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A ADDITIONAL IMPLEMENTATION DETAILS

Network Architecture The detailed architecture of our simple pipeline is shown in Figure 7.
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Figure 7: DM-NeRF architecture. The positional encoding PE(·) of the location (x, y, z) and view-
ing direction (θ, ϕ) are taken as the inputs of our network. The volume density σ and object code o
are the functions of the location while the colour additionally depends on the viewing direction.

2D Object Matching and Supervision As illustrated in Figure 3, assuming we generate L images
of 2D object predictions {I1 . . . Il . . . IL}, Il ∈ RU×V×(H+1) and have the paired L images of 2D
ground truth object labels {Ī1 . . . Īl . . . ĪL}, Īl ∈ RU×V×T , in which H is the predefined number of
objects and T represents the number of ground truth objects.

For each pair, we firstly take the first H solid object predictions of I and reshape it to M ∈ RN×H ,
where N = U×V . Likewise, Ī is reshaped to M̄ ∈ RN×T . Then, M and M̄ are fed into Hungarian
algorithm (Kuhn, 1955) to associate every ground truth 2D object mask with a unique predicted 2D
object mask according to Soft Intersection-over-Union (sIoU) and Cross-Entropy Score (CES) (Yang
et al., 2019b). Formally, the Soft Intersection-over-Union (sIoU) cost between the hth predicted box
and the tth ground truth box in the lth pair is defined as follows:
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(11)

where Mn
h and M̄n

t are the nth values of Mh and M̄t. In addition, we also consider the cross-entropy
score between Mh and M̄t which is formally defined as:

CCES
h,t = − 1

N

N∑
n=1

[
M̄n

t logMn
h + (1− M̄n

t ) log(1−Mn
h )

]
(12)

After association, we reorder the predicted object masks to align with the T ground truth masks, and
then we directly minimize the cost values of all ground truth objects in every pair of images.

sIoUl =
1

T

T∑
t=1

(CsIoU
t,t ) CESl =

1

T

T∑
t=1

(CCES
t,t ) (13)

Training Details For all experiments, we set the batch size as 3072 rays just to fully use the
memory. For each ray, we sample 64 points and 128 additional points in the coarse and fine volume,
respectively. The Adam optimizer with default hyper-parameters (β1 = 0.9, β2 = 0.999, and
ϵ = 10−7) is exploited. The learning rate is set to 5 × 10−4 and decays exponentially to 5 × 10−5

over the course of optimization. The optimization for a single scene typically take around 200–300k
iterations to converge on a single NVIDIA RTX3090 GPU (about 17–25 hours).

Evaluation Details We use the Mask-RCNN code open-sourced by the Matterport at https:
//github.com/matterport/Mask_RCNN and follow their procedure to calculate the AP
values. Note that, we regard IoU values as scores during the ranking procedure.

Adaptation of Point-NeRF for Object Manipulation During training, to ensure the quality of
Point-NeRF on our scene-level DM-SR dataset, we directly use the ground truth dense point cloud
(400 million points per scene) instead of the MVSNet generated one when generating the neural
point cloud. During the inference of manipulation, we firstly feed the spatial locations of all neural
points into our DM-NeRF to infer the corresponding object codes. After determining the points to
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be edited, we follow the pre-defined manipulation information to transform the corresponding neural
points to desired locations. Then, the new neural point cloud is used to render an image with object
manipulation from a given view, by point-based volume rendering in Point-NeRF.

B ADDITIONAL DATASET DETAILS

To quantitatively evaluate geometry manipulation, we create a synthetic dataset with 8 types of
different and complex indoor rooms (shown in Figure 16), called DM-SR, containing path-traced
images that exhibit complicated geometry. The room types and designs follow Hypersim dataset
(Roberts & Paczan, 2021) and the rendering trajectories follow NeRF synthetic dataset (Mildenhall
et al., 2020). Each scene has a physical size of ∼12×12×3 meters. Overall, we firstly create and
render 8 static scenes, and then manipulate each scene followed by second round rendering.

In our new dataset, 13 common classes of objects (chair, desk, television, fridge, bathtub, etc.)
are introduced. The raw object meshes are downloaded from https://free3d.com/. We
apply different scale/pose transformations on objects and then compose eight common indoor rooms,
including bathroom, dinning room, restroom, etc.. We follow the default world coordinate system
in Blender: the positive x, y and z axes pointing right, forward and up, respectively.

To increase realism, we set various types of textures and environment lights for different objects and
scenes. Four commonly used types of lights (point, sun, spot, area) are included and the strength is
limited within 1000W. During rendering, a camera with 50 degrees field of view is added to generate
RGB, depth, semantic and instance images at the resolution of 400×400 pixels. For each scene, the
training RGB images are rendered from viewpoints randomly sampled on the upper hemisphere.
The viewpoints of testing images are sampled following a smooth spiral trajectory. In addition,
instance images are generated by the ray cast function built in Blender.

Bathroom Bedroom Dinning Kitchen

Reception Restroom Study Office

Figure 8: Eight different indoor scenes of our DM-SR dataset.

C ADDITIONAL QUANTITATIVE RESULTS

Ablations of MaskRCNN We provide additional quantitative results of AP scores with IoU
thresholds at 0.5 and 0.75 in Table 4 to compare four groups of experiments for MaskRCNN (He
et al., 2017) on the selected eight scenes of ScanNet. The settings are as follows:

• G 1: Train a single model on the 8 scenes together from scratch, and then evaluate.
• G 2: Load a single pretrained model, and then finetune and evaluate it on 8 scenes together.
• G 3: Train 8 models on the 8 scenes separately from scratch, and then evaluate respectively.
• G 4: Load 8 copies of the pretrained model, and then finetune and evaluate on 8 scenes separately.

Table 4 shows that Group 4 (G 4) achieves the highest scores, which also has the fairest experimental
settings we can set up for comparison.
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AP0.50 ↑ AP0.75 ↑
G 1 G 2 G 3 G 4 G 1 G 2 G 3 G 4

0010 00 88.34 91.77 90.58 92.80 76.30 74.51 82.61 83.90
0012 00 89.89 92.68 93.63 93.49 85.76 82.77 86.35 86.90
0024 00 83.45 87.15 84.26 87.18 57.46 49.38 67.08 69.87
0033 00 92.81 93.94 93.69 93.74 88.42 87.59 88.93 88.70
0038 00 96.98 96.99 96.94 97.01 95.92 94.88 95.87 96.01
0088 00 85.01 88.07 85.95 90.04 63.29 94.88 73.34 69.06
0113 00 97.97 98.12 97.60 98.59 97.60 98.59 98.17 98.59
0192 00 97.78 97.79 97.78 97.94 96.76 95.79 95.26 96.95
Average 91.53 93.31 92.55 93.85 82.69 84.80 85.95 86.25

Table 4: Average scores of MaskRCNN on 8 scenes of ScanNet.

Ablations of the Object Field Since the backbone of our pipeline is completely the same as the
original NeRF, and our proposed object field component is supervised by ℓ2d obj from 2D signals
and by (ℓ3d empty + ℓ3d obj) from 3D signals. Note that, the losses (ℓ3d empty + ℓ3d obj) only
involve a single hyper-parameter ∆d as shown in Equations 7/8/9. To comprehensively evaluate the
effectiveness of these components, we conduct additional experiments with the following ablated
versions of our object field along with our main experiments.

• Without (ℓ3d empty + ℓ3d obj): These two losses are designed to learn correct codes for empty 3D
points. In this case, we optimize the object field component only by ℓ2d obj from 2D signals.

• With (ℓ3d empty + ℓ3d obj): We additionally learn correct codes for empty 3D points using such
losses but with different ∆d (0.025/0.05/0.10 meters), denoted as w/0.025, w/0.05, w/0.10.

From Tables 5/6/7, we find that ∆d = 0.05 achieves better scene decomposition quality. It is also
clear that the pipeline trained without (ℓ3d empty + ℓ3d obj) has worse AP scores than the pipeline
trained with (ℓ3d empty + ℓ3d obj). In fact, different choices of ∆d produce very close results, show-
ing that our proposed supervision for empty 3D points is rather robust.

Synthetic
Rooms

AP0.75 ↑ AP0.90 ↑
w/o w/0.025 w/0.05 w/0.10 w/o w/0.025 w/0.05 w/0.10

Bathroom 100.0 100.0 100.0 100.0 98.17 97.72 98.50 98.16
Bedroom 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Dinning 99.49 99.55 99.66 99.49 81.87 81.77 81.72 81.91
Kitchen 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Reception 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Rest 99.88 99.89 99.89 99.89 98.77 98.97 99.03 99.03

Study 98.77 98.81 98.86 98.71 92.19 92.31 92.15 92.12
Office 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Average 99.77 99.78 99.80 99.76 96.38 96.35 96.43 96.40

Table 5: Quantitative results of scene decomposition from our method on DM-SR dataset. AP scores
with IoU thresholds at 0.75 and 0.90 are reported.

Reconstructed
Rooms

AP0.75 ↑ AP0.90 ↑
w/o w/0.025 w/0.05 w/0.10 w/o w/0.025 w/0.05 w/0.10

Office 0 79.41 75.10 82.71 76.43 57.80 56.85 55.07 53.71
Office 2 82.77 80.83 81.12 83.70 64.68 65.02 68.34 61.18
Office 3 67.38 78.08 76.30 75.07 48.53 54.77 55.90 53.79
Office 4 65.51 64.72 70.33 73.94 47.17 50.13 53.68 53.60
Room 0 77.60 79.73 79.83 76.03 51.21 49.63 49.35 46.69
Room 1 87.63 88.85 92.11 86.14 69.20 67.78 74.21 63.32
Room 2 84.01 84.69 84.78 83.29 58.01 62.69 62.83 57.70
Average 77.76 78.86 81.03 79.23 56.66 58.12 59.91 55.71

Table 6: Quantitative results of scene decomposition from our method on Replica dataset. AP scores
with IoU thresholds at 0.75 and 0.90 are reported.
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Real-world
Rooms

AP0.75 ↑ AP0.90 ↑
w/o w/0.025 w/0.05 w/0.10 w/o w/0.025 w/0.05 w/0.10

0010 00 95.03 94.13 94.82 94.62 86.29 86.72 90.45 86.51
0012 00 99.25 99.25 98.86 99.75 94.40 95.71 95.35 94.54
0024 00 78.98 84.04 93.25 78.09 56.72 58.08 72.01 53.20
0033 00 94.94 92.92 97.02 95.77 89.94 87.77 93.32 88.83
0038 00 96.57 97.02 99.17 96.58 93.43 92.96 97.58 93.82
0088 00 83.22 82.59 83.59 78.59 61.42 58.23 59.23 61.34
0113 00 92.69 92.84 98.67 98.67 85.40 85.42 96.61 96.61
0192 00 97.60 97.60 99.40 99.80 96.48 96.44 98.32 98.88
Average 92.29 92.55 95.60 92.74 83.01 82.66 87.86 84.22

Table 7: Quantitative results of scene decomposition from our method on ScanNet dataset. AP
scores with IoU thresholds at 0.75 and 0.90 are reported.

Ablations of Object Field Training Strategy To comprehensively evaluate the object field train-
ing strategy, we conduct additional experiments with the following ablated versions of training strat-
egy along with our main experiments.

• Without Detach (w/o): The gradients from object field component can backpropagate to the
backbone of NeRF. In this case, the object field and the rendering parts will influence each other.

• With Detach (w/ ): The object field component only depends on the output representation of
NeRF and will not affect the rendering part at all.

From Tables 8/9/10, we find the training strategy with Detach achieves better scene rendering and
decomposition quality in general. It is clear that the rendering quality drops significantly if our
object field component is trained without Detach. In contrast, when our object field component
is trained with Detach, better scene rendering quality and comparable decomposition quality are
obtained. In this paper, the training strategy with Detach is adopted.

PSNR↑ LPIPS↑ SSIM↓ AP0.75 ↑
Detach w/ w/o w/ w/o w/ w/o w/ w/o

Bathroom 44.05 32.05 0.994 0.944 0.009 0.150 100.0 100.0
Bedroom 48.07 32.70 0.996 0.927 0.009 0.255 100.0 100.0
Dinning 42.34 33.47 0.984 0.895 0.028 0.191 99.66 99.29
Kitchen 46.06 28.49 0.994 0.904 0.014 0.221 100.0 100.0

Reception 42.59 29.91 0.993 0.922 0.008 0.190 100.0 99.47
Rest 42.80 31.33 0.994 0.930 0.007 0.145 99.89 99.47

Study 41.08 32.08 0.987 0.935 0.026 0.161 98.86 98.88
Office 46.38 32.17 0.996 0.935 0.006 0.162 100.0 100.0

Average 44.17 31.53 0.992 0.924 0.013 0.185 99.80 99.71

Table 8: Quantitative results of our method on DM-SR dataset.

PSNR↑ LPIPS↑ SSIM↓ AP0.75 ↑
Detach w/ w/o w/ w/o w/ w/o w/ w/o

Office 0 40.66 28.20 0.972 0.781 0.070 0.422 82.71 82.95
Office 2 36.98 27.98 0.964 0.837 0.115 0.361 81.12 81.69
Office 3 35.34 26.68 0.955 0.817 0.078 0.366 76.30 72.63
Office 4 32.95 27.19 0.921 0.804 0.172 0.363 70.33 77.34
Room 0 34.97 25.18 0.940 0.682 0.127 0.403 79.83 82.26
Room 1 34.72 26.54 0.931 0.717 0.134 0.425 92.11 93.71
Room 2 37.32 27.43 0.963 0.786 0.115 0.392 84.78 83.21
Average 36.13 27.03 0.949 0.775 0.116 0.390 81.03 81.97

Table 9: Quantitative results of our method on Replica dataset.
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PSNR↑ LPIPS↑ SSIM↓ AP0.75 ↑
Detach w/ w/o w/ w/o w/ w/o w/ w/o

0010 00 26.82 22.30 0.809 0.697 0.381 0.513 94.82 97.44
0012 00 29.28 22.98 0.753 0.601 0.389 0.546 98.86 97.67
0024 00 23.68 19.41 0.705 0.552 0.452 0.573 93.25 90.45
0033 00 27.76 22.39 0.856 0.743 0.342 0.470 97.02 97.48
0038 00 29.36 24.79 0.716 0.614 0.415 0.573 99.17 98.42
0088 00 29.37 23.87 0.825 0.692 0.386 0.513 83.59 85.45
0113 00 31.19 22.93 0.878 0.727 0.320 0.498 98.67 99.00
0192 00 28.19 21.97 0.732 0.576 0.376 0.549 99.40 98.75
Average 28.21 22.58 0.784 0.650 0.383 0.529 95.60 95.58

Table 10: Quantitative results of our method on ScanNet dataset.

Scene Manipulation and Decomposition To better demonstrate the superiority of our DM-NeRF
that simultaneously reconstructs, decomposes, manipulates and renders complex 3D scenes in a
single pipeline, we conduct additional experiments with the following comparison of scene decom-
position along with our main experiments.

• Decomposition after Manipulation: We manipulate objects within a scene and generate corre-
sponding object masks for decomposition using Mask-RCNN with the weights trained on the
same scene before manipulation.

• Simultaneous Manipulation and Decomposition: We appeal to our DM-NeRF to simultaneously
manipulate and decompose a scene. The weights we used are directly from the same scene but
without manipulation.

From Table 11, we can see that, for the same scene, the AP scores reported by Mask-RCNN (He
et al., 2017) has an obvious decrease after manipulation. However, our method presents very close
AP scores for all scenes before and after manipulation. Fundamentally, this is because Mask-RCNN
only considers every 2D image independently for object segmentation, while our DM-NeRF explic-
itly leverages the consistency between 3D and 2D across multiple views.

Metric AP0.5 ↑ AP0.75 ↑
Method Mask-RCNN Ours Mask-RCNN Ours

Manipulation Before After Before After Before After Before After
Bathroom 97.90 96.36 100.0 99.38 93.81 88.89 100.0 97.57
Bedroom 98.91 97.14 100.0 100.0 97.92 94.84 100.0 99.38
Dinning 98.85 98.20 100.0 99.15 98.85 96.33 99.66 97.14
Kitchen 92.06 93.56 100.0 100.0 92.04 91.39 100.0 98.75

Reception 98.81 97.03 100.0 100.0 98.81 94.63 100.0 99.40
Rest 98.89 97.18 100.0 100.0 98.89 95.86 99.89 99.86

Study 96.87 97.64 99.69 99.41 96.86 95.75 98.86 98.38
Office 98.93 89.97 100.0 100.0 97.83 74.24 100.0 75.94

Average 97.65 95.88 99.96 99.74 96.87 91.49 99.80 95.80

Table 11: Quantitative results of scene decomposition from our method and Mask-RCNN on DM-
SR dataset. AP scores with IoU thresholds at 0.5 and 0.75 are reported.

Computation We typically train 200K iterations in ∼15 hours on each scene (∼0.27s for each
iteration) with the batch size of 3072 rays, which uses ∼24GB GPU memory. In contrast, the
original NeRF (rendering only) needs ∼0.22s for each iteration). During the inference of joint
decomposition and rendering, our DM-NeRF costs ∼9.3s per image with the batch size of 4096
rays using ∼5GB GPU memory. For joint decomposition, manipulation and rendering, ∼23.4s are
required for each image and ∼9GB GPU memory is needed when the batch size is set as 4096 rays.
To render an image from a novel view, the original NeRF and Point-NeRF need ∼7.8s and ∼8.2s,
respectively. All training and testing are operated on a single Nvidia GeForce RTX 3090 card.

17



Published as a conference paper at ICLR 2023

D ADDITIONAL EXPERIMENTS FOR NOISY 2D LABELS

As illustrated in Figure 15, to further evaluate the robustness of our method, we use the instance
masks estimated by Mask-RCNN as the supervision signals when training our DM-NeRF. Table 12
shows the quantitative results on our DM-SR dataset. We can see that even though the 2D labels are
inaccurate for training, our method still achieves excellent object decomposition results.

Bathroom Bedroom Dinning Kitchen Reception Rest Study Office Average
DM-NeRF 95.30 97.08 95.69 94.72 99.62 98.58 97.72 98.08 97.10

Table 12: Quantitative results of scene decomposition from our method trained with noisy 2D labels
(estimated by Mask-RCNN) on DM-SR dataset. AP scores with IoU thresholds at 0.75 are reported.

E EXTENSION TO PANOPTIC SEGMENTATION

An extra semantic branch parallel to object code branch is added into our current DM-NeRF for
panoptic segmentation. Table 13 shows the quantitative results on our DM-SR dataset where the ac-
curate 2D semantic and instance labels are used to train our network. Figure 9 shows the qualitative
results. It can be seen that both semantic categories and object codes are accurately inferred.

Bathroom Bedroom Dinning Kitchen Reception Rest Study Office Average
DM-NeRF (Obj: AP0.75) 100.0 100.0 99.41 100.0 100.0 97.86 96.84 100.0 99.26
DM-NeRF (Sem: mIoU) 97.58 99.08 94.64 98.72 97.42 97.13 94.29 97.85 97.09

Table 13: Quantitative results of panoptic segmentation from our method trained with accurate 2D
semantic and instance labels on DM-SR dataset. The AP score of all objects and the mIoU score of
all categories in each scene are reported respectively.

Semantic GT RGB GTOurs (Instance) Instance GT Ours (Rendering)Ours (Semantic)

Figure 9: Qualitative results of our method for panoptic segmentation on DM-SR dataset.

F ADDITIONAL QUALITATIVE RESULTS

Scene Decomposition and Manipulation Figures 10/11/12/13 show qualitative results of 3D
scene decomposition and manipulation in Sections 4.3 & 4.4.

Scene Decomposition Figures 14/15 shows qualitative results of scene decomposition from our
method trained on noisy and inaccurate 2D labels.

Scene Rendering and Decomposition Figures 16/17/18 show additional qualitative results of
scene rendering and decomposition.

Scene Manipulation Figures 19/20/21/12 shows additional qualitative results of scene manipula-
tion with single/multiple objects under various transformations.

More qualitative results can be found in the video available at https://github.com/
vLAR-group/DM-NeRF.
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Figure 10: Qualitative results of our method and the baseline on three datasets: DM-SR, Replica
and ScanNet. The dark red circles highlight the differences.

Mani. Ⅳ Before Mani.Mani. Ⅲ Mani.Ⅱ Mani. Ⅰ 
Figure 11: Qualitative results of our method for object deformation manipulation on DM-SR dataset.
The dark red boxes highlight the target table to be manipulated.

OursPoint-NeRF Ground TruthGround Truth Point-NeRF Ours

Figure 12: Qualitative results of novel view rendering after manipulating 3D objects. It can be
seen that our method obtains clearly sharper object shapes after manipulation in 3D space, whereas
the baseline Point-NeRF shows obvious artifacts such as holes, primarily because its manipulation
is conducted on explicit 3D point clouds followed by neural rendering, but our manipulation is
conducted in continuous neural radiance space and therefore has fine-grained results.
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Mani. Ⅲ Mani. ⅠMani.Ⅱ 

Figure 13: The artifacts can be further mitigated. By introducing a voting strategy, we improve the
quality of scene decomposition for the following fine manipulation. To be specific, we also consider
8 neighbouring rays when determining the projected object code ô along a light ray. If ô is different
from the codes of 8 neighbouring rays and these codes is dominated by one of them by voting (the
number of dominated code is greater than 4), then ô will be reset to the dominated code. Otherwise,
the original code will be kept. Such an operation can generate more accurate scene decomposition
results to support the Inverse Query Algorithm, especially when visual occlusion happens.0% Noisy Label 10% Noisy Labels 50% Noisy Labels 70% Noisy Labels 80% Noisy Labels 90% Noisy Labels

Predicted Object Masks
(0% Noisy Label)

Predicted Object Masks
(10% Noisy Labels)

Predicted Object Masks
(50% Noisy Labels)

Predicted Object Masks
(70% Noisy Labels)

Predicted Object Masks
(80% Noisy Labels)

Predicted Object Masks
(90% Noisy Labels)

Figure 14: Estimated object masks at novel views from our models trained with different amount of
noisy labels. Our method can infer satisfactory results, even though 80% of 2D labels are incorrect
during training, demonstrating the robustness of our method.

100%Accurate 2D Labels
(Generated by Blender)

Inaccurate 2D Labels
(Generated by MaskRCNN)

Estimated 2D Masks

DM-NeRF
Training Novel View

Testing

DM-NeRF
Training Novel View

Testing

Estimated 2D Masks

Figure 15: As shown in the red dotted block, we use the instance masks estimated by Mask-RCNN
as the supervision signals when training our DM-NeRF. We can see that even though the 2D labels
are inaccurate for training, our method still achieves excellent object decomposition results. The red
circles show that only thin chair feet are not segmented using the inaccurate 2D labels in training.
This result is consistent with that of Figure 14, showing the remarkable robustness of our method.
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Figure 16: Qualitative results for scene rendering and decomposition on DM-SR.
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Figure 17: Qualitative results for scene rendering and decomposition on Replica.
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Figure 18: Qualitative results for scene rendering and decomposition on ScanNet.
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Figure 19: Qualitative results of our method for object manipulation on DM-SR dataset. The dark
red boxes highlight the differences.
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ScaleJoint Before Mani.Rotation Translation

Figure 20: Qualitative results for single object manipulation on Replica dataset. The dark red box in
the rightmost column highlights the manipulated object.

Mani. ⅣMani. Ⅴ Before Mani.Mani. Ⅲ Mani.Ⅱ Mani. Ⅰ 

Figure 21: Qualitative results for multiple objects manipulation on DM-SR dataset. The dark blue
boxes in the rightmost column highlight the manipulated objects.
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