minimizes the norm in the right hand side.

Proof. First, using the Sherman—Morrison formula we find that the inverse of the Hessian of R given
in (T4) can be expressed as

1
V2R)"! = diag(z[1],...,Z[d—1]) - ——————FT
( ) g(z(1] [ ) ST (@)

where Z == ((z[1])?, ..., (z[d — 1])?). Thus, by definition of & we have that
d—1

~ 2 2 (s (@) (ulr] — uld])?
U||sre = z[r])*(u[r] — uld])* — T
[ullr, ;:1( [r])”(u[r] — uld]) SURETE

N

d B d r|r ;er 2
- el (ZZ_I(:[(BH)[ = o

by simple algebraic calculations. Now let us define the scalar c* as

Sy (x[r])
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Then, continuing from (T3)),

d d M2lr! d/, 22wl 2
||ﬂ||*,7z,w=Z(w[r])2 (u[r])2—2<27"'—dl(m[r]) [ ]>u[r]+<z7“ —dl( [r'])*ul l)

=1 2= ([r])? 2= ([r])?
= (@l])? (ulr] =)’ = [lu—c"La], 7 4 (16)
But, it is easy to see that ¢* is the minimizer of (T6). This concludes the proof. O
An analogous argument shows that [|[u(*) — 2=V ||, z o = [[u® — w1 — Lall, 7.4 < lu® —

ult=1 |, % .- Finally, combining Claim d Claim with Theorem [3.1]and Corollary
3.2

directly leads to the RVU bound of Corollary

C Omitted Proofs from Section 4|

In this section we provide the omitted proofs from Section[d] We start with the proof of Lemma[.2]
To this end, we first apply Corollary [3-2] for each individual regret minimizer R, leading to the
following guarantee for n < 1

Reg, () <R

+2n2uu 2]~ u Ve Vial|

16772\@ V2 s (17)

for any «’ € relint(A(A)); it is assumed that each regret minimizer R, is employing the same
learning rate > 0. Next, the triangle inequality along with Young’s inequality imply that

Hu(t)gc(t) [a] — u(tfl)gc(tfl)[amiwgt) < Q(w(t) [a])2||u(t) _ “(t71)|li,mgﬂ
+2(2V[a] — 2" V[a)*ul"V)2 o,
for any a € A. Summing this inequality over all a € A yields that

D e ®fa] —w Va0 a]? o) < 2ul a2z 2V as)
acA

Next, let us address the diameter term in (I7). Let . := argmin, R(x), so that R(x.) = 0. If
m(xfx.) <1— %, then, by Theorem|A.9|

R(z:) < | A]log ( ) < mlogT,

1—n(x!;x.)

where we used the notation m := |A|. Otherwise, we define x .= (1 —1/T)x’ + (1/T)x., and we
observe that

T
2
Reg] (2;) < Regl (7 +Zm - @2 a ) < Regl @) + 7 - ol

Thus, from (I7) we conclude that

mlogT _ -
RegaTS Zw(t) +2”Z”u (t) _ Dt 1)[a]||i,mgt>

(t) _ t 1) 2

since ||u( || o < 1. Next, we will use the fact that the log-barrier regularizer guarantees multiplicative
stability, in the following formal sense.
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Corollary C.1 (Multiplicative Stability). In the setting of Corollary suppose that
[u® oo, Mmoo < 1forallt € [T]. Ifn < &, thenfor2 <t <T,

g z®[r] ’ (t—1) (t—2)
Yot =) <6nllu Ve + 20w«

= 2= 1r]

Proof. The claim follows directly from Corollary with m® = 4=V using the fact that

vzt < e O
Now let o
) 1
) — e |1~ Ze 1]
He, (Izl,lgﬁ wt(lt—l)[a/] 5

for each a € A. Corollary [C.I]implies that
i) < 6nllul" V2]l + 2nful"P 2 2)[ oo
= 6nz" " Va][ul Vo + 292D [a] [l .
Thus, summing over all a € A yields that

> u <60 Vlallul o +20 ) 2D lal[u P <81, 20)

acA acA acA

for t > 2, where we used that (!~ (-2 ¢ A(A), as well as the normalization assumption

lulloo < 1;itis also immediate to see that ) , Mgl) < 8n.

For the proof of Lemma .2 we will require the Markov chain tree theorem. In particular, consider an
m-node ergodic (i.e., aperiodic and irreducible) Markov chain represented through a row-stochastic
matrix Q. The Markov chain tree theorem establishes a closed-form solution for the (unique)
stationary distribution 7r; that is, the vector w € A™ for which ﬂ'TQ = 7. To this end, we
formalize the notion of a directed tree.

Definition C.2 (Directed Tree). A directed graph 7 = (V, F) is a directed tree rooted at node a if (i)
it containts no (directed) cycles; (ii) every node V' \ {a} has exactly one outgoing edge; and (iii) the
root node a has no outgoing edges.

We will denote with T, the set of all possible directed m-node trees rooted at node a. Finally, before
we state the Markov chain tree theorem, we let >, be defined as

=> 11 Q[u u]. @1)

TETq (u,w)eE(T

Theorem C.3 (Markov Chain Tree Theorem; e.g., [Anantharam and Tsoucas, |1989]). The stationary
distribution ™ € A™ of an m-state ergodic markov chain with row-stochastic transition matrix Q is
such that

where ¥ := Y %, and each ¥, is defined as in 21).

We are now ready to prove Lemmaf4.2]

Lemma 4.2. Suppose that each regret minimizer R, employs (OFTRL) with log-barrier regulariza-
tionandn < 15. Then, foranyt € N,

lzt — 2D} <6414 Yl — 2l V2.
acA

Proof. Consider any ¢ € N. From the Markov chain tree theorem (Theorem [C.3) we know that

xzfa)| = =, Va€ A,



where Xo = > rcr [l(wv)en Qlu,vl and ¥ = 37 4 ¥, Fix some action a € A and a
directed tree 7 € T, rooted at node a. Then,

[I QYwu= I =20wi< I 0+sd)el 0
(u,v)€E(T) (u,v)EE(T) (u,v)€E(T)

where we used the fact that

40 > 2. [0] ®) (6)),(t—1)
Hoy @71)[]—1:3%[] (14 g )2y, 0],

Thus,

I[I QYmuu<][a+u?) TI Q" Pl

(u,0)€E(T) uFa (u,0)€E(T)
where we used the fact that 7 is a directed tree rooted at a. Thus, summing over all 7 € T, yields

that
sO=5" I QYo <s I (1 +ul)

TETa (u,v)EE(T) a’'€eA

< ijfl) exp{ (22)

This also implies that

<t>}

a’€eA

ST SHT exp{ > uff?} 3 wh - exp{ m} S0 @
a’eA

acA a’eA acA
Similarly,
II QYuv= ] =Pw> [J[ -zl ),
(u,v)EE(T) (u,w)EE(T) (u,v)EE(T)

where we used the fact that

®)
) _
pd 2=y L = el 2 (- ae )

Thus, summing over all 7 € T, implies that

E((Zt) _ Z H Q(t)[u o] E(t 1) H (t)

TETqa (u,w)EE(T) a’€A
> exp{ 23 u“)} (24)
a’€A

where we used the inequality 1 —x > e %, forall z € [0,1], applicable since (by (20))
Y oaea ufl,) <8n < 1 for n < 55. This also implies that

D=3"50 > exp {2 3 uff?} SR = exp {2 3 ufj)} xt=D  (25)

acA a’€A acA a’'€A
As a result, from (22) and 23) it follows that for any a € A,

B (t—1) ®) - -
y _ E((lt 1) < Ea exp {ZGIGA /’l’a’ } — Z{(lt 1) = E((lt 1) ex 3 (t) - 1
IOIES S R exp{ 2y (t)} »(t-1) = niE-1 P pa Ha,

a’€eA g
(t=1)
< Za u®
- nit-1)

24



(t) 1

where we used the inequality e* — 1 < %x for all x € [0, %], applicable since . 4 p,/ < 5.

Similarly, 24) and (23] imply that for any a € A,

st 50 sy S Vep{-2T,onl} we-n

DE=D - BO T BED se-1) exp {ZareA uff;)} ey arcA

(=1
< Sl <3Zu )

a’€eA

As a result, we have established that

Eff) Zét 1)

G

2)[a] ~ 2 ~)[a]| - < 85 Y =8 Y

a’€eA a’€eA

in turn implying that

= — 2D, <8 (Z uE?) (Z a:(t_l)[a]> =8> u, (26)

a’eA acA a’eA

since z(*~1) € A(A). Thus,

2
2 — 2D < o4 (Z ufﬁ> <oilAl Y (u0)

acA acA

by Jensen’s inequality. Finally,

@) > a[d] i ) [d] i ) - (t—1)|2
(1) = ma S <2 l—m = |zl — {20,

a’'€A
and combining this bound with (26) concludes the proof. O
Theorem 4.3 (RVU Bound for Swap Regret). Suppose that each R, employs with log-

barrier regularization and n < ﬁ%' Then, for T' > 2, the swap regret of Reyap is bounded
as

r _ 2m*logT a ®) (t—1)2 1 a (t) (t—1) 2
SwapReg™ < 717 + 4n E l[u™ —u II5, — 72048mn E |z — x II5-
t=1 =1

Proof. Combining (T9), (T8), Theorem and Lemmaimplies that SwapReg; is upper bounded
by

T

M _|_4,7§T: ||u(t) _u(t—1)||2 +477§T: ||w(t) _w(t—l)”2 o Z Hac(t) —w(t_l)HQ
N =1 ~ =1 * 1024m =1 :

Further, for n < it follows that

128\/

_ _ 1 _
gyl — 2V < a2 — 2D < 2l — 2D,
In turn, this implies that
2m?2logT T 1 T
SwapReel < 22 o7 4y () _ =12 _ ®) _ gt=1)2
wapReg]| < ——=—+ ntgllu w5 2048mn;”w 2=V
concluding the proof. O
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Corollary 4.5 (Near-Optimal Indrvrdual Swap Regret). Suppose that all players use
BM-OFTRL-LogBar withn = 28— ) max ey (V] Then, the individual swap regret SwapRegZ

up to time T > 2 of each player i € [n] can be bounded as

SwapReg! < 256 mfﬁ{‘ /mj} | (n—1)m? + Z m? log T
JE(n —

Proof. By Theorem[.3]and Theorem[4.4]

2m?log T ) _
SwapReg! < Tg +ann—1) >3 [l — V)3
j#i t=1

2m?log T
< i8S 32768n(n — 1) rnax{mj} Zm log T

j=1

= 256 m[ﬁ{./ it (n—l)m?—FZm? log T
je : :
j=1

O

Corollary 4.6 (Adversarial Robustness). There exist dynamics such that when all players follow
them the individual swap regret of each player grows as in Corollary[{.5] Moreover, when faced

against adversarial utilities, such that ||u(t) lloo < 1forallt € [T], the algorithm guarantees that
n
SwapReg! < 256 mﬁrx}]{,/mj} (n —1)ym? + Z m? | log T + 2+/m;logm;T + 2.
j€ln :
Jj=1

Proof. Each player i € [n] initially follows the BM-OFTRL-LogBar dynamics with learning rate
= T556T) maijeﬂ,Lﬂ{W}' Next, player i keeps track of the quantity ™% [ju!™ — u{" V|2,

If for all 2 < ¢ < T it holds that

t
Z ||u§T) (T D ||2 <8192(n—1) max{mj} Zm logt, (27)

— e
then the swap regret of player ¢ € [n] enjoys the guarantee of Corollary as follows directly from
Theorem[4.3] In particular, will hold as long as all players follow the prescribed dynamics, by
virtue of Theorem Otherwise, let ¢ > 2 be the first iteration for which is violated. The
overall swap regret accumulated up to time ¢ — 1 is at most the guarantee of Corollary {.3] as follows

directly from Theorem while the swap regret at time ¢ is at most 2 since ||uZ(-t) lloo < 1. Next, the
player switches to BM-MWU with learning rate n = / ml# Thereafter, the accumulated swap
regret will be bounded by 2+/m; log m;T". This completes the proof. [

Finally, we conclude this section with a refinement for games with a large number of players. In
particular, we will assume that the utility of each player only depends on the actions of a small
number of other players (Item [I), and that each player’s actions only affect the utility of a small
number of other players (Item[2). Understanding whether the linear dependence of Corollary [4.5]on
n is necessary in general games is left as an interesting open question.

Theorem C.4 (Refinement for Large Games). Suppose that all players use BM-OFTRL-LogBar.
Furthermore, assume that the utility of player i € [n] depends on a subset of players N; C [n], so
that

L N <c<n—1;and

2. maxiepy {7 #i:i e Nj} <c
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Then, for n =

1
128c max;eny{+/M; }’

Z SwapReg; < 256¢ mﬁ{, /m;j} Z m3 log T.
i=1 7€ln =1

_ 1 1
MOV@OVET;fOF?? T 128y/enmaxjeny{/M; } < 128c max;eny{/M;}’

SwapReg! < 256 max{,/m; cnm?—&—\/? m? | log T.
PHes: = jG[[n]]{ s} n; I

In particular, if m; = m for all i € [n],

SwapRegiT < 512 enmb/? logT.

Proof. The proof proceeds similarly to the proof of Theorem[#.4] First, we have that
2
2
t t—1 t t—1 t t—1
(el =l V)" < [ 30 2l =2l Vi) < e el — 2l VS,
JEN; G#i

since |V;| < c. Thus, using Theorem S SwapReg! can be upper bounded by

1 B n T B
OgTZm T D DD (I Sl g M Sy WCRN DT
i=1 et

i=1jEN; t=1

logl ® _ (t 1))2
E + E 4 E 2
- ( nc 2048mm) H Iy (28)

i=1
log 7 —~ 1 ) (1) 2
<2 E . E E : 29
— 77 P ’L 409677 — i — ||$ m'L ||1’ ( )

where (28) uses the assumption that [{j #i:i € N} <¢, for any player i € [n], and 29) follows

since n < m forall i € [n]. As aresult, forn = W’

Z SwapReg! < 256¢ max{, /m; } Z m logT.

i=1

Furthermore, given that ) .-, SwapRegiT >0,

S

n

Z Z el — 22 <y mi Sl - 2V < 81922n:m$ log T

max m
JG[["]]{ ]}z 1t=1 i=1 t=1 i=1

1 1
128+/cn max; ¢ n){/m; } < 128c max; ey {5}’

Thus, for n =
SwapReg] < 256+/cn max{,/ Sim? logT+256\/7 max{ﬂ/ }Zm logT.
O

Hence, when c is a small constant this theorem implies an improvement of ©(n) for the sum of the
players’ swap regrets, as well as an ©(y/n) factor for each individual swap regret.
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D Experiments

In this section we include additional experiments in order to corroborate some of our theoretical
results. First, regarding Figure|l|in the main body, we considered a bimatrix (general-sum) game
described with the following payoff matrices.

0 05 15 0 15 1
A=(15 0o 1); B=[1 0 15]. (30)
05 15 0 15 1 0

This game is a slight variant of Shapley’s game [Shapleyl [1964], a general-sum two-player game
used by Shapley in order to illustrate that fictitious play does not converge to Nash equilibria in
general-sum games. Shapley’s game is not suited to illustrate the cycling behavior of the dynamics
in our case since it has a unique Nash equilibrium, occurring when both players play uniformly
at random; as such, is initialized at the equilibrium. On the other hand, the (unique)
equilibrium of the game described in (30) occurs when @* = (3,3, 3) and y* = (3, 2, 55) [Avis
et al., 2010]. As illustrated in Figure|l| BM-OFTRL-LogBar does not appear to converge to a Nash
equilibrium—at least in a last-iterate sense. In contrast, we conjecture that the last iterate of
with log-barrier regularization converges to the set of Nash equilibria in zero-sum games, and this
property seems plausible even under the BM construction.

Moreover, we conduct experiments on random 3 x 3 bimatrix (normal-form) general-sum games.
Specifically, each entry of the payoff matrices is an independent random variable drawn from the
uniform distribution in [—1, 1]. In Figure [2| we illustrate the swap regret of the BM-OFTRL-LogBar
algorithm with a time-invariant learning rate n = 0.1.
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Figure 2: The swap regret experienced by each player for 7" = 10* iterations when both players
employ BM-OFTRL-LogBar with 1 = 0.1. Each plot corresponds to a random 3 x 3 bimatrix game.
The x-axis represents the iteration, in logarithmic scale, while the y-axis shows the swap regret
experienced by each player at the given iteration. These results corroborate the O(logT') rates
established in Corollary@ showing that our analysis is essentially tight.
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